Chapter 7

AXIAL FORCE EFFECTS
BUCKLING
TENSION

7.1 Introduction

A fundamental assumption of the elementary theory of structures, as presented in Chapters
2 to 5 is that deflections produced by the deformations of the members of a structure
are small when compared to the structure dimensions and do not have an effect on the
equations of equilibrium. However, if the equations of equilibrium are written in the
displaced position obtained by small displacements from the original position, it is found
that linear terms appear that are dependent upon the axial forces in the members. For
example, the cable of a suspension bridge carries a significant tensile force that has a
stiffening effect on the bridge, whereas the compressive force in an arch bridge will reduce
the arch stiffness and have a destabilizing effect on the arch. It is this destablizing effect
that will be studied in this chapter and it leads to the concept of structure buckling.
STATICS-2020 has a number of commands that may be used for the calculation of the
approximate buckling loads of the several structural types (beams, frames and grids). The
phenomena of buckling occurs because of the decrease of structure stiffness with increase
in axial compressive forces eventually leads to a state of zero stiffness, (infinite flexibility),
for which large and damaging deflections will occur. Theoretically, for a structure with
distributed structural properties (any beam, frame or grid) there is an infinite number of
these zero stiffness states for which one particular stiffness parameter becomes equal to
zero. In the study of structure stability it is usually only the lowest value that is of concern
to the engineer designing a structure. It is the objective of the STATTCS-2020 commands
to determine this lowest buckling or critical load. To introduce the study of the subject
of buckling two examples are studied. The first is a simple column spring system with a
single degree of freedom, see Figure 7.1 and the second a beam with distributed properties
subjected to an axial compressive force, Figure 7.2.
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Figure 7.1: Hinged column supported by a spring at free end

7.1.1 Single bar-spring system with axial compressive load

In Figure 7.1 a single bar member of length 1, hinged at its base, is supported horizontally
by a spring of stiffness k at its free end and carries an axial compressive force P. A small
increment of horizontal force AR is applied at node (1) at the free end. In the undeformed
position in Figure 7.1(b), the equation of equilibrium of horizontal forces is,

AR — kAr =0 (7.1)

The horizontal displacement of node (1) has no effect on this equation. However examine
the situation in Figure 7.1(c) which is drawn in the deflected position. The displacement,
Ar, is considered to be small, so that to the first order the axial force in the member is
still equal to P. The equilibrium equation of node (1) must now take into consideration
the inclined force in the member and becomes,

AR — EAr + PAO =0 (7.2)

P is considered to be positive when compressive and A = Ar/l. Rearranging equation

7.2,

AR = (k- ?)Ar (7.3)

The additional term is the geometric effect and represents the change in the horizontal, X,
component of the member force at node (1). For the stiffness at node (1) to be equal to
zero,

Py =kl (7.4)

This value is the buckling load for the simple spring-column system. Of course, for struc-
tures with many degrees of freedom it is not such a simple matter to calculate P.,, as is
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Figure 7.2: Column with imperfection subjected to axial force P

shown in section 7.1.2, of a simply supported column subjected to an axial compressive
force and bending in one of the principal planes of the member cross section.

7.1.2 Column buckling-Euler load

Consider the simply supported column in Figure 7.2 bending about the Z axis in the
X — Y plane. The column is of uniform cross section and the X — Y plane is a plane of
symmetry so that when a bending moment My is applied, the deformations of the column
all occur in the X — Y plane. The beam has an initial imperfection designated gy in the
X — Y plane and an additional deflection increment y is produced by the axial force P
as shown in Figure 7.2. From the Figure 7.2, the bending moment at any section (taking
into consideration the deflection y), is written,

M= —P(yo +y) (7.5)

From the theory of beam bending, for M positive, the differential equation to the deflected

curve is written,
dy M _ —P(yo+y)

Bl A 7.6
dz? EIT EI (7:6)
let, P/EI = k2, so that k is real for P compressive, and rewrite equation 7.6,
Py o 2
— +ky=—k 7.7
A2 + 57y Yo ( )
Now consider the situation where yg — 0 then,
d2
Y k-0 (7.8)

dx?
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The solution to this equation, in the limit, is of the form,
y = Asinkx (7.9)

The boundary conditions are for the displacements to be zero, at x = 0,1

0, y=0 (7.10)
x =1, y=0 (7.11)
From the second of these conditions,
0= Asinkl (7.12)
This is satisfied for, kIl = n, or,
n?n?
k= 7 n=123 . et (7.13)
The value of P., is given,
n?mnlEI
P.. = —g o "= 1,2,3 ... etc. (7.14)

The lowest value for n = 1 is the FEuler load for the column,

2Bl
Pruier = — (7.15)

This result proves to be useful for determining the accuracy of numerical methods used
for determining approximate values of P.,. for complex structures.

