SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 7D. Level Difference in Decibels

By Tom Irvine

Introduction

Power density levels are often scaled upward or downward in terms of decibels (dB).

G or GRMS

Assume that A and B each has an amplitude either in G or GRMS. The difference in dB between A and B is

$$\Delta dB = 20 \log \left[\frac{A}{B}\right] \tag{1}$$

Note that the log function is base ten.

Furthermore,

$$\mathbf{A} = \mathbf{B} \left[10^{\Delta \mathbf{dB} / 20} \right] \tag{2}$$

 $\underline{G^2 \text{ or } G^2/Hz}$

Assume that C and D each has an amplitude either in G^2 or G^2/Hz . The difference in dB between C and D is

$$\Delta dB = 10 \log \left[\frac{C}{D}\right]$$
(3)

Furthermore,

$$C = D \left[10^{\Delta dB / 10} \right]$$
(4)

Example

The level in Table 1 is to be raised by 6 dB. Calculate the new level both in terms of GRMS and G^2/Hz .

Table 1.		
Original Power		
Spectral Density,		
8.09 GRMS Overall		
Freq	Level	
(Hz)	(G^2/Hz)	
10	0.002	
100	0.04	
1000	0.04	
2000	0.02	

A 6 dB increase causes the overall GRMS level to increase by a factor of 2.0, per equation (2). This same increase causes the G 2 /Hz amplitudes to increase by a factor of 4.0, per equation (4). The resulting level is shown in Table 2.

Table 2.	
New Power	
Spectral Density,	
16.2 GRMS Overall	
Freq	Level
(Hz)	(G^2/Hz)
10	0.008
100	0.16
1000	0.16
2000	0.08

Homework

1. Calculate a new level for Table 3 based on a 3 dB increase.

Table 3.	
Power Spectral Density,	
9.3 GRMS Overall	
Freq	Level
(Hz)	(G^2/Hz)
10	0.001
200	0.08
500	0.08
2000	0.02

2. What is the dB difference between 6 GRMS and 10.5 GRMS? Use hand calculations. Then verify your answer using program dboct.exe. (Use the coordinates at same frequency option).