Chapter 6

SECTION PROPERTIES

6.1 Introduction

In Chapters 2-5 metods are developed for the calculation of axial forces, bending moments
and shear forces in members that form parts of truss, beam, frame or grid structures.
Initially only statically determinate systems are considered (Lecture Course I-Chapter 9).
In this Chapter 6, the theory is given for the calculation of bending stresses in prismatic
beams of either solid or thin walled cross section. The process involves the calculation
of the cross section area, location of its centroid and the evaluation of the integrals of
22, y? and zy over the cross section area and about axes through the centroid, of the cross
section. The approach used is in antipication of the finite element method of analysis of
field problems in engineering science. To this end the theory of interpolation of functions
of (x,y) over a triangle and their integration are first studied in Section 6.2.1, followed
by the location of principal axes in Section 6.2.2. The calculation of bending stresses in
beams is given in Section 6.2.3. In Section 6.2.4 the various commands that are used for
cross section analysis and their application are given and illustrated. Section 6.3 deals
with the approximations made for thin walled cross sections and 6.4 deals with the shear
flow and location of centre of twist of thin walled sections.

6.2 Section properties of areas bounded by straight lines

A typical cross section is shown in Figure 6.1(a). The properties of the cross section
bounded by the straight lines, numbered by the nodes, (1-2), (2-3) etc., traversing the
boundary in a counter clockwise sense can be obtained by summing the properties of the
triangles, such as that shown in Figure 6.1(b), in which node 1 is the origin of coordinates
and the side (2-3) is one of the sides of the perimeter. Herein the elementary theory
of polynomial interpolation over the area of a triangle is recapitulated and is used in
the software to generate the section properties. The integration of polynomials over the
triangle is central to the theory developed here. In Figure 6.1(b), the node numbers (1, 2, 3)
have the cyclic properties,
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Figure 6.1: Beam cross section and basic triangle element.
i j k
i 1 2 3
j 2 3 1 (6:1)
k3 1 2
and the global dimensions of the triangle shown in Figure 6.1(b) are:
a; = xp — X5 ; bi =y; — yk (6.2)
The triangle area is given by,
2A = aibk - akbi (63)
For example,
2A = agby — aobsy etc. (6.4)

This expression is easily proven by taking the cross product of the vectors 1_?((13, —b3) and
13(—ag, be) and equating the result to 24. In Figure 6.1(b), area coordinates ¢; are defined
G = Ai/A and (3 4+ (24 (3 =1 . Integration of polynomials of the area coordinates over

2A(ptgtrt)
(p+q+r+2)
integrals required here in are : Iy = [CdA =2AC; b = [(;dA=A/3; = [(}dA =
Al6; Iy = [ (G dA=A/12

the triangle area are given by I, In = [(V(¢EdA =

For example the

6.2.1 Interpolation of space within a triangle

The coordinates of a point (z,y) within the triangle are given,

[2,9] = NT[X Y] (6.5)
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in which [N] is the interpolation polynomial in area coordinates,
[N =[G (6.6)
and the global coordinates of the apex nodes are,
1 W
(X Y]=1< 22 (6.7)
r3 Y3

To calculate the location (xp,yr) of the triangle centroid equations (6.5-6.7), and the
first moment of the area are used. Then,

AxT:/di = /NTXdA
A A

— 24 [[6 G Gldcx
A
= §<x1 + 29 + a3) (6.8)
That is,
1 1
er=g(ertaeztas)s yr =S tye +us) (6.9)
In the same way, the second moment of area matrix, about the origin of coordinates is
given,
I = / {x}{fy}dA
ALY
XT
= T / NNTdA[X Y] (6.10)
Y= /a
Thence, . .
A TXTAX XTAY ] [Toowe  Loowy
Io=3yrax vray | = {Iooyw Iooyy} (6-11)
In equation (6.11) [A] is the (3 x 3) matrix,
2 11
A=1|1 2 1 (6.12)
1 1 2

Now shift the origin of the coordinates to the centroid, (xr,yr), of the triangle so that
the coordinates (z,y) are,

T=x—aT; Y=y —yr (6.13)

Then the second moment of the area matrix referenced to the centroid is,

L= {5

} dA (6.14)

RSN
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From equations (6.5) and (6.13),
z=NT'X —ap; 7=N'Y —yp (6.15)
So that, for example,
/ TTdA = / (NTX —a7)(NTX — 27)dA
= x7T / NNTdAX — ap / NTX dA — xp / NTX dA + Ak
= Ioowe — AzP (6.16)

Finally making all these substitutions in equation (6.14),

2
Lo=1Ip—A T JI'T%/T (6.17)
rTYT Yr
That is, with X7 = {7, yr}, o
Le=1Ig— AXXT (6.18)

Note! The location of the centroid of the whole cross section is obtained by summing for
all triangles,

v = > Arar L = > Aryr (6.19)
> Ar > Ar
and the total area A,
A=>"Ap (6.20)
and the second moment of area,
2
SLe=YTn-> A ng “Zé{T (6.21)

