Chapter 2

TRUSS ANALYSIS

2.1 Introduction

Truss structures are characterized by members whose primary forces are axial tension or
compression and these forces alone are sufficient to equilibrate the applied node loads.
The truss has members connecting its nodes in such a way that the complete structure
forms a rigid body. Rigid that is, except for very small deformations of the members due
to elastic strains produced by the axial forces. A simple truss may be constructed from a
basic triangle (1-2-3) in Figure 2.1 and then connecting each additional node (4) with two
members (4,5). For the initial triangle it is seen that,

number of members = number of nodes = 3 . For each additional node 2 members are
required, so that if J= number of nodes and M= mumber of members,

(M —-3)=2(J—3) thatis 2J=M+3 (2.1)

A general test for determinacy of a truss is carried out from the equilibrium equations
of the nodes. The analysis of a truss is based on the very simple concept of expressing all
forces in terms of their global components (see also section 1.2.1). That is, it is an exercise
in coordinate transformation of components of forces from local to global axes. The basis
of this was given in Chapter 1, equation (1.2).

Figure 2.1: Truss constructed from triangle (1-2-3).

23



24 CHAPTER 2. TRUSS ANALYSIS

e

Figure 2.2: Rotation of coordinate axes.

It will be seen from the theory developed herein that the basic ideas are all derived
from the equilibrium of the forces acting either on individual members or on the nodes of
the assemblage of members.

The basic transformation required is for the components of a vector (I, F},) in the
X —Y Cartesian coordinate system. Its components (Fy, Iy) in the (X' —Y”) coordinates
obtained from the (X —Y) coordinates by the rotation 6, are calculated in Figure 2.2 by
simple projection. Then either,

FI\ [ cosf sin@] [ Fy
{Fé}_ | —sinf cos0 | {Fy} (2.2)
or the inverse transformation,
Fel  [cosf —sinf] [ F)
{Fy } | sinf cos 0 | {Fé (2.3)

These two equations are sufficient theory to allow the setting up of the joint equilibrium
equations of a truss structure composed of bar members connected together at nodes by
pins that are assumed to be frictionless.

2.2 Theory for planar truss analysis

2.2.1 Member forces, reactions and equilibrium equations

A two dimensional truss is an idealization of a planar structure whose members predomi-
nantly carry axial forces (tension or compression). The nodes to which forces and reactions
are applied are connected by bar members and are considered to be frictionless pins, al-
though in reality pins are rarely used in practice. In the plane, a node (or pin), can be
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Figure 2.3: Member forces and member node forces.

idealized as a point to which the two equilibrium equations for the forces acting there

apply,
> F=0; Y F,=0 (2.4)

The forces acting on a node are possible from three sources,
1. applied loads.
2. reactions from the supports.
3. forces applied to the nodes from the members.

From Figure 2.3, it is seen that the force applied to the node from a member is equal and
opposite to the force applied to the member, so that the general relationship applies,

member node force = —member force (2.5)

The truss to be analysed must be statically determinate and stable if the member forces
are to be calculated by statics alone. To fix a simple truss in the plane, a minimum of
three reactions must be provided, because in addition to the two equilibrium equations,
equation (2.4), a third equation (2.6), of moment equilibrium of forces about any point in
the plane must apply. This equation is expressed as,

> M, =0 (2.6)

If the truss has the following properties,
J = number of joints
M = number of members
R = number of reaction components, (R=3 for a simple truss)
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Figure 2.4: Truss member, local and global coordinates.

then because two equations are required for each joint, for statical determinacy,

2J= M+ R (2.7)

In general, for any truss constructed without regard to equation (2.7), the equality will
not hold. Then the following conditions should be checked:

If2J > M+4R, the truss will be statically unstable

If2J < M+4R, the truss will be statically indeterminate

If2J = M+R, the truss should be stable and determinate

The STATICS-2020 returns an error message if the greater than condition occurs.
If the statically indeterminate condition is encountered then the message is given that
the stiffness method of analysis must be used. Details on how to accomplish this are
found in this text, see Section (2.2.6), or in the STATICS-2020 help command. The
analysis of a determinate structure is carried out by solving all joint equilibrium equations
simultaneously.