7.1.3 Deflection of beams

In order to introduce the approximate solutions to the beam-column problem, deflection
theory of beams is first studied. A simply supported beam, span I, is subjected to a load
W at the point that divides the beam in the ratio (¢2, (1), where (2 = 2/l and (; = 1—(2 as
shown in Figure 7.3. The end rotations (¢;, ¢;) are calculated for the load W by using the
two elements (1) and (2) shown in the Figure 7.3. The expression for these end rotations

is given using [b]7[f][b] where

¢ 2 1 .o 0
; LG G 0)8GG (P21 2 )=
o fb] = ool }— 7.16
prap =y & 8 F] e L R (7.16)
o e 2 0
Multiplying out the righthand side of this equation and simplifying, the end rotations are
calculated,
¢i} —l2C1C2{(1+C1)}
= W 7.17
{¢j 66T |[(1+¢o) (7.17)
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Figure 7.3: Beam with concentrated load W

This expression is used to calculate the end rotations of a variety of load patterns on the
beam.

Fxample T

Uniformly distributed load of w/unit length over the whole span. Then, on an infinitesimal
length d(,, the load is equal to,

W = wdCyl (7.18)

To obtain the end rotations due to w on the whole span integrate (5 = 0 to 1. Then

o\ Pt 14 ¢, w1
b= Q)¢ dor =g {1 ) (7.19)
Fxample IT

Linearly distributed load, w/ unit length at L.H.S and 0 at R.IHL.S.
The load on intensity at ({1, (y) is equal to,

We = w(y dyl (7.20)

Then the end rotations are calculated,

T W L S S 1+¢ —wl® [8
{qu }w_@ A ClC?{HchC?w_BGOEI{?} (7.21)

7.1.4 Calculation of beam deflection due to end moments M;, M;

The beam is shown in Figure 7.3 with end moments positive, M;, M; and a unit load W
at the point ({;,(y) on the beam. For the end moments the member bending moments
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for the two segments of the beam are,

Mh' 1 0
M ¢ G { M; }
= 7.22
My SENS M; ( )
My, 0 1
and for the unit load, W =1,
0
_ 1
bl =1G¢ | ] (7.23)
0

The matrix [f] of member flexibilities is the same as that given in equation (7.16), and
note the interchange of the role of [b] and [b]. Hence the deflection at the load point is,

w e =BT { 37} (7.24)
]2 )
=T lare) arol{yr ) (7.25)

Again compare this expression with equation (7.17) for the end rotations. It will be
necessary in the development of the geometric stiffness matrix to express v, in terms of
the end rotations (¢;, ¢;) of the beam. Now from the expression for the stiffness matrix

of the beamn,
{J]\Z}:Qlﬂ{j _;Hi} (7.26)

Substitution in equation (7.25) then gives v, in terms of (¢;, ¢;).

ve = —1(1¢2[¢ (o] {j;; } (7.27)

Note from the sign convention, positive end rotations produce negative deflections.

7.1.5 Effect of axial force on end rotations

It is now possible to calculate the first order (linear component) effect of the axial force
P (compression positive) on the end rotations. The compressive axial force produces a
bending moment Mp given by using equation (7.27). The expression for Mp is,

Mp = —Pu, = PUCG (17 {jﬂ } (7.28)

To calculate the increment in the end rotations produced by this bending moment, use
the equation,

{Adp) = / l [bg#dx (7.29)
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where [b] is given in equation (7.22) and b is,

BT = Cl} o da = 1dCy (7.30)
C2
Substituting and integrating 0 to 1 on (, gives the rotation increments A¢p,
P2 13 2] (¢
A = ¢ 31
{Adr) 60EI{2 3“@} (7:31)

That is, if (M; M;) are applied, the linear correction to the end rotations will be given by
equation (7.31), so that,

(Whosmll o[ ham s S0} om

Imagine now the beam to be in an undeformed position. The second term on the right
handside will be produced by fictitious moments (M; M;), whose magnitudes are calcu-

lated,
M; 2BI[ 2 —1] Pi? [3 2] (¢
M = = —_— [ .
o =0 b= |10 e e o) (0] (733)
Performing the multiplication,
M; PlT4 17 [ ¢
= — 7.34
GnJ=w b o {8 =

