Chapter 4

PLANE FRAME ANALYSIS

4.1 Introduction

A plane frame combines the axial force effects of truss members with bending moments
and transverse shears of beam elements. Consider the structure shown in Figure 4.1.
The joint equilibrium equations must now involve forces Fy, Fy, in the X, Y directions and
the moment M, about the Z axis out of the plane of X and Y. To develop the joint
equilibrium equations in the global coordinate axes, member forces are firstly set up for a
single member in the local, member coordinate, axes and then transformed to global axes
components. For the whole structure, the three conditions still apply for the solution of
the equilibrium equations with NR rows and NC columns. That is,

equations(NR) > (member forces + reactions)(NC) (unstable)
equations(NR) = (member forces + reactions)(NC) (determinate)
equations(NR) < (member forces + reactions)(NC) (indeterminate)

The software tests for these three conditions and the determination of the member forces
is possible for conditions (2) and (3). It should be mentioned that the conditions are
necessary but not sufficient. The exception of unstable indeterminate structures does not
usually occur and is beyond the scope of this text.

4.2 Determinate frame structures

4.2.1 Introduction

In this section the basic theory of Chapters 2 and 3 are extended to include plane frames
that have three equilibrium equations per node. Because member forces now include
both axial and shear forces these interact at the nodes. For example the simple structure
shown in Figure 4.1 cannot be solved directly as a beam or as a truss. In this chapter the
necessary relationships are developed so that the nodal equilibrium equations can be set
up in terms of the basic member forces. The basic member forces for the frame member
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Figure 4.2: Member forces, local and global axes

are (F, M;, M;). That is, axial force and end moments. Their positive sense and local
coordinate axes are shown in Figure 4.2(a).

4.2.2 Member forces — nodal equations of equilibrium

The nodal components in the X', Y axes Figure 4.2(b), of the member are given by the
transformation,
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These six force components are then transformed to global components using, see Figure
4.2(c), the transformation for the components at each end of the member,

E, cos —sinf 0 F!
{ F, } = | sinf cosf 0 { F } or {F}= [L]T{F,} (4.2)
M, 0 0 1

M,

Thus if equation (4.1) is written,
{F'} = [A1{S} (4.3)
then using equation (4.2) the global components are given by,
{F} = [Lp]"{F"} = [Lp]"[A{S} = [A]{s} (4.4)
The matrix [4] is thus defined by,

r o

A= Lol )= |

[A'] (4.5)

The joint equilibrium equations can be written as before,

applied force + reaction + member node force = 0
so that,
member force — reaction = applied force

Using the equations for all nodes and members of the frame, together with the reaction
contributions enables the setting up all the joint equilibrium equations for the planar
structure. For example, in Figure 4.1,

number of member forces = (3 x 3) = 9

3

number of joint equations = 12

number of reactions
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Figure 4.3: Reaction numbering sequence at a joint

This structure is stable and determinate. Reactions are restricted to global components
only and are given in the sequence 1, 2, 3 as shown in the Figure 4.3. For each reaction
a (—1) is added to the corresponding (row, column) location in the [A] matrix. When all
the equilibrium equations are assembled they are written in symbolic form,

[Asn| Asr {gﬂg } = {R} (4.6)
or simply,
[A{S} = {R} (4.7)

The equilibrium matrix is generated in STATICS-2020 by using the command
FRAMEQ A B C

The matrix A contains the X, Y coordinates of the frame nodes in the natural order of
node numbering. The topology matrix B has three columns and is an integer matrix. The
first column being the member number, the second and third columns being the member
end node numbers (I, J). The matrix C is an integer matrix containing the reaction data.
If for example node I is fully fixed, the reaction array will contain three rows with the
following information:

I 1
I 2
I 3

Then a (—1) is then placed in the appropriate (row, column) location of the [A] matrix.
The matrix [A] in equation (4.7) is the program defined matrix EQ. If [A4] is a square
nonsingular matrix, then within the command FRAMEQ), the matrix EQ is inverted so
that it now contains the [b] matrix. In the 9 examples provided in STATICS-2020, see
Figure 4.6, the command,

FRAMEX E=? D=?777?
generates the data matrices A, B and C for the appropriate frame in the Figure 4.6 or
4.7. If E is negative the frame (Exercise 1 to 6) will have pinned bases rather than fixed
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Figure 4.4: Uniformly distributed load in member coordinates

as shown in the Figure. The dimensions (a,b,c,d) given in Figure 4.6 are supplied in D,
in that sequence.

4.3 Node and member loads

Loads are restricted to concentrated loads and moments applied to the nodes and uni-
formly distributed loads applied over the whole of a member length. For the nodal forces
the command FRAMLD may be used. The command is,
FRAMLD B E F C=? D=?

