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Chapter 1

BASIC CONCEPTS

1.1 Introduction and scope

This text presents a set of structural mechanics study modules that will prepare engineer-
ing undergraduate students for the computer environment in which they will be expected
to participate, both in the later years of their course and then in their careers in the work
force. It has three main objectives:

(1) To present the theory in a modern form using the most simple principles.

(2) To give the student’s study programme in a calculation and error free environment.

(3) To give the student the ability to undertake a wide range of challenging projects
with a simple software package.

The software package STATICS-2020 is supplied so that the students have in one
program all the tools necessary to complete the course of study. The purpose of the
STATICS-2020 suite of programmes is to assist the undergraduate student in understand-
ing the principles involved in topics of modern structural mechanics in a calculaton free
enviroment. Within the software is a extensive set of examples for the various topics
so that the burden of data preparation is reduced as is the setting and marking of as-
signments by the instructor. In addition it will be found that the student can use the
suite of programs in simple but nevertheless challenging design applications. A data file
DATN.DAT is provided with a preprogrammed suite of exercises each of which may be
accessed through a single SUBMIT command. In this first release the topics listed below
have been included. Some of these topics take the student into at least a second or third
yvear level in structural mechanics.

1. Calculation of member forces and reactions of statically determinate planar trusses.
2. Calculation of member forces and reactions of statically indeterminate planar trusses.

3. Check on the equilibrium of a node of a truss subjected to its loads, reactions and
internal member forces.
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10.

11.

12.

13.

14.

15.
16.
17.
18.
19.

20.

CHAPTER 1

Calculation of reactions for planar rigid bodies subjected to applied forces and mo-
ments.

Analysis of statically determinate beams for shear forces and bending moments.
Analysis of statically indeterminate beams for shear forces and bending moments.
Analysis of statically determinate plane frames.

Analysis of statically indeterminate plane frames.

Analysis of statically determinate plane grids.

Analysis of statically indeterminate plane grids.

Calculation of cross section properties. Area, centroid, second moment of area and
all coordinates referenced to the centroidal axes. Principal axes location.

Calculation of properties of thin walled open sections. Area, centroid, second mo-
ment of area and all coordinates referenced to the centroidal axes. Principal axes
location.

Calculation of stress for axial load and bending moments about non-principal axes
of a cross section defined in topics (11) and (12).

Calculation of shear flow distributions in thin walled cross sections (12) and location
of the shear centre.

Calculation of truss flexibility matrix for trusses and thence truss deflections.
Calculation of beam flexibility matrix for beams and thence beam deflections.
Calculation of flexibility matrix for frames and thence frame deflections.
Calculation of flexibility matrix for grids and thence grid deflections.
Calculation of buckling loads of beams and frames.

Calculation of natural frequencies of beams, frames and grids.

The study of indeterminate structures is included in items (2), (6), (8) and (10). This
is intentional although the topics may be studied in a different order. The purpose of
including topics here that were once considered advanced, is to show that only a very simple

extension of the ideas used in determinate analysis is required to undertake indeterminate
analysis once the student is introduced to the gontragredient law and the software is
available to perform the numerical claculations involved. Again it must be emphasised
that this is not a black box approach as the student must be able to understand and
execute the necessary steps. Calculation of flexibility matrices and structure deflections
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is left until topics 15 to 18, because this will lead to more advanced study of structure
vibration and buckling stability phenemona. Several commands allow the student to view
simple plots of the results, member forces and deflections of the various problems.