In order to setup these equations, a single member connecting the nodes I — J of the
truss at its ends is considered first with an axial force £’ taken to be positive when tensile,
see Figure 2.4(a). In Figure 2.4(a), the member is shown in its own local X' — Y’ axes
and in Figure 2.4(b) in relation to the global X —Y axes. For the truss member in Figure
2.4(a), the forces on the ends of the member, in the member coordinate system, are given
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~1
0

=| ol ¥ (2.8)
1

Fra —c

Fry | | —s

P (= . F (2.9)
Fyy

The components in equation (2.9) are member forces. The forces on the nodes, the member
node forces, are equal to these in magnitude but of opposite sign. At any node then, the
following equilibrium equation applies for the components in each of the global directions:

applied force + reaction + member node force = 0 (2.10)

If the condition in equation (2.7) is satisfied then there will be sufficient equilibrium
equations to solve for the member forces and reactions. It should be seen that four sets
of information are required to set up the equilibrium equations. These are:

1. Nodes must be numbered and their coordinates known.

2. Members must be labelled and their appropriate (I — .J) node numbers made avail-
able.

3. Points of application of reactions must be identified.

4. Points of application and magnitudes of loads must be given.

A simple truss labelled with this information is shown in Figure 2.5.

2.2.2 Reactions

A reaction is a force applied by the supports to a node of a truss and may be parallel to
the X or Y axes, or inclined at an angle 3 as shown in Figure 2.6, (a), (b) and (c). These
three situations can all be combined in the single expression for the X —Y components of

the reaction as,
Sre | _ | —sing
Sry | cos 3

Thus in Figure 2.6, the values of § are:
Case(a), (= 0.0
Case(b), g —90.0
Case(c), f 30.0

Sk (2.11)
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When all the equations for all nodes are written down, they take the form in equation

(2.12).

[Asn| Asg] {gﬂg } = {R} (2.12)

in which the coeflicient matrix on the left hand side is a square non-singular matrix, if

2J=M+3.

2.2.3 Determinate trusses-solution of the equilibrium equations

The equation (2.12) is written in equation (2.13) with the member forces and reactions
grouped together as {S} such that now,

[A{S} ={£} (2.13)

Solving for {S}, using the matrix inverse,

{8} = [AI7{R} = {1} (2.14)

The matrix [b] will be called the member force transformation matrix of the structure.
Remember the partitioning of {S},

{s} = {if‘; } (2.15)

so that equation (2.14) gives both member forces and reactions. The computer software
provides four routines (commands) to study the analysis of determinate trusses. An ad-
ditional command is available to call up pre-programmed data for 12 trusses, see Figures
2.8 to 2.12 of which the first 7 are statically determinate. See also Exercises on the main
menu window of STATTICS-2020. All exercises with particular dimensions and loads can
also be run using the SUBMIT command and the data file DATN.DAT.
The commands available are:

1. TRUSS ABCD

2. JOINEQ ABCRSN=?

3. TRUSLD ALR

4. TOPOL. A BBI

5. TRUSEX E =7 D=?7?
The first command TRUSS is called to set up the joint equilibrium equations D and it
requires information to have been stored in the three matrices A, B and C, as follows:

1. Matrix A, (real array), stores X — Y coordinates by rows, one row for each node.

2. Matrix B, (integer array), stores the member number and member connectivities. In
each row are stored, member number, node-I, node-J.

3. Matrix C, (real array), stores the reaction nodes and corresponding angles.
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4. The equilibrium equations are in D and matrix Bl, (integer array), contains the
generated topology matrix.

For example, for the truss shown in Figure 2.5, using the numbering in the figure:

0.0 0.0
50 8.66
[A] = |15.0 8.66 (2.16)
100 0.0
200 0.0
11 27
2 1 4
3 2 4
B]=|4 2 3 (2.17)
5 3 4
6 4 5
|7 3 5]
1 00
] = |1 —90.0] (2.18)
5 0.0

The truss command to generate the equilibrium equations, is then,
TRUSSABCD

The matrix [D] is where the equilibrium matrix is stored and the analysis sequence to
calculate member forces and reactions is:

LOADR A R=5C=2
(nodal coordinates)

LOADI B R=7C=3
(member node numbers,[integers])

LOADR C R=3(C=2
(reaction information)

TRUSS A BCD
INVERT D T=2
LOADR R R=10C=1
(load information)

MULT D RS
PRINT S

Note that the equilibrium matrix is unsymmetric so that the option, T=2 is used with
INVERT which can be used for either, symmetric (T=1), or unsymmetric (T=2), matrices.
The routine TOPOL is provided and can be used simply by giving the command,
TOPOI A B Bl