The options are:

Cc=0,1 concentrated loads (0 = none, 1 = present

D=0,1; distributed loads 0 = none, (4, —)1 = present
The load vector is generated from E and F in the program defined array L.O. The matrix
E for concentrated loads will have one row per load value with the following information:

[node number| [force or moment direction (1-F,, 2-F,, 3-M, )] [magnitude]

The (3) component is a moment about the Z axis, counter clockwise positive. For distrib-
uted load w per unit length, with D = +1 the load will be applied over the whole member
length and will be in the direction of the positive Y’ coordinate so that the transformation
to global components is required. The load w per unit length is shown in the positive Y’
sense in Figure 4.4. If D = —1 the distributed loads are in the global Y coordinate system
and are per unit length of the inclined member.
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For this load the end forces will be, for the statically determinate frame,

{F} == (4.8)

SO R O O

These forces are transformed by pre-multiplication by [LD]T to obtain the global X — Y
components to be added to the nodal load vector .LO. Once the global load vector has been
formed then member forces and reactions are obtained using the command, FRMFRC as
follows,

FRMFRC M V § X

In which, M are the member bending moments, V the end shears, S the structure reactions
and X the member axial forces.

4.3.1 Statically determinate structure deflections

The theory follows that given for truss structures in section 2.2.5 and for beams in section
3.4.1. Thus from equation (4.7) for the determinate frame, the transformation for member

forces is obtained,
{s}=[A"" = [bl{R} (4.9)

The ith submatrix, [f;], of the matrix of member flexiblities [f] is obtained by combining
the truss member flexibility, section 2.2.7, equation(2.21) and the beam member flexibility,
section3.4.1, equation(3.33) as,

I;

|7 0

[fi]ZGEIi 0 2 (4.10)
0 1

N = O

For distributed loads on the member in the positive Y’(local member) coordinate axes,
the end rotations v} are given,(see also equation(3.35)),

toi} = {i] j - 22511 {1 fw (4.11)

Then the nodal deflections are obtained using the contragredient law,
{r} =] {vs +v"} (4.12)

{v{} terms, including zero values for members without distributed load. Thence,

{ry = O IRHRY +v7)
= [ [/IBI{RY + b7 {v"} (4.13)
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The elastic flexibility matrix for the frame is,
[£] = [B] " [£][2] (4.14)

This equation eqtn(uationg486) is valid even for statically indeterminate frames.

4.3.2 Statically indeterminate frames

In the case for which NR<NC, the analysis can still proceed and the [b] matrix in,

{5} = [bI{R} (4.15)

calculated using compatibility conditions of the deformations in an identical manner to
that for statically indeterminate trusses and beams. Starting from,

[A{S} = {R} (4.16)
the contragredient principle shows that the corresponding displacement transformation is

given,
{v} =1A]"{r} (4.17)

in which {v} contains the member changes in length and the end rotations relative to the
chord. The relationship between {S} and {v} is easily established for a prismatic member
(n), length I,,, area of cross section, A, and second moment of area, I,

F Al
{m}zww=?ﬁ {@}zmmw (1.18)
M) " n i)y

It is seen that the expression for frame member stiffness simply combines axial and
bending stiffnesses of the member. For all member forces (including reactions), these
equations are combined as,

AL, 0 0
0 4 -2
0 -2 4

{5} = [k{v} (4.19)

The stiffness corresponding to a reaction is set equal to a large number e.g. (1020).
Combining equations (4.16), (4.17) and (4.18),

[AN[RIAT {r} = [K]{r} = {R} (4.20)

The structure stiffness matrix [K] is now nonsingular and symmetric and the node deflec-
tions {r} are obtained by solving equation (4.20),

{r}=[KI"{R} (4.21)
The force transformation matrix from nodal to member forces is given, in the equation

{8} = [K][A]T[K] " {R} = [BI{R} (4.22)
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That is,
[b] = [k][A)" [K] (4.23)

Notice that this is an identical matrix transformation to those for indeterminate trusses
and beams so that the matrix theory presents a uniform approach to structural analysis. If
the frame is statically indeterminate the condition is indicated and the user may continue
the analysis as outlined above to obtain the [b] matrix. The steps are thus the same as for
indeterminate trusses and beams. The user must firstly supply the area, second moment
of area and Young’s modulus of elasticity of each member. That is, a matrix with three
columns is to be read in with the following values for each member,

[areal, [second moment of area] [Young’s modulus]

That is, there is one row for each member with 3 values. The program assumes that all

members are of the same material and only the (1, 3) row value needs to be loaded with

the Young’s modulus. Of course, the area and second moment of area must be in units

consistent with those used to describe the frame nodal geometry. The command,
LOADR IN R=? C=3

is used to load these member properties into the matrix (IN). The concentrated node loads

and member distributed loads are processed via the command,

FRAMLD B E F C=? D=?