It will be seen from the theory developed in this text that the basic ideas of structural
analysis are built from the equilibrium of the forces acting either on individual members
or on the nodes of an assemblage of members. The contragredient law is introduced
and then used to obtain the corresponding displacement transformation matrices between
related quantities. For statically indeterminate structures the stiffness method of analysis
is developed to calculate firstly the global stiffness matrix and from this the member force
transformation matrix. For all determinate structures contragredience is used to obtain
the member distortions to node displacement transformation and thence the structure
flexibility matrix and node deflections are obtained. The software for truss, beam, frame
and grid analyses first sets up the joint (node) equilibrium equations for the problem being
analysed. It then checks for instability, determinancy or indeterminancy of these equations.
If determinate, the analysis can proceed directly to the solution. If indeterminate the
program prompts with a message to this effect and the stiffness method of analysis may
be used via the application of the contragredient law with the commands that are supplied
for its application. In this case elastic stiffness properties of individual members must be
supplied. In the process of solving an indeterminate problem, the structure flexibility
matrix is obtained and is used to calculate deflections.

The purpose of the arrangement of the chapters on the various topics of the following
text is to provide the student with a concise presentation of the appropriate theory which
can be expanded upon in any lecture course of modern structural mechanics. It must be
mentioned at the outset the STATICS-2020 is not simply a computerized version of existing
undergraduate texts on the subject, but rather a break with the traditional approach.
From the very beginning, force and displacement quantities are expressed in terms of their
vector components and elementary matrix theory used in the appropriate transformations
of these quantities. The matrix operation commands in the software may be used to give
the students necessary back ground knowledge of elementary matrix theory. It will be
assumed that the student has been given an introduction to forces, moments, displacements
and rotations although some discussion is given in Chapters 1 and 9. The basic ideas of
truss, beam, frame and grid structures should be introduced concurrently with the subject
matter theory in the text. the Chapters 9-11 give three course outlines to follow in a
raeching programme.

1.2 Basic transformations

1.2.1 Force and displacement vectors-contragredience

Some simple ideas of force and displacement complonents are introduced. There are two
basic transformations, here given for the planar situation, (but which also apply in general
for three dimensional vectors), that are to be used in setting up the equations of equilibrium
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Figure 1.1: Rotation of coordinate axes.

of any system. The first relates to the effect on components of a vector, expressed in a
rectangular cartesian system of coordinates, of a rotation of the coordinate axes. The
second to the transformation of components of a vector from one point in the plane to
another point in the same plane. These transformations are developed here because they
can be used not only in setting up equilibrium equations but also because they illustrate
the contragredient law.

1.2.2 Rotation of coordinate axes

In Figure 1.1, consider the position vector components (x,y) and rotate the coordinate
axes through the angle § as shown in Figure 1.1 to positions OA(X'),OB(Y’). Then
from Figure 1.1 the vector OA, has components, (2’ cos 3,2’ sin 8) and OB, components
(—y'sin B,y cos B). However in the (X, Y') coordinate axes, the vector OP has components
(z,y), so that,

()= L]+ [ e -
That is, in matrix form, ’ o , y Cos,ﬁ
G =las ol () .

This is an orthogonal transformation so that its transpose is also its inverse, thence
the reverse transformation is given,

o] oo il e s
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y
M
P r,
Lo Zax |
M |
0 >x | X
| >
Z/O FxO

Figure 1.2: Transfer of force from P to origin.

These two transformations will be written as in equations (1.4), and (1.5).

{«"} = [L){=} (1.4)

and,
{a} = [L]"{2"} (1.5)

Notice that the rows of [L] give the unit vectors in the X', Y’ directions expressed in the
X, Y coordinate system.

1.2.3 Transfer of force components and moment in X — Y plane

The second transformation to be considered here concerns the transfer of force components
from one point ina plane to a second point in the same plane. The point P in Figure 1.2
has force components (I, Fy,) acting at (z,y) in the X —Y plane and a moment M about
the Z axis. The statically equivalent force components (Fy, F), and moment M, act
at the origin O. In Figure 1.2, it is seen that M, M, are represented as components of
moment vectors about the Z axis. The positive sense is given by the right hand screw
rule. That is, place the eye at the point and look along the Z axis. Then the positive
moment is in a clockwise direction. By simple statics, taking moments about the origin
O of the forces at P, the equivalent values at O are,

Fy

{ r } (L
M) p

Iy 1 0 0
F, » = 0 1 0
M), —y x 1
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This transformation is written in equation (1.7) as,

