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SHOCK AND VIBRATION RESPONSE SPECTRA COURSE
Unit 7A.  Power Spectral Density Function

By Tom Irvine

Introduction

A Fourier transform by itself is a poor format for representing random vibration because
the Fourier magnitude depends on the number of spectral lines, as shown in previous
units.

The power spectral density function, which can be calculated from a Fourier transform,
overcomes this limitation.  Again, some assembly is required.

Note that the power spectral density function represents the magnitude, but it discards the

phase angle.  The magnitude is typically represented as G
2
/Hz.  The G is actually GRMS.

Calculation Method

Power spectral density functions may be calculated via three methods:

1. Measuring the RMS value of the amplitude in successive frequency bands, where the
signal in each band has been bandpass filtered.

2. Taking the Fourier transform of the autocorrelation function.  This is the Wierner-
Khintchine approach.

3. Taking the limit of the Fourier transform X(f) times its complex conjugate divided by
its period T as the period approaches infinity.  Symbolically, the power spectral
density function XPSD(f) is

T
)f(*X)f(X

T
lim

)f(XPSD ∞→
=                                                                       (1)

These methods are summarized in Reference 1.  Only the third method is considered in
this unit.

Fourier Transform Method

Equation (1) assumes that the Fourier transform has a dimension of [amplitude-time].

The following equations are taken from Reference 2.
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The discrete Fourier transform [amplitude-time] is
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                            (2a)

Note that the index k can be related to the frequency

fk(k)frequency ∆=                                                                                  (2b)

The inverse transform is
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                              (3)

These equations give the Fourier transform values X(k) at the N discrete frequencies
k∆f and give the time series x(n) at the N discrete time points n ∆t.  The total period of
the signal is thus

T = N∆t                                                                                                      (4)

where
N is number of samples in the time function and in the Fourier transform
T  is the record length of the time function
∆t  is the time sample separation

Consider a sine wave with a frequency such that one period is equal to the record length.
This frequency is thus the smallest sine wave frequency which can be resolved.  This
frequency ∆f is the inverse of the record length.

∆f = 1/T                                                                                                    (5)

This frequency is also the frequency increment for the Fourier transform.

Alternate Fourier Transform Method

The Fourier transform with dimension of [amplitude-time] is rather awkward.

Fortunately, the power spectral density can be calculated from a Fourier transform with
dimension of [amplitude].  The corresponding formula is

f
)f(*F)f(F
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=                                                                       (6)
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The Fourier transform )k(F  for the discrete time series )n(x  is
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Note that the index k can be related to the frequency

fk(k)frequency ∆=                                                                                  (7b)

The corresponding inverse transform is
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One-sided Fourier Transform Approach

The power spectral density functions in equations (1) and (6) were both double-sided.
The power spectral density amplitude would be symmetric about the Nyquist frequency.

A one-sided, or single-sided, power spectral density function is desired.

Let )f(X̂PSD be the one-sided power spectral density function.

f
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The one-sided Fourier transform G(k) is
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Implementation

Calculation of a power spectral density requires that the user select the ∆f value from a
list of options.  The ∆f value is linked to the number of degrees of freedom.

Statistical degrees of freedom

The reliability of the power spectral density data is proportional to the degrees of
freedom.

The statistical degree of freedom parameter is defined from References 3 and 4 as
follows:

  dof = 2BT                                                                                            (11)

where dof is the number of statistical degrees of freedom and B is the bandwidth of an
ideal rectangular filter.  This filter is equivalent to taking the time signal “as is,” with no
tapering applied.  Note that the bandwidth B equals ∆f, again assuming an ideal
rectangular filter.

The 2 coefficient in equation (11) results from the fact that a single-sided power spectral
density is calculated from a double-sided Fourier transform.  The symmetries of the
Fourier transform allow this double-sided to single-sided conversion.

For a single time history record, the period is T and the bandwidth B is the reciprocal so
that the BT product is unity, which is equal to 2 statistical degrees of freedom from the
definition in equation (11).