That is, if an axial force P (compressive positive) acts on the beam and the end rotations
are (¢; ,¢;) then the applied moments are,

- (2, (2,
That is,
sl D) o
Let P = A and write equation (6.65),
{R} = ([Kp] + A[Kc]){r} (7.37)
where,
Kol =551 1) (7.39)

is the geometric stiffness for unit axial force. It is seen that for A positive, (P compression)
the geometric stiffness reduces the overall stiffness of the beam. An approximation to the
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Fuler load for the beam is obtained from equation (7.37) by examining the case R = 0.
Then,

28] 2 -1 A T4 1
! {—1 2}_%{1 4}_0 (7.39)
Solutions to this equation are possible for,
12ET
A=FP, = B (7.40)

This compares with the Euler load and it is seen that the approximation is not sufficiently
accurate. It may be improved by adding more nodes (degrees of freedom) to the beam.

7.1.6 Rotation of a member, change of nodal force components

The effect of the rotation of a member as a rigid body through a small angle Af as shown
in Figure 7.4 is the alter the contribution to the transverse components of the forces at
the nodes. From Figure 7.4, the rotation of the member, A6, produces increments in the
transverse forces AP, shown. The member force is to the first order of approximation still
equal to P. Then,

AP, = —PA0 = —?Ay (7.41)

Combining this with the effect of the rotations relative to the chord, the member incre-
mental geometric stiffness relationship is,

I 74 1
{AMj } =_p |30 {1 4} [1] {A@ } (7.42)
AP, o 1) lay
This equation is written,
{AS} = Plkg){Av} (7.43)

Note that there is a negative sign attached to [kg] which means that with P positive
(compressive), the geometric stiffness tends to increase displacements and of course the
reverse is true if the member force is tensile. The member forces for the member geometric
stiffness matrix are three in number, as for the elastic stiffness of the frame member. There
are the moment increments AM; AM;, however instead of the axial force for elastic stiff-
ness, the geometric force, corresponding to the relative member rotation is the transverse
force increment AP,. It is now possible to derive the geometric stiffness matrix for the
nodal components (AF; AM; AF; AMjy)in the local global coordinate axes. The nodal
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Figure 7.4: Rotation of member-transverse force components

force components are expressed in terms of (AM; AM; AP,) by the transformation,

__l l 1_
l
AF
AV —1 0 o (AM
{AR;}; = LY = AM; % = [Acli{AFp}; (7.44)
AM; 7 7 L v
L0 1 0]

The notation [Ag] is used to indicate that it is a geometric rather that an elastic effect.

Contragredience gives the corresponding transformation between the nodal displacements
and the member deformations to be,

- 1 1 1 0 -
Ad; l l Ayr
! Af
Agj » = 1 0 1 1 AyI (7.45)
Ay ). l l J
¢ Ab;
1 0 -1 0]

Combining these transformations the nodal geometric stiffness for a single member is,

{ARG}: = PlAclilkalilAcl {Ar}: (7.46)
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Figure 7.5: Simply supported beam-column, two segments.

Performing the matrix multiplications the expression is obtained for the single member,

- 36 3 36 3
FZ N PR ]
AFy 34 3 Ayr
AMp | _ Pl ! l Ab; (7.47)
AF; 30 36 3 36 3| Ay '
AM;y 2T Afy
3, 3

Alternatively, the geometric stiffness matrix for the whole structure may be obtained in
the same way as the elastic stiffness, combining all components of [Ag]; and member
geometric stiffnesses [k¢];. This is a suitable approach for small structures and is used in

STATICS-2020.

Fxample IIT
The solution for the simple span beam in Figure 7.3, for the buckling load considering
only the end rotations gave 12 as the approximation to the “exact” value of 72. This
approximation can be significantly improved by subdividing the beam into two equal
segments each of length /2 as shown in Figure 7.5. The matrices used in the analysis are
as follows in equations (7.48 to 7.51).