{Fo} = [TI{Fr} (1.7)

Consider now the interesting and apparently unrelated problem of having displacements
(rz,my)o and rotation 6, specified at O and requiring the kinematically equivalent quan-
tities at P. For small rotations and displacements the corresponding displacements and
rotation at P can be easily deduced by considering one component at a time,

Ty 1 0 —y Ty
ry p =10 1 x|y (1.8)
0)p 0 0 1 0

That is, O
{rp} =[T1"{ro} (1.9)

These two equations (1.7) and (1.9) express the relationship between force and displace-
ment components of the two equivalent sets and this relationship is an expression of the
contragredient law (see also equations (1.4) and (1.5) that are also expressions of the same
law.

1.3 Contragredient principle

1.3.1 Contragredient transformations

In developing the contragredient law for discrete force and displacement systems the first
concept to be considered is that of statically equivalent force systems. Two force systems
represented by the vectors {P} and {Q} are statically equivalent if the components are
identical when both systems are transfered to a common coordinate axes. Then consider
these two force systems connected by the linear transformation,

{Q} =[B{P} (1.10)

In certain circumstances this may be a reversible transformation, that is { P} = [B]~1{Q}
as in equations (2.14), (2.15). This is however an unnecessary restriction, and it will
be assumed that in general the dimensions of {P} and {Q} will be unequal. For exam-
ple, in the truss shown in Figure (1.3) there is a relationship connecting member forces
(Fy, Fy, F3) = (QT) and (Ry, Re) = {P}'. However there will be solutions for which
the conditions of joint equilibrium are satisfied > Fp, = > F,, = 0 with external loads
being zero. A solution of this type corresponds to a temperature change or lack of fit in
the three bar members. Associated with each of the force systems {P} and {@} there
will be sets of displacements, {p} and {q}. These are compatible displacements, so that
if the displacements in the directions of {@Q} are {¢}, those in the directions of {P} are
{p}. From equation (1.10) it is possible to determine the transformation that relates {p}
and {q} and this is an expression of the contragredient law. If the two force systems are
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given compatible displacements the work done in each system is the same, since both force
and displacement systems have identical components when transformed to the common
reference origin. That is, the equations of the work done are expressed by the dot products,

{PY'{p} = {Q}{a} (1.11)

However from equation (1.10) it follows,
{@" ={ry'[B" (1.12)

and substitution in equation (1.11)

{PY!{p} = {P}'[B]"{a} (1.13)

The concept that {P} is arbitary is now evoked, so that terms are equated one by one. It
follows that,

{p} = [B]"{a} (1.14)
The contragredient law appears in the second form in which {P} and {Q} are statically

equivalent force systems and the associated sets of displacements {p} and {q}, are related
by the linear transformation,

{a} = [C{r} (1.15)

Then using the same reasoning for equality of the work done, for compatible displacements
and the statically equivalent force systems,

Py {F} = {a}"{Q} = {p}' [C){Q} (1.16)

Again evoking the arbitariness of {p} it follows that,
{P}=[C1"{Q} (1.17)

Two applications of the contragredient law are given for the formation of joint equilibrium
equations and the calculation of node deflections of a structure.

1.3.2 Joint equilibrium equations

Suppose that any structure is subdivided in some way into members and that member
forces and structure reactions are contained in the vector {S}. The applied nodal forces
are in {R} and the joint equilibrium equations are written

[A{S} ={£} (1.18)

Then if the node displacements corresponding to { R} are {r} and the member distortions
and reaction displacements corresponding to {S} are in {v}, using the contragredient law
from equation (1.10)it follows that

{v} = [A]"{r} (1.19)
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Figure 1.3: Force systems-node and member forces.