Then equation (6.21) can be used to shift Ipg to the value about the centroid of the whole
cross sectioln.
6.2.2 Principal axes, principal directions

In the z —y coordinate axes now referenced to the centroid of the cross section, the inertia
tensor is given,

I= / zaldA (6.22)
A
In the principal axes z’, 13 the expression becomes,
Ip = / 22T dA = L / waTdALY
A A

I 0 }
- 0.23
’ I, (6.23)
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Figure 6.2: Principal axes
From Figure 6.2,
; ) _ cosd sing
' = La L= {—Sinﬁ cosﬁ} (6.24)
Expanding equation (6.23), the value of Ip is given,
IPx’m’ 0
I
P 0 Ipyy
_ Al + S2Iyy — 2¢slyy —sc(Ipg — Iyy) + (c? — 32)Ixy
- 2 2 2 2 (625)
—sc(Ipg — Iyy) + (¢* — s%) Iy §°Ipp + 1y + 2cs1y,y,
Then the condition for the principal axes,
Iy =0 (6.26)
gives the directions of the principal axes,
21,
tan28 = —24_— 6.27
R (6:27)
or,
1 _1, 2@y
=—tan” (—————— 6.28
p= gt () (6.29)
Finally, from equation (6.23)
Ip=LI,L" (6.29)

This transformation may be used for any angle of rotation g of axes from the X axis.
That is,
Ip=LI,L" (6.30)
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Figure 6.3: Cross section-bending moments.
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Figure 6.4: Numbering of cross section.
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6.2.3 Calculation of axial stresses in the beam

The axial stress o, is expressed as a linear function of the coordinates (z,y) of the point
P, measured from the centroidal axes (X,Y") see Figure 6.3. That is,

ap
Uzzao—l—alx—l—azyz[lxy]{al} (6.31)

a2

Then if F' is the resultant axial force on the section and M., M, the bending moments
about X,Y, axes it follows that for o, acting on the infinitesimal area dA at P, the
contributions to these values are,

AF = o,
AM, = —o,xdA
AM, = —o,ydA (6.32)

Integrating over the area of the cross section gives the resultants,
a -1
{My} = —/{ x}asz
M, Y
—1 ap
= —/{ x}[lxy]dA{al}
Y az

-1 -z —y ag
= —/ —z 22 ay| dA{ o (6.33)
-y wy Y ag

For the centroidal axes, [xdA = [ydA =0 and [dA = A and by definition,
I, = [22dA, I,= [y?dA and I, = [zydA.

Substituting these values,

F = Aag, ap=
My B I, Iy ar | _ ai
{Mx}_ {Iwy I, } {a2}_ ICC{@} (6.35)
ar| 71 M,
{@ } - I { v } (6.36)

From these equations the axial stress due to axial force and bending moments about the
x and y axes is calculated as,

(6.34)

SRS

F

o=~ oyl |

d My} (6.37)

M,

The signs of (M, M,) positive are shown in Figure 6.3 or Figure 6.5.
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Figure 6.5: Moments applied to cross section.

6.2.4 Commands for calculating section properties

The perimeter nodes of the outside boundary and all inside boundaries are numbered se-
quentially in an anticlockwise direction as shown in Figure 6.4. Then the z —y coordinates
must be loaded into the incore data base with the LOADR command (given here for data
for Figure 6.4),

LOADR A R=14 (C=2
Each row gives the x—y coordinate value of the corresponding node in the natural sequence.
Then the call to PERIM is made once for the external boundary and once for each internal
boundary,

PERIM A M=l N=10 S=1 (outside)

PERIM A M=11 N=I14 S=-1 (inside)
The numbers used are for Figure 6.4. Then section properties are calculated relative to
the centroid, with the PROPER command.

PROPER A B C D

A gives the coordinates now referenced to the centroid of the section.

B gives the area.

C gives the coordinates of the centroid from the initial origin.

D contains the second moment of area matrix about x,y axes through the centroid.

Then the command,
PRINC E F
calculates the principal inertia tensor (in E) and the angle from the z axis to 2/, in F, in
degrees.
Finally stresses may be calculated with the STRESS command,

STRESS A G F=? M=7,?
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anticlockwise clockwise

Figure 6.6: Node points generated on circumference of a circle.

This command calculates the axial stresses at the coordinate points A, and stores them
in the array G. The axial load is I, and the moments are M, M., about the y and z axes
respectively as shown in Figure 6.5. Note that the principal axes are not required for the
stress calculations in equation (6.37).