“L 00 00 0] Ly
MM L2 2 22| A
AR |\ | 11 Il APy, (7.48)
AM, AMy; '
AN, 0 10 -1 0 0 pn

L0 00 o1 o) \Ah
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The coefficient matrix on the right hand side of equation (7.48) is the [A¢] matrix. With
the individual member lengths equal to [/2, the matrix of member geometric stiffnesses is,

k] = —— (7.49)

120
00 0 00 —
Thence,
4 28 0]
l
6 288 0 6
Pl T T2 7
[Ke] = [Acllkal[Ac)T = —= | b ! l (7.50)

60

The structure flexibility matrix [F] is given,

64 120 —8 —32
l 120 42 0 —-12

Fl=TmEr| 8 0 16 -8 (7.51)
—32 —-121 -8 64
Using the notation of equation (7.37),
{AR} = ([Kg] + AlKc]){Ar} (7.52)

In which A = P and [K¢] has been calculated for P = 1. Solutions can be obtained for
{AR} = 0 by solving the eigen value problem,

([Kg] + MKa){Ar} =0 (7.53)

With [Kg]~! = [F], the flexibility matrix, This equation can be rearranged,

(101 + [FllKG){Ar =0 (7.54)
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Letting {A} = {X} and [4] = —[F|[K(¢] finally the eigen value equation is written,
1
[ARX} = X} (7.55)

The matrix [A] is in general unsymmetric, and equation (7.55) can be easily solved by
matrix iteration for the maximum value of 1/, that is, for the smallest A = FP.,. Now
in the above example substitute £ = 100, [ = 10 and I = 1. From the equation (7.55),
solving the eigenvalue equation,

1
FIIKG]{X} = $(X) (7.56)
gives the critical load approximation to 72 2 9.87,

P.. = 9.9445 (7.57)

an error of approximately 0.7%. The mode shape is shown, normalized with a maximum
value equal to 1, in Figure 7.6. When the same problem is solved with four segments in
the length the value obtained to two significant figures is 9.87. Both this and the worked
example above are solved in Bll and B12 of the data file DATN.DAT. Details of the
matrix commands and the steps necessary to carry out the solution are given in Section

7.3.

7.2 Matrix Iteration, calculation of buckling load

The iteration proceedure is set up to calculate the dominant root of the eigenvalue equa-
tions,

[A{X} = M X} (7.58)
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in which, [A] = [F][K¢] is an unsymmetric matrix and A = 1/P, where P is a scalar
multiplier of the axial forces in the members of the structure. The approximation to the
dominant value of A is calculated as,

o) (7.59)

where r,, and 7/, are the iteration vectors using [A] and [A]” as outlined below. A starting
vector Yy is chosen. This vector must contain part of the dominant buckling shape. Some
experience may be required in choosing a suitable Yy. Two sequences of iteration vectors
are formed, as follows:

Yo, Yi=AYy, Yy=AY; =A%, etc. (7.60)
Yo, Y{=A4TY,, YJ=ATY]=[AT?%Y,, et (7.61)
Then the approximation to A is given by the ratio of the inner products,

Yy,

Ay (—E—f
Yy,

) (7.62)

First it is shown that eigen vectors of A and AT are orthogonal. It must be recognized that
A and AT have the same eigenvalues because the value of the determinant is not changed
if rows and columns of a square matrix are interchanged. Let X, be an eigenvector of A
and X! one of the transpose, A" Then calculate the inner products,

{(AX,)TX} =\ XTX! (7.63)
Now the lefthand side of this equation can be rewritten,
(AX )T XL = XTATX, = N xT X! (7.64)
Subtract these two equations,
0= (A — X)(XTX7) (7.65)
If the eigenvalues are real and distinct, (A, # AL) unless r = s. Therefore it follows that,
XX =0 (7.66)
and the vectors can be normalized so that,
XIx, =1 (7.67)
Now express Yp in both the X; and the X! generalized coordinate systems.

Yo=a1 X1 +a2Xo+ ... +an Xy, (7.68)
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Yg=Yo =0 X]{ + b X5+ ... + b, X], (7.69)
Then the inner product between Y} and Y; is written,
(Vi) ¥e = ([AT]"Y0) " ARYo = ((Yo)" A*'Y0) (7.70)

Substitute for Yy, Yy from equations(7.68) and (7.69), and because of the orthogonality
properties of the eigenvectors, it follows,

(YDTYy = aibi A3 4 agboA3* + ..
agzba A
= Arab {1+ 22(2)% 4 ) (7.71)
a1b1 )\1
This series converges to:
(Y)Y, = MFarby (7.72)
Similarly,
(Y'Y = aib AP paghp 31 4
agba A
= Al {1+ 22221y ) (7.73)
a1b1 )\1
and this series converges to:
(Yi_) "V = A aiby (7.74)
It follows that the approximation to Aj is,
Y)Yy
MR 7.75
BTN (77

This iteration process converges to the 2k power. Then Y gives the eigen vector mode
approximation. The important point is that in the choice of Yy, a, and b; must not be
zero, otherwise A will converge to a root different from Ay. A possible choice for Yy should
contain a displacement term degree of freedom that corresponds to the largest diagonal
term of the flexibility matrix, [F].