A given time history is thus worth 2 degrees of freedoms, which is poor accuracy per
Chi-Square theory, as well as per experimental data per Reference 3.  Note that the Chi-
Square theory is discussed in Reference 5.
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Breakthrough

The breakthrough is that a given time history record can be subdivided into small records,
each yielding 2 degrees of freedom, as discussed in Reference 4 for example.  The total
degrees of freedom value is then equal to twice the number of individual records.  The
penalty, however, is that the frequency resolution widens as the record is subdivided.
Narrow peaks could thus become smeared as the resolution is widened.

An example of this subdivision process is shown in Table 1.  The process is summarized
in equations (12) through (16).

Table 1.   Example:  4096 samples taken over 16 seconds, rectangular filter.
Number of
Records

NR

Number of
Time
Samples per
Record

Period of
Each
Record Ti
(sec)

Frequency
Resolution
Bi=1/Ti
(Hz)

dof
per
Record
=2Bi TI

Total dof

1 4096 16. 0.0625 2 2
2 2048 8. 0.125 2 4
4 1024 4. 0.25 2 6
8 512 2. 0.5 2 16
16 256 1. 1. 2 32
32 128 .5 2. 2 64
64 64 .25 4. 2 128

Notes:

1.  The subscript “i” is used to denote “individual” in Table 1.
2.  The rows in the table could be continued until a single sample per record remained.

Also note that:

Total dof = 2 NR                                                                                                      (12)

NR = T / Ti                                                                                                         (13)

Bi = 1 / Ti                                                                                                            (14)

NR = Bi T                                                                                                          (15)

Total dof = 2 Bi T                                                                                                    (16)

Window

A window is typically applied to each time segment during the power spectral density
calculation, as discussed in References 3, 4, and 6.  The purpose of the window is to
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reduce a type of error called leakage.  One of the most common windows is the Hanning
window, or the cosine squared window.  This window tapers the data so that the
amplitude envelope decreases to zero at both the beginning and end of the time segment.
The Hanning window w(t) can be defined as
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                                                               (21)

The window operation reduces the leakage error but also has the effect of reducing the
statistical degrees-of-freedom.

Also, a normalization factor of 8 3/  is applied to the Hanned data to compensate for
the lost energy, from Reference 7.

Overlap

The lost degrees-of-freedom can be recovered by overlapping the time segments, each of
which is subjected to a Hanning window.  Nearly 90% of the degrees-of-freedom are
recovered with a 50% overlap, according to Reference 3.

The concept of windows and overlapping is represented in Figure 1.
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Figure 1.
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Fast Fourier Transform   

Three variations of the discrete Fourier transform have been given in this report.  The
solution to any of these transforms requires a great deal of processing steps for a given
time history.  Fast Fourier transform methods have been developed, however, to greatly
reduce the required steps.  These methods typically require that the number of time
history data points be equal to 2 N, where N is some integer.  The derivation method is
via a butterfly algorithm, as shown, for example, in Reference 8.

Records with sample numbers which are not equal to an integer power of 2 can still be
processed via the fast Fourier transform method.  Such a record must either be truncated
or padded with zeroes so that its length becomes an integer power of 2.

Summary

Time history data is subdivided into segments to increase the statistical-degrees-of-
freedom by broadening the frequency bandwidth.  Next, a window is applied to each
segment to taper the ends of the data.  Finally, overlapping is used to recover degrees-of-
freedom lost during the window operations.  The effect of these steps is to increase the
accuracy of the power spectral density data.  Nevertheless, there are some tradeoffs as
shown in the following examples.

Homework

1. Use program generate.exe to synthesize a white noise time history with 1 G standard
deviation, 10 second duration, and 1000 samples per second.

2. Use program poweri.exe to calculate the power spectral density.  Choose 256 samples
per second, which corresponds to 78 dof and ∆f = 3.9 Hz.  Select the mean removal
and Hanning window options.  Plot the output file a.out, preferably in log-log format.

3. Repeat step 3 for 128 samples per second, which corresponds to 156 dof and ∆f = 7.8
Hz.

4. Compare the power spectral density curves from steps 2 and 3.  Do the curves have a
similar or different amplitude?
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