The command,

CIRCOR AC R=777?7 N=?

is provided to allow portions of a circular arc to be included in the perimeter coordinates.
The parameters in R are radius, z — y coordinates of the centre of the circle and the
direction in which the circumference is traversed. The coordinates calculated are stored in
AC, the user defined array, and depending on the 4th parameter chosen will be generated
in a clockwise (—1) or an anticlockwise (+1) sense, as shown in Figure 6.6. N gives the
number of points on the circumference of the circle N >= 32. These coordinates or part
thereof can be incorporated in the cross section perimeter coordinates using the DUPSM
and STOSM commands. Note! The coordinates are generated with the starting node
being given at both the beginning and end of the sequence.
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Figure 6.7: Rectangle with a quadrant cutout.

EXAMPLE: Section with quadrant cutout, See Figure 6.7
LOAD A R=12 C=2
00
120
00
00
00
00
00
00
00
00
00
09
CIRCOR AC R=2,129,—1 N=32
DUPSM AC Al R=9 C=2 L=91
STOSM A Al L=3,1

STRESS A G F=1000.0 M=0.0,10000.0

6.2.5 Section property exercises

STATICS-2020 includes 5 examples of typical beam cross (see Figure 6.8) sections that
are available to generate section properties using the standard section commands, PERIM,
PROPER, etc.. To access these cross sections the command used:

SECTEX E=? (1to 5) D=(b,d,t1), ta

The five section types included are:
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Figure 6.8: Standard sections used in STATICS-2020

(1) I-section

(2) Tee section

(3) Channel section
(1) Angle

(5)

5

Hollow box section

Each of these sections is defined by the four parameters shown in Figure 6.8:

(1) b=Dbreadth, d=depth
(2) t1= web thickness, to= flange thickness

The command, SECTEX generates the matrix A which has the coordinates values (z,y)
of the node points in the order given for each section in the Figure 6.8. Having used the
command SECTEX, the PERIM command must be used before the section can be viewed
with the command,

PLTSEC A N=?
also a perspective iew is given with the command
PLTSEC A G A=HA ,VA,ZO00M N=4

which plots the axial stress distribution|GJin perspective viewed from the position defined
by the horizonatl and vertical angles, (HA, VA), and scaled by the factor ZOOM. values
of (40,30,1.5) for these three parameters are usually suitable. Exercises are given in the
section (6.7) the properties tutotial module.
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6.3 Shear stress in beams

In this discussion the beam will be assumed to have principal planes XY and X Z and to
be loaded in the XY plane so that all deformations are in this plane, that is M = My is
the only bending moment and the shear force V on the cross section is in the XY plane,
see Figure 6.9. the section ABCD is parallel to the X0Z plane and the bending stress o,
at the distance y from the neutral axis is given,

M,
Oy = I—y (6.38)

Consider the equilibrium of the portion of the beam isolated by the plane section ABCD.
Summing forces in the X direction

dog

Yt
—Tyabdx —I—/ {—0z+ (02 + . dz)}dA=0 (6.39)
y x
Simplifying this equation,
b+/yt s 14— (6.40)
-7 = .
v gy dz
Hence the horizontal shear stress is given,
1 /v dM,
=— dA Al
v =L /y - (6.41)
and hence the vertical shear stress is,
Vy Yt V. Qz
= =4 dA = - 6.42
Toy = Tyx bl, /y ) bl ( )
In equation (6.42), @, is defined bas the integral,
Yt
Q. = / ydA (6.43)
y

that is Qzis the static moment of the area cut off by the section CD(or AB) in Figure
6.9 about the 0Z axis. The equation (6.42) can be used whenever the shear Vj, is given in
one of the principal planes of the cross section(a plane of symmetry is always a principal
plane).

6.4 Thin walled cross section

A thin walled member is composed of elements, here considered to be straight with di-
mensions of length much greater than thickness, [ >> {, as shown in Figure 6.10.
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Figure 6.10: Thin walled cross section and typical element.
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In the local 2/, ¥ axes the second moment of area matrix of the single element is written
nelgecting the properties in the ¢ direction,

3 0
1= | 12 (6.44)
0 0

and that in the xy axes, by the LT I'L transformation,

Ty ¢ —s] {1 0 c s ﬁ
=1L IL_L c} {0 0} {—s c} 12 (6:45)

If (I, 1,) are the intercepts of I on the z,y axes respectively, then

sl=1; c=1, (6.46)
and the equation (6.45) becomes,
LU 1,
L=1 Lmly ; } (6.47)

For the whole section in Figure 6.10(a), the section properties are calculated, firstly about
the origin O and then shifted to the centroidal axes of the cross section, by using the shift
theorem,

x
Le=1Io—A { " } (e} (6.48)
C
The centroid is located simply by,
> litizi > litiyi
Te Sl ) Ye Sl ( )

and the area,
A=D1t (6.50)

In the STATTCS-2020 software, the command,

THSECT A M

is used, in which A stores the (z,y) coordinates of all node points defining the cross
section elements, and M stores (I,J,t), the node numbers of the ends of an element and
its thickness. This routine calculates three quantities, namely, area, first moments of area
about (X,Y) coordinate axes and the inertia matrix about the origin of the whole section.
Then using the command, PROPER, centroid coordinates are calculated and the inertia

matrix about the axes through the centroidal axes (see section 6.2.1).
That is,
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PROPER A B C D
Then also,

PRINC E F
calculates the principal inertia tensor E and F the angle of the principal direction X to
the X axis. The stresses at the node points are calculated from,

STRESS A G F=? M=77?