7.3 Commands to calculate beam critical load

The geometric stiffness force transformation matrix [Ag| is calculated in the command
BEAMEQ that sets up the nodal equations of equilibrium (matrix EQ), and has been
stored in an internally defined matrix GEQ. Then calls to BMMSTF (beam member
stiffness) and BMGSTF (beam global stiffness) are used with the appropriate input to
calculate KG. Thus :

LOADR Bl R=? C=?

(data input for member forces in B1)

BMMSTFE B Bl MG (member geometric stiffness MG)
BMGSTF GEQ MG KG (global geometric stiffness KG)
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Figure 7.7: Cantilever column-uniformly applied axial load

The command CRITLD is then used to calculate the buckle mode shape and the
critical load value. If the structure is determinate the flexibility matrix F must have
been calculated as in the DATN.DAT files, problems Bl to B5 (numbers 17-21) and for
indeterminate structures the flexibility matrix is calculated as the inverse of the elastic
stiffness matrix and is stored in the matrix K. See problems B6 to B9 (numbers 22-26) for
indeterminate beam analyzes. Three example command listings are given on DATN.DAT
in 27 to 29 for the calculation of critical beam loads and corresponding modes shapes.
The first two of these are determinate beams and the third a two span indeterminate
beam. The first example 27 is for a simply supported beam with one central internal
node. This example is useful in that all the matrices have sufficiently small dimensions to
be printed out and their terms studied. Example 28 is simply 17 with the commands for
the critical load calculations added. Similarly 29 is problem 22 with data arranged so that
span lengths, Young’s modulus and second moment of area are the same as for 27 and 28
and so results can be compared. The commands with trial vectors for problems 27 and 29
on the file DATN.DAT are given below.

Determinate structures

LOADR RO R=1 C=6
0010000
CRITLD F KG RO LA

The cantilever beam shown in Figure 7.7 has the critical load,

albT
(ql)cm't = l_2

With a = 7.83. The analysis of Figure 7.7 gives the value of 7.79, an error of 0.51.

Indeterminate structures
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LOADR RO R=1 C=18
000010000000000-10000
CRITLD K KG RO LA

This is an antisymmetric mode shape and is required for the 2 span beam.

7.4 Frame buckling

The theory for the generation of the nodal equilibrium equations for frame structures
has been detailed in Chapter 4, section 4.2. For the frame member, the basic member
forces are the axial force and end moments, (F, M;, M;). In section 4.2, see equation
(4.1) and Figure 4.2. It was shown how the member end forces expressed in terms of
the local member axes components are derived in terms of the three values (I, M;, M;).
For the effect of changes in geometry on these force components, the theory of section
7.1.6 applies and is here easily adapted for frames. It is convenient now to use the order
(AP,, AM;, AM;) so that the force and moment terms are arranged in the same order as
in Chapter 4, equation (4.1). Thence the transformation to local coordinate components
is expressed, by,

-1 0 0
1 1
I 0 =7 7
/
}]C;{ 0 -1 0 AP
A F’l = AM; (7.76)
ae 1 0 0 AM;
g 1 1
YT
| 0 0 1]
or symbolically,
{AFG} = [AGH{ASG} (7.77)

The transformation to global components is then given by the identical transformation to
that is equation (4.2). That is,

{AFg} = [Lpl{AFG} = [Lpl[AgH{ASq} = [Acl{Sa} (7.78)

where,

[Ac] = [Lp][A¢] (7.79)

With the obvious change in the first column of the coeflicient matrix on the right hand
side of equation (7.76), the same procedure can be used to set up the matrix GEQ as for
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Figure 7.8: Portal Frame axial compressive forces

EQ. The member geometric stiffness matrix is written in the reordered sequence,

AP % 0] Ay’
AM; » = P 0 1 14 1 Agb,’i (7.80)
AM; 3011 4]] LA
For then whole structure, the stiffness matrix can be calculated by setting up [Ag] for all
the member forces and [k¢g| becomes a matrix with kg;] as diagonal blocks. Thus [K¢]

may be formed in an identical manner to [Kg| once [Ag] and [kg] have been assembled.
the commands will be to form [kg]

FRMSTF B Bl MG
and to form [K]
FRGSTF GEQ MG KG

The frame shown in Figure 7.8 has axial compressive loads of unit values in members 1
and 3. The values of A and I and Young’s modulus are (1.0,1.0,10000.0) respectively.
The frame buckles with a sidesway displacement and this must be included in the starting
iteration vector. The commands and data are given in data set F1 on the DATN.DAT
file. The value is obtained in the variable labeled LA,

Pcm'tz'cal = 740.0

The value obtained from Timoskenko is 740.2. If the bases are pinned rather than fixed
then

Pcm'tz'cal = 1814

This compares with the value from Timoskenko,
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Figure 7.9: Initial and final positions of cable

1.82F1T
Pcm'tz'cal = l—2 = 182.0

The difference is 0.2%.