This application can be used in the calculation of member forces in statically indeterminate
structures. On the other hand suppose that the relationship between {v} and {r} can
be obtained from the kinematics of the structure displacements. That is suppose the
transformation between {r} and {v} is given,

{v} = lal{r} (1.20)

Then the joint equilibrium equations are given by the contragredient law,

[a]"{S} = {R} (1.21)

It follows that [a]” = [A] and of course [a] = [A]T. Both these expressions are found to be
usefull in analysis of structures.

1.3.3 Node deflections

For statically determinate structures the transformation to obtain member forces from
node forces is obtained from [A]~!

{8} = [AI7{R} = {1} (1.22)

Then using the contragredient law the nodal displacements are obtained from the member
distortions and reaction displacements,

{r}=11]"{v} (1.23)

The power of this equation should not be under estimated as it provides the best means
for calculating structure deflections in all cases where [b] is known or is easily calculated.
Many examples are given in the text.
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1.4 Units of length, mass and force

All structures must have their dimensions, mass, material properties and applied force ex-
pressed in the same consistent set of units. There are two main systems of units currently
in use, the imperial system and the metric system. The main difference between the two
systems is as how the unit of force is defined. In the imperial system, the unit of force
is defined in terms of the earth’s gravitational field. That is, one pound force accelerates
a mass of one pound at 32(g) feet / sec?. In the metric system the unit of force is the
Newton which is the force to accelerate a mass of one kilogram at 1 metre/ sec?. Since
the acceleration due to gravity is approximately 9.8m/ sec2, the Newton is approximately
0.1 x 1 kilogram force and is thus relatively small compared with the pound force. The
basics of the two systems are set out in Table 1.1.

Table 1.1
Imperial system
length inch (in), foot (ft)
mass pound (1b), ton(=2240 1b)
force pound (1b), ton(=2240 1b), kip(=1000 1b )
morment inch pound (in 1b), foot pound (ft 1b), inch kip (in k)
stress pounds/inch?, kips/inch?, tons/foot?
Metric system
length millimetre(mm), metre(m)
mass kilogram (kg)
force Newton (N), kiloNewton (kN), megaNewton (mN)
morment Newton millimetres (N mm), Newton metres (N m)
stress Pascal(Newton/metre?), megaPascal(megaNewton /metre?)

In the example exercises given in STATTICS-2020 of statically determinate trusses, the
dimensions are relative. That is, for practical cases in either system the dimensions given
in the exercises may be scaled to give realistic structure dimensions. For example for the
trusses in Figure 2.11, the panel size is 10. This may be 10 feet with a truss span of 60
feet. If the metric system is used the truss span would be 60 metres which may require
scaling by 1/3 to make a realistic span.

1.5 Concepts of structure

A structure is considered to be composed of a number of members identified by unique
node numbers connected together at nodes to form a stable system. For the analysis of
a structure three quantities are required to be specified for the generation of the node
equilibrium equations, namely,

1. Node numbers and node coordinates.
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2. Member numbers and the member node numbers that identify how the members are
connected to the nodes.

3. Reaction points and directions of application.

For statically determinate structures the equilibrium equations may be inverted di-
rectly. If indeterminate, member stiffness properties are necessary to develop the stiffness
analysis of the structure. All these points will be developed in detail for each structure
type in its appropriate chapter. Two dimensional structures are conveniently classified
according to the primary forces acting on their members as follows:

Structure type Member force type

Truss axial force

Beam bending moment and shear force

Frame axial force, bending moment and shear force
Grid bending moment, shear force and torsion

Although a general purpose, commercial sotware package for structural analysis may
treat all these various catagories alike as three dimensional structures with the appropriate
components zero, it is important for the understanding of structural behaviour to treat
each type separately. Thus each type is given a separate chapter with an accompanying
set of assignments.

1.6 Strength of materials

Strength of materials is that branch of mechanics that has as its concern the determination
of stresses in structure members as well as many solutions from the theory of elasticity.
The stresses in structural members can be related to tests on the materials for the design
of the structure to carry safely its service loads. For truss members this is a relatively
simple problem since for axial force, the member stress is simply the axial force divided by
the area of the cross section. For beams subjected to bending, twisting moments and shear
this is a more difficult problem and a chapter is devoted to some of the various situations
encountered. For example there are thick and thin walled sections for which shear stresses
are calculated differently and torsion requires the solution of a second order differential
equation for cross sections other than circular. A study of member deformation properties
is also necessary for the determination of member stiffness matrices.