The order of the moment components is shown in Figure 6.5 as (M, M).

6.4.1 Thin section property exercises

STATICS-2020 includes 5 examples of typical beam cross sections available for the THINEX
command (see Figure 6.11), to generate coordinates that can be used with the section prop-
erty commands to calculate properties using the thin section commands. To provide the
data for these cross sections the command used is:

THINEX E=(1to5) D=Db,dt;,ts
There are five section types similar to the thick walled sections given previously. These
five types are:
(1) I section
(2) Tee section
(3) Channel section
(1) Angle section
(5) Hollow box section
Fach of these sections is defined by the four parameters (see Figure 6.11),

b = Dbreadth d = depth

t1 = web thickness t2 = flange thickness
The command THINEX generates the two matrices A and M. The first of these contains
the z — y coordinates of the section nodes. The second contains the the node numbers of
the segments that make up the cross section together with their corresponding thicknesses.
Having used the command THINEX, the section may be then viewed using the command
PLTTHN A M N=(1 to 3)
After using THINEX, THSECT is used before PROPER that transfers all values to the
centroidal axes. Also axial stress [G] distribution can be viewed in perspective, using,
PLTTHN A M G A=HA VA, ZOOM N=4
Viewed from the position defined by the angles (HA,VA) and scaled by ZOOM, values of

(140,30,1.5) are usually suitable for these parameters.
6.5 Shear flow in thin walled beams

The directions of positive shear and bending moment are shown in Figure 6.12. From
equation (6.37), noting the direction of the moments in the Figure 6.12, the axial stress
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Figure 6.11: Standard thin section figures available for data preparation

02, due to the bending moments (M, M) is given,

o=l i {3 } (6.51)

In which [F] is defined as the inverse of the second moment of area matrix [I] calculated
about axes through the centroid of the cross section,

1 I, —I
F:I_lz—{ v "”y} 6.52
Ll — Iy | —Ly I (6.52)

Now the X — Y shear forces are calculated from, (see Figure 6.12 and also Lecture 4 in

Chapter 9), i
y

Vol _ dz
{Vy } - {4 (6.53)
dz
Differentiating equation (6.51) with respect to z, multiplying by a small distance ds along

an element gives,

do, Ve
as7% = [ y)[F] {Vy } (6.54)
From Figure 6.13, for equilibrium of forces in the Z direction,
dr do,
tgds = —tds - (6.55)

Combining equation (6.55) with equation (6.54), and integrating from s,, where 7 =0,

ITs = qs = —/Sjl tlx y] ds[F| { “;Z } (6.56)
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Figure 6.12: Positive sense of shears and moments.

Figure 6.13: Stresses on an elemental arc of cross section.
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Figure 6.14: Element of cross section: x and y intercepts.

In equation (6.56), ¢s is the shear flow intensity at s. The finite element concept is
now introduced. The element of section I — J, is straight, and has a constant thickness ¢,
as shown in Figure 6.14. Its length is [, and its 2 —y intercepts are (Axz, Ay), respectively.
The segment length s is measured from the end I as shown. It is required to calculate the
variation of g5 from end I to end J of the element. From equation (6.56), with ¢s, = g7,

GsJ = GsI — /:J tlx y] ds[F| { “% } (6.57)

Note! [z y] must be calculated from the centroid of the whole section, because of the
equation (6.52). For a point s from I, the (z,y) coordinates are given,

r = xr+axs=x5+ 8cos«

Yy = yr+ys=yr+ssina (6.58)

Then making these substitutions evaluate the integral in equation (6.57),

/SJ tlaylds = t/ol[(xI + scosa)(yr + ssina)]ds

ST

l l
= t/ [xjyl]ds—l—t/ sds[cos asin af
@) @)

t1?
= ltlzryr] + ?[cosoz sin ] (6.59)
Thence,
l . Ve
qsg = qs1 — Wt{[zrys] + §[coso¢smo¢]}[F] v (6.60)
y
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Figure 6.15: Channel section nodes and elements.
Finally since 2y = 25 + (I cos @) ete.,
1 1 v,
e = s = —1t5or + 22) 5 +w)IF{ |7 ] (6.61)
2 2 v,
At any point s along the element from equations (6.59) and (6.60),
s . Ve
qs = qs1 — st{[z1y;] + =[cosa sina|}[F] { } (6.62)
2 Vy
1 1 v,
= aur = st{glarw + 5o P { |7 | (6.63)
Integrating equation (6.62), from 0 to [ and calling the result Vs,
12 i3
Vo = qel — {?[l’[y[] + F[cosa sin o] HF] { “;2 }
2 v,
= asrl = [2er +2g) Cyr +y)llE] |y, (6.64)
y