7.5 Tension structures

7.5.1 Introduction

Thus far in Chapter 7, the stability phenomena related to compressive forces in structures
and structural members has been studied. A knowledge of buckling is necessary for the
design of compression members, for example the top chord of a simply supported truss,
the columns of a high rise building and the rib of a steel arch bridge. In contrast to
these, modern building makes good use of light weight cables and fabric materials in
which the positive stiffness of applications members can be utilized. Suspension and
cable stayed bridges are quite old examples of this construction technique. Tension cable
structures with light weight fabric membrane shells to provide roof covering are more
recent additions to building forms, although here too the fabric tent is of very ancient
origin. In the remainder of Chapter 7, the concept of geometric stiffness is studied in
order to show how tension structures provide stiffness and load carrying capacity making
them suitable for long spans and provision of large open space areas. Because of the very
nature of cable net construction it will be necessary to develop the theory for two and
three dimensional systems. The two dimensional case is introduced first and then the
three dimensional analysis leads to the highly commercialized topic of shape finding of
membrane structures. As a simple example of a planar cable structure, consider the cable
AB, nodes 1-5 shown in Figure7.9. The cable is stretched between rigid supports A and
B and has an initial tension 7' that may be induced by either jacking against one end or
by tightening a turn buckle in the cable. When the loads (R; — Ry4) are applied at nodes
(2-4) of the undeflected cable AB, the cable has zero elastic stiffness in the transverse Y
direction. However, because of the initial tension it possesses geometric stiffness. If the
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tension 7' is large in comparison to the load increments (6 R — d Ry) the initial deflections
will be small and a linear analysis may give a close approximation to the deflected shape.
Finally however the cable may take up the position (1—2'—4'—5) shown by the broken line
in Figure 7.9, and deflections are no longer small. To trace the load path from the initial
to the final position will require a non-linear, iterative analysis. If small increments of
the loads and the deflections are considered the analysis is not too difficult to accomplish.
After the initial step, the following situation arises:

(1) elastic stiffness is present.

(2) cable tension has changed.

(3) initial geometry must be updated.

(4) in the updated position iteration is necessary to re-establish equilibrium.

(5) slack members are not allowed and if they occur initial tensions in the cables must be
increase.

7.5.2 Analysis of a plane cable

In this first example a simple case is considered of a cable hanging under its own weight
and supported at its ends. The cable can then be deflected by additional nodal forces
and a suspension bridge type of cable profile generated. A simple planar cable is shown
in Figure 7.10 (a) under the influence of the vertical forces Ry and Ry. The weight of the
cable will be lumped at these nodes and for each segment the weight is replaced by equal
vertical nodal forces at its ends. If the unstrained lengths l1g, log, etc. are known, and the
end forces H and V are assumed, the position at end I may be calculated. For uniform
load, V' will be assumed to be one half the total applied load and H = W L/8S; where
W is the total vertical load, I the span between supports and S the centre sag. If both
supports are at the same level then V must be in both static and moment equilibrium with
the applied loads. The deflection of I is calculated and if it is different from the support
location B, H and V must be modified in such a way as to bring I into coincidence with
B. This is achieved in a manner which calculates the flexibility coeflicients at I including
the effects of the axial forces in the cable members. The first step is to calculate the
tangent flexibility matrix of the cable member with axial force P, components (X,Y) for
small variations (AX, AY) of P. The member is shown in Figure 7.10(b) with a rotation
increment of da. That is, it is required to find [Fp|, the tangent flexibility matrix, such
that for the member in Figure 7.10(b),

{gz } = [Fr] { fy( } (7.81)
From Figure 7.10(b),
o =t {or b= { T ey =i T s (7.82)
Also
AP = Pha, and by projection AP =[—sina cosa] { 2)}5 } (7.83)
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(@)

