SHOCK AND VIBRATION RESPONSE SPECTRA COURSE
Unit 7A. Power Spectral Density Function

By Tom Irvine

Introduction

A Fourier transform by itself isa poor format for representing random vibration because
the Fourier magnitude depends on the number of spectral lines, as shown in previous
units.

The power spectral density function, which can be calculated from a Fourier transform,
overcomes this limitation. Again, some assembly is required.

Note that the power spectral density function represents the magnitude, but it discards the
phase angle. The magnitudeistypically represented as G2/Hz. The Gisactually GRMS.

Calculation Method

Power spectral density functions may be cal culated via three methods:

1. Measuring the RMS value of the amplitude in successive frequency bands, where the
signal in each band has been bandpass filtered.

2. Taking the Fourier transform of the autocorrelation function. Thisisthe Wierner-
Khintchine approach.

3. Taking thelimit of the Fourier transform X(f) times its complex conjugate divided by
itsperiod T as the period approaches infinity. Symbolically, the power spectral
dengity function Xpgp(f) is

lim X (F)X* (F)
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These methods are summarized in Reference 1. Only the third method is considered in
this unit.

Fourier Transform Method

Equation (1) assumesthat the Fourier transform has a dimension of [amplitude-time].

The following equations are taken from Reference 2.



The discrete Fourier transform [amplitude-time] is

N-1
X(k) = Dté x(n)exp(- j%nk) for k=01 ..,N-1 (29)
n=0

Note that the index k can be related to the frequency
frequency (k) = k Df (2b)
Theinversetransform is

N-1
x(n) = Df é X(k)exp(+j%nk) foorn=014..,N-1 3
k=0

These equations give the Fourier transform values X (k) at the N discrete frequencies
kDf and give the time series x(n) at the N discrete time pointsn Dt. Thetotal period of
the sgnal isthus

T =NDt (4)

where
N is number of samplesin the time function and in the Fourier transform
T istherecord length of the time function
Dt isthetime sample separation

Consider a sine wave with a frequency such that one period isequal to therecord length.
This frequency is thus the smallest sine wave frequency which can beresolved. This
frequency Df isthe inverse of the record length.

Df=1T (5)

This frequency is also the frequency increment for the Fourier transform.

Alternate Fourier Transform Method

The Fourier transform with dimension of [amplitude-time] is rather awkward.

Fortunately, the power spectral density can be calculated from a Fourier transform with
dimension of [amplitude]. The corresponding formulais

lim  F(f)F* (f)
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Xpsp (f) =



The Fourier transform F(k) for the discrete time series x(n) is
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Note that the index k can be related to the frequency
frequency (k) = k Df (7b)
The corresponding inverse transform is
N- 1

x(n) = & iF(k)expgij
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One-sided Fourier Transform Approach

The power spectral density functionsin equations (1) and (6) were both double-sided.
The power spectral density amplitude would be symmetric about the Nyquist frequency.

A one-sided, or single-sided, power spectral density function is desired.

Let X psp () be the one-sided power spectral density function.

lim  G(f)G* (f)
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The one-sided Fourier transform G(k) is

LN
a {x(n)} for k=0

i
I magnitude ! g—
: T n=0 b
G(k) =i
T N-1 oL
: 2 magnitude ! g—ﬁ é 1x(n) expga;? j@nkc:yy for k =1, E 1
- T N e N % 2
| n=0
with

N as an even integer
Freguency (k) = kDf
(10)

| mplementation

Calculation of a power spectral density requires that the user select the Df value from a
list of options. The Df valueislinked to the number of degrees of freedom.

Statistical degrees of freedom

Therdiability of the power spectral density datais proportional to the degrees of
freedom.

The statistical degree of freedom parameter is defined from References 3 and 4 as
follows:

dof = 2BT (11)

where dof is the number of statistical degrees of freedom and B is the bandwidth of an
ideal rectangular filter. Thisfilter isequivaent to taking the time signal “asis,” with no
tapering applied. Note that the bandwidth B equals Df, again assuming an ideal
rectangular filter.

The 2 coefficient in equation (11) results from the fact that a single-sided power spectral
dengity is calculated from a double-sided Fourier transform. The symmetries of the
Fourier transform allow this double-sided to single-sided conversion.