The strategy in the computer software is first calculate (gs,,gss) for all members using
equation (6.61) and then set up the topology of the joints. Then from equation (6.64), Vs
can be calculated for all members as follows,

calculate V;, for V,=1,V,=0 (6.65)

and Ve, for Vp,=0,V, =1 (6.66)
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Then calculate the element x — ¢ components,
Vel _ [cosa
{Vy} N {Sina}vs (6.67)
The moments about the centroid for element i will be,

oLy = el {7
= [~y x4 {Z?sz } Vs

= %[—yz' 4] { 2;( } Vs (6.68)

Let (X5, Y5) be the coordinates of the shear centre referenced from the centroid.
Then for V, =1,

—VoYe =Y (M) (6.69)
gives Y, and for V,, =1,

VyXs = (M) (6.70)
gives X ;. These are the coordinates of the shear centre measured from the centroid of the

cross section.
The equation (6.61), is written as,

qsJ — 4sI = Aq (671)

gsI gsI
= 6.72
{qu} {qu-Aq} (6.72)

Consider the simple channel section in Figure 6.15. then using equation (6.72), the
node equilibrium equations in the z direction can be written,

and in terms of ¢s; and Ag,

~1 0 0 . 0
1 -1 of )™ Agpi |
0 1 1 { qRr2 } + Agms [~ 0 (6.73)
o o 1] 98 Agps

These equations can be solved for gr1, gr2, gr3 and then the equations (6.71) used to obtain
qr1,912,9r3. The shear flow at the mid-point of an element is obtained by substituting
s =1/2 in equation (6.62).

The shear flow distributions for V, = 1, V, = 1 are viewed in perspective with the
command

PLTTHN A M S A=HA ,VA,ZO0OM N=|[5,6]
N=5 plots the V, distribution and N=6 plots the V;, distribution. The values of (HA,VA)
are the horizontal and vertical viewing angles respectively and ZOOM the scale factor.

The matrix S gives both shear flow distributions, A contains the nodal coordinates and M
topology and thicknesses.
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Figure 6.16: Symmetric I section.
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Figure 6.17: Stress tensor for rotation of axes
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Figure 6.18: Elementary wedge of material in X, Y and X', Y’ axes

6.6 Stress tensor-rotation of axes-principal axes

6.6.1 Two dimensional stress state

In two dimensions the stress components (o, 74y) and (o, Ty;) act on the on the X —Y
faces of the unit cube shown in Figure 6.17. The sign convention for these stresses is
positive if a face whose outwards normal is in a positive coordinate axis direction and
the stress is also in a positive coordinate direction. The reverse is true for a stress on a
face whose normal is is in a negative coordinate direction. In Figure 6.17 all components
are shown in their positive sense. For the shear stresses 7.y, Ty, the first index refers
to the normal to the surface on which the shear acts and the second to its direction.
Figures 6.17(a) and (b) represent the same stress state at the point O, the second set
of axes being rotated from the first by an angle of 8. It is required to calculate the
transformation between the two stress states, and also to determine the angle for which
the shear stress components are zero. It is found that this is an identical problem to that
for the transformation of the second moment of area tensor, see sections 6.2.1 and 6.2.2.
Consider the two sets of axes (X,Y) and (X',Y”) shown in Figure 6.18(a) and (b) with
the area dA and of the same orientation to OX (the original axis) in both figures. The
intercepts with the two sets of coordinate axes are (dz, dy) and (da/, dy') respectively.
The stress matrix [o] is defined in both coordinate systems,

o= |70 7] )= | T ] (6.74)

Tzy Oy
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The sides of the wedge are related to the area dA by the projection,
dy| [cosa JA (6.75)
dz [ | sina '
and similarly in the rotated axes by replacing quantities by their primed values. From

the Figure 6.18(a) the forces (Fy, Fy) on the face dA are expressed in terms of the stress
components of the (X,Y) faces by

Fx _ Og Tym COS ¥
{Fy}_ {Twy Uy} {Sina}dA <6'76)

{F)} = [o]adA (6.77)

That is,

and by the same reasoning in Figure 6.18(b) for the rotated axes,
{F'} =[o']A/dA (6.78)

The transformation of vector components for rotation of axes is expressed,

{F}=[L]"{F} and {F} =[L]{F} (6.79)
{a} = [L]"{a}" and {n} =[L]{n} (6.80)
In these equations, .
=] 8 oo
Premultiply both sides of equation (6.77) by [L],
(FY = [LI{F} = [D]lo]adA (6:2)
Substituting for n,
[FY = [L{F} = [D)lo][1)TdA (653)

