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SHOCK AND VIBRATION RESPONSE SPECTRA COURSE
Unit 8.  Transmissibility Function for Acceleration

By Tom Irvine
_____________________________________________________________________

Introduction

Certain systems are subjected to a base excitation vibration.  Examples include:

1. A building during an earthquake
2. An automobile traveling down a washboard road
3. An avionics component on a rocket vehicle bulkhead during powered flight

The purpose of this unit is to determine the steady state response of a single-degree-of-
freedom system to sinusoidal base excitation.  The transmissibility function is the ratio of
the response to the input.

Model

Consider the single-degree-of-freedom system subjected to base excitation shown in
Figure 1.  The free-body diagram is shown in Figure 2.

Figure 1.  Single-degree-of-freedom System

The variables are

m = mass,
c = viscous damping coefficient,
k = stiffness,
x = absolute displacement of the mass,
y = base input displacement.

The double-dot notation indicates acceleration

Figure 2.  Free-body Diagram

  m

     k c

&&x

&&y

  m

 k(y-x) c y x(& &)−

&&x



2

Summation of forces in the vertical direction

F mx=∑ &&                                                                                      (1)

mx c y x k y x&& (& &) ( )= − + −                                                                               (2)

Let z = x - y.  The variable z is thus the relative displacement.

Substituting the relative displacement into equation (2) yields

kzzc)yz(m −−=+ &&&&&                                                                                       (3)

ymkzzczm &&&&& −=++                                                                                       (4)

Dividing through by mass yields

yz)m/k(z)m/c(z &&&&& −=++                                                                            (5)

By convention,

n2)m/c( ξω=                                                                                               (6)

2
n)m/k( ω=                                                                                                (7)

where nω  is the natural frequency in (radians/sec), and ξ  is the damping ratio.

Substituting the convention terms into equation (5),

&& & &&z z z yn n+ + = −2 2ξω ω                                                                                  (8)

Either Laplace or Fourier transforms may be used to derive the steady state
transmissibility function for the absolute response acceleration, as shown in Reference 1.
After many steps, the resulting magnitude function is
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where f is the base excitation frequency and fn is the natural frequency.
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Recall that the damping is often represented in terms of the quality factor Q.

Q =
1

2 ξ
                                                                                                   (10)

                                                    
The transmissibility function is plotted for several Q values in Figure 3.
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              Figure 3.

Note that f is the base excitation frequency in Figure 3.

The transmissibility curves in Figure 3 have several important features:

1. The response amplitude is independent of Q for f << fn.
2. The response is approximately equal to the input for f << fn.
3. Resonance occurs when f ≅ fn.
4. The peak transmissibility is approximately equal to Q for f = fn and Q > 2.
5. The transmissibility ratio is 1.0 for f = 2  fn regardless of Q.
6. Isolation is achieved for f >> fn.
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The curves in Figure 3 are particularly useful for designing isolation systems.

Example 1

As a review, the natural frequency of a single-degree-of-freedom system is

m
k

2
1

fn
π

=                                                                                   (11)

Now consider an avionics component which has a natural frequency fn = 200 Hz and an
amplification factor Q = 10.

The component is hard-mounted to a bulkhead in a rocket vehicle.  Assume that the
component will be subjected to a 200 Hz sinusoidal oscillation with a base input
amplitude of 10 G during powered flight.  The Q = 10 curve in Figure 3 shows that the
response will be 100 G, which is severe.  How can the response be reduced?

The Q = 10 curve in Figure 3 shows that the response can be reduced to approximately
3.2 G if f = 2 fn.  The excitation frequency f is fixed, however.  Thus, fn must be reduced.

Recall that fn = 200 Hz.  Thus, change the mounting design so that fn=100 Hz.  This can
be achieved by mounting the avionics component with the appropriate isolator grommets.
The grommets will act as a spring in series with the component.  The grommets thus
reduce the natural frequency by reducing the overall stiffness.

In reality, the grommets will decrease the Q value, thus changing the calculation
somewhat.  Nevertheless, the main effect is the natural frequency reduction.

Example 2

Grommets are typically made from some rubber or plastic material.  They are effective
when they break "metal-to-metal contact" between the component and the mounting
surface.

Suppose isolation grommets cannot be used in the previous example.  There could be
several reasons.  One might be that the component must be hard-mounted because the
mounting surface serves as a thermal ground plane.  How can the response be reduced in
this case?

The answer is to use the opposite approach as was used in Example 1.  In this case, the
goal should be f = 0.5 fn.   The response would thus be reduced to about 1.3 G.  The
natural frequency goal would thus be 400 Hz, since the base excitation frequency is fixed
at 200 Hz.  The frequency increase could be achieved by increasing the stiffness or by
decreasing the mass.  In most cases, increasing the stiffness would be the practical
choice.
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Further Notes

An alternative for both examples would be to decrease the Q value while leaving the
natural frequency fixed.  Thus, the damping ratio would increase per equation (10).

Nevertheless, the stiffness is usually the easiest parameter to modify for practical design
purposes.

Homework

1. Consider a system with a natural frequency fn = 100 Hz and amplification factor
Q=10.  The system is subjected to a sinusoidal base input with a variable frequency.
The input amplitude is 1 G.  Use program steady.exe to complete the following table.

Excitation
Frequency
(Hz)

Response
(G)

50
60
70
80
90
95
99
100
101
105
110
120
130
140
150
160
180
200

2. Plot the Response (G) versus Excitation Frequency (Hz).

3. How does damping effect the response of a system subjected to base excitation?

4. Optional.  Procure a slinky.  Hold the top of the slinky as shown in Figure 4.
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Figure 4.

Very, very slowly move your hand up-and-down in a sinusoidal manner.  How does the
free end of the slinky respond?

Now find the natural frequency of the slinky by trial-and-error experiment.  Do this in a
qualitative sense.  Excite the natural frequency by moving your hand at the natural
frequency but with a small amplitude.   How does the free end of the slinky respond?

Now excite the slinky at a frequency much higher than its natural frequency.  Well, the
slinky may undergo some chaotic motion, but how would it respond if it were an ideal
single-degree-of-freedom system?
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