1.7 Teaching module-basic principles

The exercises in Chapter 1 give the student understanding of the two systems of units,
imperial and metric and to gain experience in the fundamental transformations equations
(1.6) and (1.8). The imperial system is in use in the U.S.A while many other countries use
one or more versions of the metric system. The examples of the force transformations will



1.7. TEACHING MODULE-BASIC PRINCIPLES 19

Ay

70

{ & X

a

Figure 1.4: Force on end of angle bracket.

give a preliminary understanding of the fundamentals before embarking on the computer
analysis of trusses, beams, frames and grids. FExercises (BAl) and (BA2) are on unit
conversion and are to give an understanding of the relative magnitudes of the various
quantities.

1.7.1 Exercises in units

(BA1) Units of force. If acceleration due to gravity (g) is given as 9.8m/sec? or 32ft/sec?
and 1 kg(mass) = 2.24 pounds(mass),
1. Express 1 Newton in term of pounds force.
2. What is the value of 1 kN in pounds force?
3. What is the value of 1 pound force in Newtons?

(BA2) A rectangular, solid area has a breadth of 5 inches (127mm) and depth of 20
inches (304.8mm).

1. Calculate the area, in
(1) inches? (2) mm? (3) m?2.

2. Calculate the second moment of the area = bd® /12, in
(4) mm* (5) m* (6) inches™.

3. Comment on the magnitude of the resuts in (1) to (6).
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1.7.2 Exercises in transformations

(BA3) In Figure 1.1, three forces act at the point O with magnitudes and directions as
follows,
(1) Fy =10 units, 3 = 30?
(2)  Fy=20units, [y = 45?
(3) F3 =10 units, B3 = 1209

Calculate the X — Y components of these three forces and answer the folllowing:

(a) Are the forces in equilibrium?

(b) If not, calculate the X —Y components of the force to close the force polygon
and hence equilibrate these forces.

(c) From the X — Y components calculate the magnitude and direction of the re-

sultant. (R = |/R2 4 R2; sinf = R, /R).

(BA4) The two forces act at a point;
(1) Fy =20 units, 3 = 30?
(2) Fy=10 units, [ = 50?
Calculate the X —Y components of these forces and hence find the force necessary to
keep the forces in equilibrium. Calculate its magnitude and direction. Hence show
that the three force vectors form a closed triangle (triangle of forces).

(BA5) The force Fy = 20 units acts an angle of 3 = 30 to the X axis. Calculate the
magnitude of the force necessary to equilibrate F using components. What is its
direction?

(BA6) A force F' = 10 units acts the negative Y direction at node 3 of the simple truss-
bracket shown in Figure 1.4. The member (1) of the bracket is inclined at an angle
(32 to the horizontal. Calculate the value of FY, force in member (1), for the following
values of 8 = 152, 302,452,60?7. Plot Fy verses 3.

(BAT) The pole shown in Figure 1.5 has loads, at node (3) of 0.2kN horizontal and 0.5kN
vertical. Use equation (1.6) to calculate the forces, (moment, axial force and shear),
in the pole at the following sections;

1. In the vertical portion just below node (2).
2. At the base of the pole, node (1).

(BAR) The pole in Figure 1.5 is supported by a concrete block in the ground below node
(1). This block moves so that at (1), there is a vertical downwards displacement of
Smm and an clockwise rotation of 0.01 radians. Use equation (1.8) to calculate the
displacements of nodes (2) and (3). Is the displacement at node (3) excessive? If so
suggest a limit to be placed on the rotation. ( Hint: limit the horizontal displacement
to 1/400 of the height).
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Figure 1.5: Transformation of forces on pole.
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