However the values of F' in equations (6.78) and (6.83) are equal and since 7 is arbitrary
it follows that,
[o'] = [L][o][L]" (6.84)

[o] = [L1"[o"][L] (6.85)

This are the identical transformation as in equation (6.27) for the second moment of area
matrix [I]. It follows that the principal stresses (zero shear stress state), are obtained
from equation (6.27) substituting the stress values,

1 2Ty

B==tan"!
2 Op — Oy

(6.86)
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and,

o] = [L][o][L]" (6.87)
Two commands are available in STATICS-2020 for transformations of the two dimensional
stress tensor. The first command is for performing the transformation, the second plots
the rotated cube with its stress components.

STRTRN ABE F T=?

This command has the stress matrix A (2 x 2) as input with a rotation angle given by
T=?. The rotated stress matrix components are in B. In addition the principal stresses are
calculated in E and the angle from the positive X axis to the maximum principal stress
axis is in F'. The rotated cube with its stresses is plotted with the command,

PLTRTN B T=?
B being the rotated matrix and T=7 the angle of rotation.

6.6.2 Three dimensional stress state

The three dimensional stress state has its components arranged in the (3 x 3) matrix, [o],

Ox Tay Tzz
[0] = [Tyﬂc Ty TyZI (6.88)
Tzxe Tzy Oz

The principal stresses and principal stress directions may be obtained by using an eigen
value analysis for the (3 x 3) matrix [o] which in effect finds the transformation matrix
[L] and performs the axes rotation in equation (6.87). If the stresses have been input into
the (3 x 3) matrix A, the command,

JACOBI A B

returns the principal stresses in A and their principal directions with respect to the XY Z
axes in B. For example if

10.0 —=5.0 5.0
A=lo]=|-5.0 200 5.0 (6.89)
5.0 5.0 30.0
then , Principal stresses and principal directions are given,
6.108 0.0 0.0 0.872 —-0.471 0.137
A= 0.0 21.446 00| B= 0.410 0.853 0.321 (6.90)
0.0 0.0 32.446 —0.268 —0.224 0.937

6.7 Example of cross section properties

FExamples are given for both thick and thin walled sections to illustrate use of STATICS-
2020 commands. These exampls use data input rather than that generated from the
SECTEX and THSECT commands. For the nodal point numbering see Figure 6.14.
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Figure 6.19: Thick angle

6.7.1 Symmetric I section

See Figure 6.1 for node numbering.

coordinates
nodes x-y values
1 0 0
2 300 0
3 300 60
4 160 60
5 160 940
6 280 940
7 280 1000
8 20 1000
9 20 940
10 140 940
11 140 60
12 0 60

Commands

LOADR A R=12 C=2

(Coordinates entered here)

PERIM A M=1 N=12 S=1

PROPER B CD

PRINT A

PRINT B

PRINT C

PRINT EF
PRINT F

Results:

Area (B)

Centroid (C) T,

Ye

Inertia matrix (D) I,

0.17559
0.0

47600.0
150.00
440.76
0.0

7.6047

135
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195

X

=

Figure 6.20: Thin section angle

6.7.2 Thick angle section

Section coordinates RESULTS:
Figure 6.16)
X y Area (B) = 3900.0
1 0 0 Centroid (C) Te = 53.72
2 10 0 Yo = 146.28
3 10 190 . . . - [1.548 0.926
4200 190 Inertia matrix (D) - L. = 1071 5 g6 | 545
5 200 200 _ 1970622 0.0
6 0 200 (F) e = 10 0.0 2473
(F) 0 = —45°
Command sequence
Same as for the
Section
in Example 6.5.1
6.7.3 Thin section angle
coordinates topology-thickness
nodes  x-y values member node numbers
1 0.0 0.0 1 1 2 10
2 0.0 195.0 2 2 3 10

3 195.0 195.0
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Figure 6.21: Rectangle with semi-circular cutout

Command sequence

LOADR A R=3(C=2
(x-y coordinates)
LOADR M R=2(C=3

(Topology and thickness)
THSECT A M
PROPER A BCD

(same commands as
in example 6.5.1

pY
50mm
12 4 3
® -
11
10 6 g
9 g 7 g
S)
5]
2
100mm

137

RESULTS:
Area (B)
Centroid (C)

Inertia matrix (D)

(E)
(F)

X
3900.0
48.75
146.25
L7 [Lo1 0927
0.927 1.544
0.618 0.0

7
07100 247

—45°

6.7.4 Example: section properties of rectangle with semi-circular cut

out

The beam cross section is shown in Figure 6.21. The semi-circular cutout has a radius of
20 mm and its perimeter will be divided into 8 equal arcs as shown in Figure (6.18). A
moment of M, = 1000 will be applied and the stresses ¢, calculated at the node points.