The topology matrix shows the number of member connections to each node and the
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connections between nodes. If only one or two nodes of the truss have loads applied then
the command,

TRUSLD ALR

may be used. This command puts the individual node loads given in L. into their correct
locations in the total load vector R. In the command TRUSLD,
A is the matrix of nodal coordinates
I is a matrix of 3 columns, with as many rows as node loads,
Column 1 is the node number
Column 2 is the X load
Column 3 is the Y load on the node
R is the combined load vector of all nodes
The command sequence to complete the analysis for member forces having inverted the
equilibrium matrix and using the TRUSLD command is:
LOADR L R=? C=3
(load data)
TRUSLD A LR
MULT D RS
PRINT S
STATICS-2020 provides 12 truss examples that may be called with the command,
TRUSEX E=? D=7y
where E=1 to 7, or 11, 12 for the statically determinate trusses provided. The data D
gives the two parameters needed to generate the truss geometry. This command returns
the data matrices A, B and C. The user then proceeds as for any truss input.

2.2.4 Plot commands for viewing truss geometry

Two simple commands are available for viewing trusses analysed by STATICS-2020. The
first of these plots the truss members and reaction locations showing the node and member
numbers. If the analysis has been completed it is possible to show tension members(blue)
and the compression members(red).

The general command is:

PLTRUS A B C [§] [R or V] N=?

If N=1 the member force vectors [S] and [R/V] are not required in this command and
the members only are plotted in a single colour. On the other hand if N=2, the force
vectors [S] (member forces) and [R] (nodal forces) must be given and the members are
colour coded according to tension or compression and the nodal force components drawn.
If N=3 then [S] and [V] (nodal displacements) must be given and the deflected position
of the truss is drawn. The displacements have been magnified to 1/10 th of the maximum
dimension of the truss. In this case the members are drawn with the same colour coding
as for N=2. The second plot command is used in conjunction with the joint equilibrium
check command,
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JOINEQ A B CR S S1 N=?

The command JOINEQ identifies all forces acting at joint N and calculates their X — Y
components, these are stored in S1, the last row of which contains their sums that should
be zero for equilibruim.

The command:

PLTJEQ A S1 N=?

is called after JOINEQ and draws the polygon of forces using the components of all the
joint forces for the node N stored in S1. This is used to illustrate that a joint is in
equilibrium with all the forces acting on it and thus the polygon of forces closes. These
two commands (JOINEQ and PLTJEQ) may repeated for several joints.

2.2.5 Calculation of truss deflections

For any determinate structure calculation of deflections can be made via the contragredient
law, see section 1.3.3, since the member force transformation is known,

{5} = [P} (2.19)

The corresponding nodal deflections {r}, are obtained from the member distortions {v},
by

{r}=[o"{v} (2.20)
If the member distortions {v} are known in terms of the member forces by the flexibility
relationship, for member 4, for example,

{v}i = [f]:{S} (2.21)

all these values can be combined together in the single expression as,

{v} = [/{S} (2.22)

If reactions are included in {S}, their flexibilities can be set to zero. Combining the
equations (2.19-2.20) and (2.22),

{R} = 0" [f][b{R} (2.23)

and,

[F] = [ol" [£1[0] (2.24)

is the structure flexibility matrix. For the truss structure, [f] is particularly easy to obtain,
being for the member i, simply,

l;
B4
In this equation, I; = member node to node length, A; = area of cross section, /s = Young’s
modulus of elasticity.

fi (2.25)
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In STATICS-2020, the tansformation matrix [b] has already been calculated and node
loads used to calculate member forces. The Young’s modulus and areas will be read into
an array, (1 x number of members + 1), designated here by AR, with AR(1) being the
Young’s modulus, assumed to be the same for all truss members. The commands for
statically determinate structure flexibility matrix (FI.) generation and the calculation of
the nodal deflections are thus:

TRUSFI. A B AR D FL,
MULT FLR V

Deflections are in V. The same theory applies for statically indeterminate structures. How-
ever the flexibility matrix has already been calculated in the user defined matrix K as the
inverse of the stiffness matrix (see the theory of indeterminate trusses) and so the deflec-
tions are then calculated,

MULT KRV
The deflected shape is plotted with the command,
PLTRUSAB CS V N=3

2.2.6 Displacements of supports

The displacements of the nodes of a determinate structure caused by the displacements
of the support points can be obtained from equation (2.20). For a determinate structure
these will be rigid body displacements. To give a positive displacement at the reaction
a negative value of the displacement must be supplied. This is because the equation of
equilibrium for a reaction (R) and an applied force (F) is,