Figure 7.10: Cable analysis-member rotation

Thence,
AP 1 . AX
504—?—F[—sma cosa]{AY} (7.84)
Combining equations (7.82) and (7.84) the effect of member rotation is given,

oz _ I [—sina [—s ] AX

by P cos it oS Ay

l sinfa  —sinacosal] [ AX
- P Lina cos a cos? a} { AY } (7.85)

That is, if the cable rotates to cause (AX, AY') variation in the components of P, equation
(7.85) gives the (dx, dy) changes in the member projections.
The elastic flexibility matrix is calculated for member force and deformation,

l

Av=

AP = fAP (7.86)

and so the X,Y components of deflection (dz, dy) are given,

{ o } = { cosa } Av; that is, Ar = [a]Av (7.87)
dy sin «
Contragredience gives,

AP =[a)TAR (7.88)

So that for the elastic deformation,
dx T
. [a] fla]” AR

oy
- o=
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Figure 7.11: Forces at Cable Node

The total flexibility is the sum of elastic and geometric effects so that

[Fr] = [Fg] + [Fc] = % {

) P .
SN oz—l—m — SIN (X COS (¥

: 2 P
SIN (¢ COS «&x cos” o + A

(7.90)

If then H and V are varied and produce variations of components (AX, AY); in the cable
member ¢, the displacements at I will the sum over the ¢ members,

(5)-5(5)

i=1

7.5.2.1 Cable force

If the cable values of H and V are assumed a recurrence relationship can be established
to determine the corrected values of cable tensions F;, and thus finally H and V From
Figure 7.11,

Vi=V; Vi=Vi_1—Rjfori>1 (7.92)
Cable tension,
1
Py=(H;+V?)? (7.93)
Member position,
sinoy | 1 (W
{omec) =7 ) 91
Strained lengths.
P
=141+ == :
(= (Lt ) (7.99)

Projections on the coordinate axes,

73 COS ¢4
{ " } iy { oo } (7.96)
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and s = > a; , h = >_y;. The errors in the approximation are given by the differences
between these values,

Au:s—in Av:h—Zyi (7.97)

taw} = 1y}
{av} = e {ie] (7.98)

The new approximations to I and V are,
H=H+AH ;V =V + AV. The process is repeated until the convergence criterion is
reached,

Then,

|AH]
H

In the examples studied it have been found possible to use a tolerance of 10™* or even
10~% depending on the finally accuracy required. If a cable is assumed to be parabolic
under uniform self weight. Its shape is approximated knowing the span and the centre
sag. The cable length is calculated,

1
E] dyg
lp = 1+—= d 1
0 /OV +dx x (7.100)

This is easily integrated numerically using either trapezoidal or Simpson’s rules to obtain
the initial length and is incorporated in the initial shape finding command. The command,
CABEXE A D=777 N=?

The three parameters in D are 1) the clear span, 2) the assumed centre sag, and 3) the span
divided by the number of segments to be used. If N=0, the cable length is subdivided into
equal lengths whereas for N=1 the X segments are equal and the cable segment lengths
will vary. Thus the command CABEXE simply generates the initial parabolic shape and
divides it into the desired number of segments and stores them in A. The command
CABSHP A SB C E=7,7,7

produces a cable shape under a given load condition. The load values at all internal
nodes are contained in the two columns of the matrix B and in the present case these
are generated as input. The first column gives the self weight nodal loads and the second
column a limited number of symmetrically applied point loads of opposite direction to the
self weight forces. In this way a cable profile similar to that used in suspension bridge
construction can be obtained. E=7,2.7 gives the three parameters, 1) Young’s modulus
of elasticity of the cable, 2) the cable area and 3) the number of load case increments for
the second case that are to be added to the self weight. If the number of load cases is zero
only the dead weight shape is produced. The X,Y coordinates of the final cable profile
are given in C. A= initial segment geometry(segment lengths from CABSHP), S contains

< tolerance (7.99)
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Figure 7.12: Elastic deformation and rigid body rotation

Figure 7.13: Local and global force components

1) span, 2) 0.0, 3)assumed initial horizontal tension, 4) calculated initial vertical support
at the left hand support, 5) assumed central sag. A plot of the final profiles is obtained
using,

PLTCAB A B

An example is given in DATN.DAT (C2), of a cable of 1500feet over all span and an
initial sag of 300 feet. The cable has an area of 0.307 sq. inches, Young’s modulus of
30.0 x10% k/sq. inch. (1k=1000lbs). The interesting result of the analysis is that the
distance between tower supports will vary according to the loading and if a fixed distance
is specified an iteration is required on the cable segment lengths.