138 CHAPTER 6

Command sequence

LOADR A R=13 C=2

18000 CIRCOR Al A2R=9C=2L=1,1 Stresses o,
100 50 STOSM A A21=41 1 2.73
00 PERIM A M=1 N=13 S=1 2 2.73
00 PROPER A BCD 3 -3.28
00 PRINT B 4 -3.28
00 (area=4387. 12 -3.28
00 PRINT C 13 -3.28
00 (z =50.0 y=22.68)
00 STRESS A G IF=0 M=0.0,100000.0
PRINT G
00
00
0 50

6.7.5 Example of shear flow distribution in thin walled sections

The following section describes the procedure for calculating shear flow distributions in
thin walled open sections and locating the shear centre. These routines use the basic
commands already developed for thin walled sections, together with an additional shear
flow command. To start, the basic data, coordinates and element topology is first stored
in the data base with the commands:

LOADR A R=? C=2

(coordinates)

LOADR M R=? C=3

(node numbers I-J, thickness t)

The command:

THSECT A M

then calculates area, first moments about (2 —y) axes and the inertia matrix all referenced
to the initial coordinate axes. Now the command,

PROPER AB CE

calculates coordinates C of the centroid, area of the cross section B and the inertia matrix

E about the centroidal axes. Coordinates in A are now referenced to the centroidal axes.
The flexibility matrix of the cross section is then calculated in S using,

INVERT E T=1
Finally the shear flow distributions for V, = 1, V,, = 1, are calculated and printed with
the commands,

SHFLOW AMCE S
PRINT S

The shear centre coordinates from the centroid are given in the array, SC, and are displayed
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] 0 0.1 X
L_U

Figure 6.22: Channel cross section

by the print command,
PRINT SC.

An example is given of the calculation of the calculation of shear distributions for a channel
section shown in Figure 6.22. From the figure the coordinates and topology are,

coordinates topology-thickness

nodes x-y values member node numbers t
1 3.0 6.0 1 1 2 0.1
2 0.0 6.0 2 2 3 0.1
3 0.0 0.0 3 3 4 0.1
4 3.0 0.0
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Compuler command sequence
LOADR A R=4 C=2
36

06

00

30

LOADR M R=3 C=3
1201

2301

3401

THSECT A M
PROPER AB CE
INVERT E T=1
SHFL.OW AM CE S
PRINT S

PRINT SC

CHAPTER 6

The calculations give the
following results, for

Ve=1,V,=1.

Vo=1] V, =1

R 0.0 0.0

1 C| -02]-0.0625
L| -02]| -0125

R|[ 02| -0.125

2 C 0.0 | -0.1875
L 02| -0.125

R 02| -0.125

3 C 0.2 | -0.0625
L 0.0 0.0

Location of the shear centre

from 0 = -1.875in,

6.8 Section properties and stresses in beams

6.8.1 Hollow section

A typical section is shown in Figure 6.15. The command sequence and explanations are

given below:

LOADR A R=?
PERIM A M=l
PERIM A M=13
PROPER A B C
STRESS A G

PRINC E O

C=2

N=12
N=16

S=1
S=-1
D
M=7?,?

load all x — y coordinates of corner nodes
in sequential order

Traverse outside perimeter

Traverse inside void

calculate section properties relative

to the centroidal axes

A=coordinates referenced to centroid
B=area

C=coordinates of centroid from origin
D=second moment of area matrix

about centroidal axes

F=axial force

M = M,, M,, moments positive as shown
G=axial stress values at all node points
Calculates the principal inertia marix E
and angle(H) to the « axis
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6.9 Section properties module

The purpose of this teaching module is to give the student familarity with bending resis-
tance and bending stress calculation in beams with various cross section types that may be
met in engineering practice. The theory for the calculation of the properties of bema cross
sections bounded by straight lines(and including internal cutouts), is given in Section 6.1,
and for thin walled sections in Section 6.2 Portions of circular sections may be included
in the perimeter by using the CIRCOR command to generate straight line segment ap-
proximations too the circular arc. The typical cross sections, included in these two groups
that may be generated by STATIC-2020 are shown in Figures 6.8 and 6.11. The cross
sections are defined in terms of a number of basic dimensions. Breadth (b) and depth (d)
and web and flange thicknesses (1, t2) respectively. Either metric or imperial units can be
used in these exercises and appropriate force and moment units chosen to give the desired
stress units. The sections given are simple shapes that are either efficient in the use of
material for resisting bending moments or are in the second group used to model rolled
or extruded thin walled sections. Other simple shapes are shown in Figures 6.21. the
theory for the calculation of bending stresses in beam cross sections for bending moments
about the coordinate (nonprincipal) axes is given in Section 6.2.3, see equation(6.37). This
theory applies irrespective of whether the cross section has an axis of symmetry or the
axes are principal axes. Some sections in Figures 6.8 and 6.11 can have axes of symmetry
depending on the chosen dimensions. the units used in the two systems of measurement
are:

(a) Metric system

1. Cross section dimensions in millimetres (mm)

2. Bending moment in Newton millimetres

Then stress is calculated in mega Pascals (mPa).