R+F=0thatis R=—F (2.26)

Then contragredience gives,
rp = —rg (2.27)

Thence a negative value for rp in equation (2.20) gives a positive (rr). An exercise has
been given in (T8) for the calculation of the node deflections for a reaction displacement.
The transpose multiplication TMULT is available and the support displacements can be
input one at a time and stored in the appropriate location of the member displacement
vector S1 using STOSM. The sequence of commands for the vertical deflection of node 1
of the truss in problem (5)-A5, are :

ZERO S1 R=20 C=1 member displacement vector
LOADR 1. R=1 C=1 load displacement data in I

-1.0 (displacement data)
STOSM S1 L L=18,1 set up displacement vector S1
TMULT D S1 V1 calculate displacements(b”is in D)

PRINT V1 print node displacements
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The deflected position is displayed using the command,
PLTRUS A B C S S1 N=3

2.2.7 Statically indeterminate planar trusses

In STATICS-2020, when the equilibrium equations are set up in D with the command,
TRUSSABCD

a check is made on the dimensions of [D] (NR,NC), rows = NR, columns = NC. If the
condition is encountered,

NR < NC “too many unknowns, indeterminate analysis necessary” is printed.

In this case (NR < NC), the analysis can still proceed, and the [b] matrix in the
equation,

{5} = [bI{R} (2:28)

calculated using the compatibility conditions of the deformations of the members. Use is
made of the contragredient principle. Starting from the equilibrium equations,

[A{S} ={£} (2.29)

the contragredient principle, (see equations(1.7) and (1.9)), shows that the correspond-
ing displacement transformation connecting member deformations to nodal deflections is

given,
{v} = [4]"{r} (2.30)

In equation (2.30), {v} are the changes in length of the truss members and support de-
felctions, and {r} are the nodal displacements corresponding to {R}. In the stiffness
method of analysis it is necessary to know the relationship between the member forces
{S} and the member distortions, {v}. This relationship is easily established for an elastic
truss member (7) with an area of cross section A;, length I; and Young’s modulus of
elasticity I/, by the expression,

Ai

Si = B(F)v = [k {v:) (2.31)

and for all members and reactions, with the diagonal matrix [k],
{8} = [F{v} (2.32)

For the reaction values the corresponding diagonal stiffness terms in [k] are set to a large
stiffness number, for example 10?°. Combining equations (2.29), (2.30) and (2.32) gives

[AN[RIAT {r} = [K]{r} = {R} (2.33)
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The structure stiffness matrix [K] is now a non-singular, square, symmetric matrix and it
follows that the displacements {r} may be obtained by inversion. That is,

{r}=[K]7{R} (2.34)
Combining equations (2.30), (2.32) and (2.34) gives the member forces,
{8} = (WA [K]7{R} = bI{R} (2.35)

That is, the force transformation matrix [b] in the statically indeterminate structure is
simply,

o] = [KI[AT [K] 7 (2.36)

In STATICS-2020 two commands are made available to calculate the [b] matrix in equation
(2.36). Firstly the areas of the truss members, together with the Young’s modulus of
elasticity are read into a row array, labelled AR in the following text. The value of

Young’s modulus may simply taken as unity if only member forces are being calculated.
That is,

AR(1) = Young’s modulus

AR(2) ... = area of members 1

to AR(no. of members) = to number of members
The sequence is then,

TRUSS A B C D

LOADR AR R=1 (C=?

(Young’s modulus and member stiffness)

TRMSTEF A B C AR MS

The command TRMSTF(=TRuss Member STiFness), is used to calculate the member
stiffness matrix, together with the reaction stiffness values in MS. To calculate [b], the
global stiffness matrix [K] is formed and inverted and the result, in [K] is premultiplied
by [k][A]T. The [b] matrix is then stored in the array with the name KA in the STATICS-
2020 software. The command, (TRuss Global STiFness) to produce this result is:

TRGSTF D MS K
Remember that the matrix of the equilibrium equations has been generated in D. Loads
are calculated via the command,

TRUSLD A L R

Then member forces are calculated in S deflections in V by the matrix multiplications and

printed,
MULT KA R S
MULT KRV
PRINT S
PRINT Vv

Sequence of commands for an indeterminate truss analysis:
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LOADR A R=? C=2 coordinates of nodes (X,Y)
(coordinate data)
LOADI B R=? C=3 member node numbers, (number),I,J