For asingle time history record, the period is T and the bandwidth B is the reciprocal so
that the BT product is unity, which isequal to 2 statistical degrees of freedom from the
definition in equation (11).

A given time history is thus worth 2 degrees of freedoms, which is poor accuracy per
Chi-Square theory, aswell as per experimental data per Reference 3. Note that the Chi-
Square theory is discussed in Reference 5.



Breakthrough

The breakthrough is that a given time history record can be subdivided into small records,
each yielding 2 degrees of freedom, as discussed in Reference 4 for example. The total
degrees of freedom value is then equal to twice the number of individual records. The

penalty, however, isthat the frequency resolution widens as the record is subdivided.
Narrow peaks could thus become smeared as the resolution is widened.

An example of this subdivision processis shown in Table 1. The processis summarized

in equations (12) through (16).

Tablel. Example: 4096 samplestaken over 16 seconds, rectangular filter.
Number of | Number of | Period of Frequency | dof Total dof
Records Time Each Resolution | per
Samplesper | Record Tj | Bi=L/T; Record
NR Record (sec) (H2) =2B; T|
1 4096 16. 0.0625 2 2
2 2048 8. 0.125 2 4
4 1024 4. 0.25 2 6
8 512 2. 0.5 2 16
16 256 1. 1. 2 32
32 128 5 2. 2 64
64 64 25 4. 2 128
Notes:

1. The subscript “i” isused to denote “individual” in Table 1.
2. Therowsin thetable could be continued until a single sample per record remained.

Also note that:

Total dof =2 NR
NR=T/T,
Bi:l/Ti

NR=B; T

Total dof =2 Bi T

Window

(12)
(13)
(14)
(15)
(16)

A window istypically applied to each time segment during the power spectral density

calculation, as discussed in References 3, 4, and 6. The purpose of the window isto



reduce atype of error called leakage. One of the most common windows is the Hanning
window, or the cosine squared window. Thiswindow tapers the data so that the
amplitude envelope decreases to zero at both the beginning and end of the time segment.
The Hanning window w(t) can be defined as

2¢& tu
1-cos“zp—, OELET
74
(21)
0, dsawhere

The window operation reduces the leakage error but also has the effect of reducing the
statistical degrees-of-freedom.

Also, anormalization factor of /8/3 isapplied to the Hanned data to compensate for
the lost energy, from Reference 7.

Overlap

The lost degrees-of-freedom can be recovered by overlapping the time segments, each of
which is subjected to a Hanning window. Nearly 90% of the degrees-of-freedom are
recovered with a 50% overlap, according to Reference 3.

The concept of windows and overlapping is represented in Figure 1.
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Fast Fourier Transform

Three variations of the discrete Fourier transform have been given in thisreport. The
solution to any of these transforms requires a great deal of processing steps for a given
time history. Fast Fourier transform methods have been devel oped, however, to greatly
reduce therequired steps. These methods typically require that the number of time
history data points be equal to 2 N, where N issomeinteger. The derivation method is
via a butterfly algorithm, as shown, for example, in Reference 8.

Records with sample numbers which are not equal to an integer power of 2 can still be
processed via the fast Fourier transform method. Such a record must either be truncated
or padded with zeroes so that its length becomes an integer power of 2.

Summary

Time history data is subdivided into segments to increase the stati sti cal-degrees-of -
freedom by broadening the frequency bandwidth. Next, awindow is applied to each
segment to taper the ends of the data. Finally, overlapping is used to recover degrees-of-
freedom lost during the window operations. The effect of these stepsisto increase the
accuracy of the power spectral density data. Nevertheless, there are some tradeoffs as
shown in the following examples.

Homework

1. Use program generate.exe to synthesize a white noise time history with 1 G standard
deviation, 10 second duration, and 1000 samples per second.

2. Use program poweri.exe to calculate the power spectral density. Choose 256 samples
per second, which corresponds to 78 dof and Df = 3.9 Hz. Select the mean removal
and Hanning window options. Plot the output file a.out, preferably in log-log format.

3. Repeat step 3 for 128 samples per second, which corresponds to 156 dof and Df = 7.8
Hz.

4. Compare the power spectral density curves from steps 2 and 3. Do the curves have a
similar or different amplitude?
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