B=member nodal numbers.

If concentrated loads are present in E then C=1, otherwise C=0.

If distributed loads are present in F then D=(4, —)1, otherwise D=0.

The matrix E has one row per node load with the information:

node number, force component identification (1, 2 or 3), magnitude

The (3 — Z) component being a moment about the Z axis, counter clockwise positive,
see Figure 4.2(c). The matrix F is a row matrix giving uniformly distributed loads for all



INDETERMINATE FRAMES 87

members. A zero is required for a member without loads.
The command,

FRMSTE B IN MS

then calculates the matrix [k] of member and reaction stiffnesses in MS. The equilibrium
matrix has already been generated and stored in the program defined matrix EQ, so that
the global stiffness command that generates [b] and stores it in the program defined array
KA, is

FRGSTF EQ MS K

Note that the same routines are used for all equations such as equation (4.22). Finally
member forces and reactions are obtained with the command,

FRMFRC M V § X

In which, M are the member bending moments, V the member end shears, S the structure
reactions and X the member axial forces.

4.3.3 Nodal forces, statically indeterminate frames

Forces applied directly to the nodes are treated in the identical way as for statically
determinate frames. However for distributed loads on members, in the kinematically
determinate state, {r} = 0, fixed end moments are induced by the zero rotation conditions
and these with signs reversed must be applied to the nodes at the ends of the member.
Thus from Figure 4.5, with w/unit length as shown in the member coordinate system the
nodal release forces induced in the local coordinate system are,

0
1
a/6
0
1
—a/6

(F'} = % (4.24)

When member forces are calculated from the nodal loads the fixed end moments must be
included in the member forces. This is done automatically in FRMFRC.

4.3.4 Frame analysis

The examples 1 to 7 available in the software are shown in Figure 4.6 and they represent
typical simple frames that are met in practical analysis. Because frames tend to be inde-
terminate only the commands for this case are given in this section. The frame dimensions
are shown in Figure 4.6 and are entered in the sequence D=a,b,c,d.
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Figure 4.6: Frame examples 1 to 9

Command sequence
FRAMEX E=? D=7,777 E=1 to 7, D gives frame dimensions see Fig. 4.6

PLTFRM ABC plot frame, nodes, members, reactions
FRAMEQ ABC set up joint equilibrium equations in EQ
LOAD E R=? C=2 read in node concentrated loads, if present
LOAD F R=? C=? read in member distributed forces, if present
FRAMLD B EF C=? D=7 generate node forces
LOAD IN R=? C=3 read in area,second monent of area,
Young’s modulus each member

FRMSTEF B IN MS generate member stiffness matrix in MS
FRGSTEF EQ MS K generate global stiffness K, b matrix in KA
FRMFRC MV SX calculate member forces (M,V,X), reactions S
PRINT M print member moments
PRINT Vv print member end shears
PRINT X print member axial forces
PRINT S print structure reactions

4.3.5 Notes

Note! At any stage, LIST gives matrices in the incore data base, and PRINT (array name)
prints the array values. If the program stops because of an attempt to access a matrix
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not defined, then the RESUME command will restore incore data base when STATIC is
restarted

4.4 Frame analysis module

The theory for the analysis of plane frames is given in Sections 4.2 to 4.3. See these sec-
tions for the basic theory for member forces, node equilibrium and the setting up of the
node equilibrium equations. the basic equation to do this is:

FRAMEQ A B C
in which A stores the node coordinates, B the member node connectivity matrix and
C the support boundary conditions. Node forces can be generated using the command,
FRAMILD A B E F C=? D=?
The matrices A and B are as given in the command FRAMEQ, and E and F are
matrices
containing data for concentrated node forces and uniformly distributed loads on mem-
bers respectively. See Section 4.3 for the node forces for statically determinate and inde-
terminate frames that are different because the first solves by statics whereas the second
uses the stiffness method (see the above sections for the details). The command FRAMEQ
generates the equilibrium equations and for the determinate frame inverts the matrix and
stores this in the programme defined array, EQ. This is the [b] matrix. Member forces are
obtained from the node loads by the command, (See Section 4.3).
FRMFRC M Vv S X
For statically indeterminate frames, the same strategy as for the analysis of statically
determinate trusses and beams is used to generate [b]. (See Section 1.7.4, equation(1.72)).
Then the commands used are,

FRMSTEF B I MS
FRGSTF EQ MS K
The matrix K is the generated stiffness matrix and has been inverted in the process
of calculating KA. This latter command generates the [b] matrix stored in the program
defined array, KA. When FRAMLD is used for statically indeterminate frames, the node
forces include the release fixed end moments (See Section 4.3.2). The exercises given in
Figure 4.6 are all for statically indeterminate frames. The set of commands to analyse

these exercises are given in Section 4.3.1. The exercises for frame analysis are given in
assignments, (F1) to (F12).