(member data)
C R=? C=2 node number,type 1, 2-(X,Y), 6 angle to X axis
(reaction data)

TRUSS ABCD forms equilibrium matrix, tests for solvability
LOADR L R=? C=3 node loads
(load data)
TRUSLD ALR generate node load vector R
LOADR AR R=? C=1 Young’s modulus, member area array AR
(member data)
TRMSTF A B C AR MS member and reaction stiffnesses MS
TRGSTF D MS K global stiffness, calculates [b] matrix
MULT KARS calculate member forces and reactions
PRINT S print member forces and reactions
(PLTRUS A B CSRN=2 plot truss, sense of member forces shown)

The truss members may be plotted with the command,

PLTRUS A B C N=I

The sense of member forces, tension or compression can be shown by the plot command
PLTRUS A B C S R N=2

Alternatively one of the exercises may be undertaken using the TRUSEX command to
generate the data.

2.2.8 Example of statically indeterminate truss.

Examples of indeterminate trusses are to be found in the exercises numbers 8 to 12 Figures
2.8, 2.11, 2.12. That is, using the command for the truss Example 8 shown in Figure 2.7,
and a load shown on node 3 with 100 units of force in the positive X direction.

Command sequence



2.3. TRUSS STUDY MODULE 37

3 100
|
O

Figure 2.7: Exercise 8, statically indeterminate truss

TRUSEX E=8 D=1.0,1.0

PLTRUS A B C =1
TRUSS A B C D

LOADR L R=1 C=3

3 100.0 0.0

TRUSLD A L R

LOADR AR R=7, (=1

10.0 1.0 10 1.0 1.0 1010
TRMSTF A B C AR MS
TRGSTF D MS K

MULT KA RS

PRINT S

PLTRUS A B C S R N=2

2.3 Truss study module

2.3.1 Study programme in truss analysis

The purpose of the first session of this course is to teach the students studying engineering
the theory and application of the statics of trusses. In the second session topics in the
strength of materials are studied. The objective of the course is to teach the material in an
arithmetic free environment. It achieves this objective by providing the software package
STATICS-2020 to undertake the computations required in each analysis module. In a
purely simplistic approach it would be possible to undertake this course using only a simple
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matrix interpretative program, of which there are many excellant examples available. In
fact the core of STATTICS-2020 is a matrix interpretative program suggested by CATL86
written by Professor E. Wilson of the University of California, Berkeley. However the
simple matrix interpretative program suffers from some severe limitations both from the
student’s and the teacher’s points of view. For the student there will be too much data
preparation and too many programming steps that make the class exercises slow and liable
to error. From the teacher’s perspective, too few problems can be solved and incorrect
solutions mean that the student’s confidence in the theory is not adequately developed.
Thus the rationalé behind the development of STATICS-2020 is to produce a number of
modules each of which has a command structure oriented towards the particular topic to
be studied. These modules then form the basis of the individual units of the course and
they may be studied independently although there is a necessary progression from simple
topics to the more difficult. There will be a module associated with each theory topic
these have been listed in Chapter 1 section(1.1).

In the examples of statically determinate trusses, the dimensions are relative. For
practical cases in either system of units, imperial or metric, the dimensions given in the
exercises may be scaled to give realistic sized structures. For example for the trusses in
Figure 2.9, the panel size is 10 units. This may be 10 feet with a truss span of 60 feet. If
the matrix system is used the truss span would be 60 metres which may require scaling
by 1/3 to make a realistic span.

2.3.2 Statically determinate truss analysis exercises

From the lecture notes the course starts with a discussion of the equilibrium of forces at
a point and the necessary and sufficient conditions being,

> F=0 > F,=0 (2.37)

See Sections 2.2.1 to 2.2.3 for the theory of node equilibrium of trusses, setting up of
the equilibrium equations etc.. Having developed the theory, to undertake truss analysis,
using STATICS-2020, seven commands are used of which only two are particular to the
theory of trusses. See the lecture notes, Chapter 9, for examples and explanations. The
summary of these commands is given below.