(b) Imperial system

1. Cross section in inches in.
2. Bending moment in inch pounds
3. Axial force in pounds (Ib)

Then stresses are 1b / square inch psi. If kips are used as the measure of force (1kip
= 1000 1b) the stress is calculated in ksi.

It will be found that when millimetres are used the magnitudes of the numbers giving
section properties may be large whereas when metres are used these numbers may be
small. There are a number of aspects of the theory that should be introduced in the
section property exercises.
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1. The location of the centroid of the cross section.

2. The calculation of the second moment of area matrix and the nature of this matrix
for crosss sections such as in 1,2,3, and 5 in Figure 6.8 where one of the X — Y axes
coincide with an axis of symmetry of the cross section.

3. The angle section 4 in the Figure 6.8 has a nonzero I,,.

4. For nonsymmetric sections location of principal axes.

When the cross section properties command is executed, the location of the centroid, the
area of the cross section and the second moment of the area matrix are always calculated.
In the case of the section (4), the section still has an axis of symmetry if b = d, and this can
be shown to coincide wuth one of the principal axes. After section properties of a section
have been calculated, the calculation of axial stress o, for all cross section nodes can be
carried out. It will be noted that the sum of various contributions from (Fx, M, M,) are
automatically given for each of the points. The same theory can then be studied for thin
walled cross sections, Section 6.4 for which the thickness of the elements is much smaller
that the overall dimensions. The theory developed in Section 6.2 can be applied to the
calculation of shear flow in open cross sections and the location of the shear centre (centre
of twist), see Section 6.4.

6.10 Section property exercises

Exercises S1 to S9 are based on the sections given in Figure 6.8 their input data is generated
using the command,

See Figure 6.8 for definition of b,d, t1,%2. The dimensions given in exercises S2 to S9 will
all refer to these values.

(S1) For cross sections (1) and (5) in Figure 6.8 there are two axes of symmetry. By
inspection locate the centroid and the principal axes.

(S2) For sections (2), (3) and (4), b = 100mm, d = 150mm, t1 = t2 = 10mm. Use
STATICS-2020 to calculate area, locate the centroid and determone the second mo-
ment of area matrix. For which sections is I, nonzero? Explain why this is so.

(S3) The sections (1) and (5) have b = 100mm,d = 150mm,t1 — Smm, ta = 20mm.
Calculate the section properties,
1. Using STATICS-2020.
2. Using properties of solid section bd and subtracting off the properties of the

voids.

(S4) For the section (4) in exercise (S2), use STATIC-2020 to calculate the principal
values and the location of the principal axes.
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6.10.1 Stress calculations

Axial stress due to axial force F' and bending moments M., M, are calculated using
M,
equation (6.37), 0p = & — [z g][L] {My
T
This equation is used by STATTCS-2020 in the stress calculation command
STRESS. The exercises S5 to S9 illustrate its use for thick sections.

(S5) The sections (10 and (5) in Figure 6.8 have the same dimensions as given in S3.
Moments M, = 100kNm, M, = 100k Nm are applied to these sections.

1. Calculate the bending stresses in each section. Determine at which points the
maximum tension and compression stresses occur and their magnitudes in each
case.

2. From (1) which section has the highest stresses and from the matrix [I..]~?
explain why this is so.

3. If M, only is applied plot the bending stresses for the cross section.
4. If the maximum allowable stress is 400mPa tension and compression, calculate

the allowable values of M, and M,,.

(S6) The section (4) in Figure 6.8 has the dimensions, b = 100mm, d = 100mm, t; = t2 =
dmm.
1. Calculate the bending stresses for M, = 100kNm.
2. What effect has been produced because I, # 07

(ST) The section (2) in Figure 6.8 has the same dimensions as those in (S6).

1. Calculate bending stresses for M, = 100kNm
2. Compare these stresses with those of the sections in (S6).
3. What is the ratio of the areas of the two sections?
(S8) The section (5) in Figure 6.8 has the dimensions as in (S3). A moment M, =
100k Nm is applied to the section.
1. Calculate the maximum tensile stress.

2. An axial force is applied at the centroid. Calculate its magnitude if the tension
stress in (1) is to be made equal to zero. Note: This force will be compressive.

3. Apply a compression force F' to the cross section at an excentricity yr producing
an M, = —Fyp. Using equation (6.37), find the eccentricity yr so that the
maximum tensile stress is then zero.
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Figure 6.23: Solid sections with circular cutouts