4.4.1 FRAME ANALYSIS TUTORIAL EXERCISES

In all these exercises use a Young’s modulus of elasticity of 200 x 103Mpa if using metric
units and 30 x 1061b/ sq inch if using Imperial units.

(F1) The frame (1) in Figure 4.6, has dimensions a=b=3m. All members are composed
of 100mm o.d. tube with a wall thickness of 5mm. (Note if Imperial measurements
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are being used substitute 25mm = 1 inch).

1. Analyse the frame for a horizontal load of 2kN in the positive X direction on
node 4. Draw the bending moment dirgram for the members. What are the
magnitudes of axial forces in members (1) and (2)?

2. (2) The truss (8) in Figure 2.11 has the same dimenions as in (F1)-1, and all
members have the same area of 500mm?. Use the TRUSS commands to analyse

this truss for the same horizontal force and compare member forces with those
from (F1)-1.

(F2) The frame (2),Figure 4.6, has dimensions a=b=c=3m and members are the same
size as those in (F1). A horizontal load of 2kN acts horizontally on node 6. Calculate
the bending moments and shears in the members.

1. Draw the bending moment diagram

2. How is the horizontal shear shared between members (1), (2) and 93).

(F3) The frame (1) in Figure 4.6 has a U.D.L of —2kN/m acting on member (2). Analyse
the frame and draw the bending moment diagram.

(F4) The frame (2) in Figure 4.6 has a U.D.L. of —2kN/m acting on members (4) and
(5). Analyse the frame and draw the bending moments so obtained with those for
the frame in (F'3).

(F5) The frame (3) in Figure 4.6 has dimensions a=b=c=3m. A U.D.L. of —2kN/m acts
on members (3) and (4). Analyse the frame and draw the bending moment diagram.

(F6) The frame given in exercise (F5) is subjected to the following loads:

1. Horizontal load in the positive X direction of 2kN on node (5).
2. Horizontal load in the positive X direction of 2kN on node (6).

For the two cases analyse the frame and compare bending moments in the members
(1), (2), (5) and (6). Compare your results with those in (F1).

(F7) The frame (2) in Figure 4.6 has members (4) and (5) composed | of tube 200mm
diameter with wall thickness 5mm, with column members as in (F2). Analyse the

frame for the U.D.L. given in (F3). How do bending moments in the frame differ
from those in (F3)?

(F8) The frame (4) in Figure 4.6 has the folowing dimensions, a=b=3m, c=1.5m. Analyse
the frame for a horizontal force of 2kN on node (4). Compare the results with those
from (F1). It is subjected to a U.D.L. of —2kNN/m on the members 2 to 4. Analyse
the frame and draw the bending moment diargam. Compare the answers with those

in (F3).
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(F10) The gable frame (3) in Figure 4.6 has the dimensions, a=6m, b=3m c¢=1.5m. The
frame members are of tubular section, O.D. = 150mm, wall thickness 4mm. Analyse
the frame for the following loads in each case draw the bending moment diagram.

1. Horizontal load of 2kN on node 3.

2. Vertical load of —2kN on node 3.

3. Horizontal load of 2k N on node 4.

(F11) the gable frame (6) in Figure 4.6 has member sizes the same as those in (F10).
Analyse the frame for the following load cases.

1. Horizontal load of kN on node 2.

2. Horizontal load of 2k N on node 3.

3. Vertical load of —2kN on node 3.

4. Horizontal load of 2kN on node 4.

5. Vertical load of —2kN on each of the nodes 3 and 6.

(a) For each of the horizontal load cases, how is the shear force distributed between
the vertical members 1,4 and 77
(b)Compare the bending moments in the frame for load cases (3) and (5).

(F12) the Vierendeel girder (7) in Figure 4.6 has dimensions a=b=3m and all members
are composed of tube, outside diameter 250mm with wall thickness, 5mm. Analyse
the frame for loads of —1kN on each of the nodes 4, 6 and 8.
1. Draw the bending moment diagram.
2. How are the transverse shears carried by the frame members?

3. Do you consider the Vierendeel girder an efficient way of carrying transverse
loads?
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Figure 4.7: Determinate frames
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Figure 4.8: Two pinned arch
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Figure 4.9: Two pinned arch circular arch
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