1. LOADR, LOADI read in real or integer arrays of information
2. PRINT A print array A

3. LIST list arrays that have been used in the problem

4. TRUSS A B C D set up node equilibrium equations in D

5. INVERT D T=2 invert unsymmetric equilibrium matrix D

6. MULT D R S member forces, reactions from load vector R
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7. PRINT S print member forces and reactions
8. PLTRUS A B C [S/R/V] N=L1,2 or 3 plot truss
Three additional commands may be used in the truss exercises. These are:
1. TOPOL A B Bl calculates connectivity matrix Bl for the nodes and members
2. JOINEQ A B C R S N=7 undertakes equilibrium check of all forces acting on node
3. PLTJEQ draws vector diagram of the forces obtained in the JOINEQ command

Note: the command: TRUSEX E=? D=7??7 generates the A B C data matrices for the
twelve trusses given in the exercises, scaled by the values D, (see the Figures (2.8) to (2.12)
for these examples).

The lecture notes should be read to cover the theory and the command functions, (see
also the online HELP command).

The purpose of the examples is to:
1. Tlustrate the principles of joint and free body equilibrium.

2. Show the flow of forces throughout a truss structure, noting those members in tension
and compression.

3. Study the general principles of truss action, for example, chord members carry the
bending moments and web members the shear.

4. The use of influence lines for member forces to calculate maximum values for uni-
formly distributed load and point load patterns.

5. Calculate truss deflections.

6. Study the analysis of determinate trusses and influence of indeterminacy on member
forces.

The class exercises are all based on the examples for determinate truss analysis given
in Figures 2.8, 2.9 and 2.10. Use of these examples will ensure that students start the
exercises with the correct data. Only the load vectors have to be input by the students
and these can be varied if tutorials are to have individual problems for each student. It is
hoped that the exercises given herein are self , see also course details in Chapter 9.

2.3.3 Exercises for determinate truss analysis

(T1) For the truss (1) in Figure 2.8, apply a vertical load of —100 in the Y direction at
node 3.
Answer the following:
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What are the signs of the forces in members (1), (2) and (4).
What are the magnitudes of the forces in members (3), (6) — to — (9).
Analyse the truss using STATICS-2020 to verify your answers in (1) and (2).

Ll e

Now apply a load of —100 in the Y direction on node 5 and examine the
members forces. From first principles check the reaction values at (1) and (2).

5. Use the JOINEQ and PLTJEQ commands to check equilibrium of node 5 in
load case (4).

(T2) For the truss (2) in Figure 2.8, apply a load of 100 units in the Y direction of node
6. Answer the following:

1. Which members can you say have zero force simply from inspection. Hint: start
at nodes 4 and 7.

2. Analyse the truss using STATICS-2020 and prove your result. Taking moments
about node 6 of the reaction at node (11), check the magnitude of the force in
member 10.

3. Now apply load components (+100, —100) to node 6 and analyse the truss. Use
JOINEQ and PLTJEQ commands to prove that node 6 is in equilibrium.

4. Apply a vertical load at node 4 and obtain member forces using the already
calculated [b] matrix. Discuss the results.

(T3) Trusses (3) and (4) in Figure 2.9 have vertical loads of 100 units applied at node 7.
Answer the following:

1. From first principles, what is the sense of the forces in the diagonal members
in the two cases, and can you calculate their magnitudes?

2. In truss (3) what is the magnitude of the force in member (13), and in truss
(4) magnitudes of forces in members (1), (4), (13), (24), and (25).

3. Analyse both trusses using STATICS-2020 to verify your results.

(T4) A force of —100 is applied to node (11) of truss (6) in Figure 2.9.
Answer the following:

1. From first principles what are the signs of forces in members (16), (17), (1) and
(6)?

2. Analyse the truss using STATTCS-2020 and use JOINEQ and PLTJEQ to verify
equilibrium of nodes 10 and 11.

3. What is the relationship between the forces in members (21) and (22) for the
same load? Examne node 13 using JOINEQ and PLTJEQ to verify the results.

(T5) A force of —100 units is applied to the truss (5) in Figure 2.9.
For the two load cases answer the following:



PLANAR TRUSS 41

1. Load applied to node 5, and

2. Load applied to node 6.
Analyse the two cases and examine the results. Explain the difference.

3. What are the differences between truss (5) and trusses (3) and (4).

(T6) The truss (7) in Figure 2.10 is to be analysed.
Answer the following:

1. Setup A,B and C matrices using TRUSEX command.

2. Use TOPOL to examine the joint connectivity matrix. What do you notice
about the number of members incident on each joint.

3. Analyse the truss for load cases of (—100) units in the Y direction on nodes 3
and 4. Discuss both of the results.

2.3.4 Influence lines

A force influence line gives the value of a particular force (in the present case a truss
member force or a support reaction), as a unit load traverses the nodes of the truss. The
values of the influence line for a particular member force are thus obtained from the row
of the [b] matrix corresponding to the force. Influence lines are useful for determining
the maximum value of a force due to a pattern load or a uniformly distributed load that
may be applied over all or part of the structure. For the trusses shown in Figure 2.9 it
is possible to obtain the influence line for a particular member force as a vertical load
traverses the lower chord of the truss. For truss (3) in Figure 2.9, this would involve unit
loads at nodes 1,3,5 ... 13. A web member for example (19) will have the sign of the force
in the member change when the unit load moves from node 9 to node 11. The exercise
(T7) is to give practice in the use of influence lines.

(T7) From the [b] matrix obtained for the truss (3) in Figure 2.9, draw the influence lines
for,

1. member force (14)
2. member force (19).

3. A load system (20,20,10) in the Y direction at equal spacings of 4 moves across
the lower chord. Position the load group so that maximum forces (tension and
compression) are obtained in members (14) and (19).

4. If a uniformly distributed load of 2 /unit length in the Y direction can have
any length, what is the maximum tensile, (compressive) force in member (19)?

5. From the [b] matrix plot the influence line for the reaction at 13. Check the
result.
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2.3.5 Calculation of truss node deflections

Determinate trusses

When the truss analysis module has been used, the inversion of the equilibrium coeflicient
matrix D produces the member force transformation matrix [b]. The theory for the calcu-
lation of the truss flexibility matrix ¥ and from that the nodal deflections for any set of
node forces is given in section 2.2.5. That is, once the [b] matrix has been calculated, it is
necessary only to read in the matrix of member flexibilities and to calculate,

[F] = [B] " [/][2] (2.38)
Thus after calculating [b], proceed as follows:
LOADR AR R=1 C=? read in Young’s modulus/member areas
( ) member Young’s modulus/areas
TRUSFL. A B AR D FL.  generate truss flexibility matrix FL
MULT FI. R U calculate node deflections in U
PRINT U print node deflections

Indeterminate trusses

For indeterminate trusses the same theory can be used as for determinate trusses if the
force transformation matrix [b] given in KA is used rather than the inverted equilibrium
matrix [D] However the flexibility matrix has already been calculated in the inverted
stiffness matrix [K] so that deflections are calculated by the matrix multiplication,
MULT K R V
Node displacements are in V and the deflected shape is plotted,
PLTTRS A B C V N=3

2.3.6 Truss exercises for deflection calculations

(T8) The truss (1) in Figure 2.8 has been analysed in Exercise (T1) for a load of -100
kN on node 5. Assume all members have an area of 200mm? and Young’s modulus
of 20 x 10°N/mm?.

1. Calculate the node deflections of the truss if the base dimension between nodes
1s 2 metres.

(T9) The truss (3) in Figure 2.9 has the following properties:

area top chord 36 x 10%mm?
area bottom chord 24 x 10*mm?
area web members 18 x 10%mm?2

Young’s modulus 200 x 103M Pa

1. Calculate the deflection for a load of 10kN is applied in turn at node 3, 5 and
7.
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2. The span of the truss in Figure 2.9 is 60 metres. What is the deflection if the
span is 15 metres?

3. The truss support at node(13) settles an amount of 10 mm. Calculate the
displacement of the nodes of the truss, (See theory in section 2.2.5).

2.4 Statically indeterminate truss analysis

When a truss is statically indeterminate and the command TRUSS is used to set up the
equilibrium equations D, the coeflicient matrix has more columns than rows. That is,
2] > M+ R
See the theory in section 2.2.1 for the conditions for stability, determinacy and indeter-
minancy of trusses and also section 2.2.5 for indeterminate truss analysis theory. When
the indeterminate condition is detected by the TRUSS command, a message is displayed
to this effect and the user is able to use the stiffness method to calculate the [b] matrix.
The theory is given in section 2.2.5. Additional information giving the material Young’s
modulus of elasticity and the areas of the member cross sections must first be supplied.
Two STATTICS-2020 commands are available to undertake the analysis. These are:
TRMSTF A B C AR MBS calculate matrix of member stiffnesses in MS
TRGSTF D MS K calculate nodal stiffness matrix, invert, form [b]

The matrix [b] is stored in the array called KA, so that if the load vector has been gener-
ated in R, member forces and reactions are calculated by the command,

MULT KA R S

An example is given in section 2.2.6 of the analysis of a simple truss with one redundant
member. A number of indeterminate truss exercises are given in Figures 2.11 and 2.12.
The trusses 8 to 11 have a basic bay size of 10 units. Using the SCALE command this
dimension can be changed to suit either the problem being solved, or the system of mea-
surement, imperial or metric, being used. This scaling will be applied uniformly to both
the X and Y dimensions. Repeating section 2.2.5, the commands for analysis of truss,
FExample 8, Figure 2.11, are

TRUSEX E=8 Sets up A,B,C matrices

TRUSS ABCD Generates D matrix

LOADR AR R=7 C=1 Young’s modulus, member area

TRMSTF A B C AR MS generate member stiffnesses MS

TRGSTEF D MSK generates [b] in KA
See section 2.2.5 for the complete list of commands. Remember that the commands
JOINEQ and PLTJEQ can still be used. Class exercises are given below in (T10) to
(T15). With indeterminate structures, the relative member areas (stiffnesses) affect the
magnitudes of the member forces, whereas in statically determinate structures their areas
have no effect on member forces although they influence truss deflections.
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2.5 Exercises in indeterminate truss analysis

(T10) The truss (8) in Figure 2.11 is to be analysed for a horizontal load of 100kN in the
positive X direction on node 4 and the dimension 10m is to be scaled to 4m using
the SCALE command after the coordinates have been generated in the matrix A.
Young’s modulus is 200 x 103A/ Pa for all members. Use the PLTRUS command to
display the truss.

1. Calculate member forces if all members have the same area of 2000mm?2.
2. Compare results for analyses with the area of member (5) reduced to 1000, 500,

100mm? respectively. Plot your results.

(T11) The node (3) of the truss (8) in Figure 2.11 has a roller support. How can you use
STATIC-2020 to provide a fixed support at 37 (Hint: Move matrix C into another
matrix CC with an additional row and then put the extra support condition into
this row using the MODIFY command. Repeat the analyses in (T10).

(T12) Analyse the truss (11) in Figure 2.11 for a 100kN horizontal force at node (6).
First use PLTRUS to display the truss. Use the same member areas as in (T10).
1. Analyse the truss (11) for a 100 kN horizontal load on node (4).

2. Now analyse the truss for the combined loads of 100 kN on node (4) and 100kN
on node (6). Prove that superposition applies by adding the first two analyses
and comparing them with the third.

3. Repeat the process in (T11) of fixing node (2) in the horizontal direction.
(T13) The truss (10) in Figure 2.11 is to be analysed for a load of 100kN vertically

downwards on node 9. All members have the same area.
Answer the following questions:

1. In what proportion do you expect the shear to be carried by members (8) and
(9)-

2. Analyse the truss to prove your assumptions

3. If members 9 and andll have 1/2 the area of the other members, how are the

member forces changed?

(T14) Repeat the analyses in (T13) for the following cases and answer the questions
given.
1. Loads of 100kN downwards on each of nodes 3 and 5.
2. Compare forces in members 11 and 12.

3. Reduce areas of members 12 and 15 by 1/2 and compare results of the new
analyses with (2).
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Figure 2.8: Truss examples 1 and 2

(T15) Use the command TRUSEX E=12 to generate the data for the truss (12) in Figure
2.12.

Answer the following questions, assuming that all members have equal area:

1. Analyse the truss for member forces, with loads of 10 units vertically downwards
on nodes 2,4,6,10,12,14.

2. For the load case (1), record the magnitudes of the member forces, 12,23,27
and 17,21,25,29.

3. Modify the coordinate data giving node 9 an upwards repositioning of 42 m.
How are member forces now calculated changed from those in (1).

4. Now return node 9 to its original position and modify the coordinate of node 8
repositioning the node -2 m downwards. Analyse the truss and determine how
member forces are now modified from those of the two previous analyses.

5. From 3 and 4 is it possible to estimate a truss shape, either by upper or lower
chord modification so that member forces in the top and bottom chord are
essentially constant for the load case (1)?
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Figure 2.9: Truss examples 3 to 6
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Figure 2.10: Truss example 7
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Figure 2.11: Indeterminate truss examples 8 to 11
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Figure 2.12: Indeterminate truss example 12
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Figure 2.13: Determinate trusses examples 13, 14, variable height top chord