7.5.3 [Elastic and geometric stiffness

The theory is developed here for general two dimensional systems. The difference between
elastic and geometric stiffness of a single member is illustrated in Figure 7.11. The elastic
stiffness is associated with a small axial deformation of the member A7/ whereas the
geometric stiffness is associated with a small rigid body rotation, Af. For the cable
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member the elastic distortion and the geometric displacement are shown in Figure 7.13(a)
and (b) respectively. In Chapter 2 only elastic forces are considered in calculation of truss
deflections because deformations are small. Now this is no longer the case. For the elastic
force increment ASp the member forces at the ends I and J of the member in its local

{l% } - { _1 } ASg (7.101)

and for all four X', Y’ components at ends I and .J,

X', Y’ coordinate axes are,

—1
yi b = (1) ASg (7.102)
0

For the geometric force increment, ASq, for the member with axial force T', the member

end forces, from 7.12(b),
P 1
{ o } - { X } ASc (7.103)

and for all four X', Y’ components,

P -1
yi —
F, o (A5 (7.104)

The force components in the global X,Y axes, see Figure 7.13,are given using the trans-
formation of vector components, equation (7.104),

Fy cosa —sina [ Fl
{Fy } N {Sina Cosa} {Fé } (7.105)

Thence from equations (7.102) and (7.105) for the ASg force component applying equation
(7.105), to both ends of the member,

Fy; —cosa
Fy |l ) —sina

A Fy = cos ASg (7.106)
Fy; sin o

And for the geometric stiffness, global components, using equation(7.104) and (7.105),

Fy sin o
Fy | ) —cosa

A Fyy [~ ) —sina ASa (7.107)
Fy; COoS (v
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the equations (7.106) and(7.107) are then used to set up the global force equilibrium
equations involving all nodal forces and reactions just as for the truss structure, see section
2.2.

[Ae{ASp} = {AR} (7.108)

and in the same way the equation (7.107) is for the geometric force components,
[Ac{ASq} = {AR} (7.109)

To analyze any system, the stiffness method is used. Both loads and support displacements
must be considered. Contragredience is applied to both equations (7.108) and (7.109) to
obtain the corresponding relationships between global nodal displacements and member
deformations, that is

{Avg} = [Ag]T{Ar} (7.110)
{Ave} = [Ag)T{Ar} (7.111)

Again it is seen that once the equilibrium equations have been determined so also have
the displacement transformations. The elastic stiffness is obtained from the properties of
the member, its length [, area of cross section A and Young’s modulus of elasticity F see

equation (2.31),
EA; EA;
kg = — “; ASpi = 7 -
i i
For all members of the cable system, define the (n x n) diagonal matrix, for the n
members

EA;
kp] = kel bmi=—— (7.113)
1
For the geometric stiffness is given from its length [ and the tension 7" in the member,
T; T;
kGi - l—l; ASGl - l—lA’UGi (7114)
i i

and the geometric stiffness matrix for all members is the diagonal matrix,

[kc] = [kail; ke = ? (7.115)

The elastic tangent stiffness matrix is obtained by combining equations, (7.108),(7.110),
(7.113),
[Apl{ASE} = [Ag]kpl[Ap)T{Ar} = [Kpl{Ar} = {ARR} (7.116)

and similarly the tangent geometric stiffness matrix is obtained by combining equations,

(7.109),(7.111),(7.115),
[Acl{ASc} = [Acl[kcl[Ac] {Ar} = [Kel{Ar} = {ARG} (7.117)
Combining equations(7.116) and (7.117),

{ARq} = ([Kg] + [Ko)){Ar} = [Kr]{Ar} (7.118)
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Figure 7.14: Straight cable-transverse load

The equations(7.108), (7.109),(7.110), (7.111),(7.118), may be used in the non-linear analy-
sis of a tension cable structure, given here in two dimensions. It can easily be extended to
three dimensional cable structures.

7.56.3.1 Example of geometric stiffness

A simple example is given to illustrate the meaning and use of geometric stiffness of a
cable structure. Consider the cable, shown in Figure 7.14, length { with a tension T and
supported rigidly at its ends, A and B (nodes 1 and 3). A load P is applied in the YV
direction at C' (node 2) that divides the length [ into segments of lengths (a,b),a + b =1
Assuming the displacements are small 7" large, and [ relatively small, calculate the vertical
deflection of node 2. Find the relationship between 1" and P if the deflection of node 2
is limited to 1/400. First, the complete [Ag] matrix is written for the tension force in
members (1) and (2), and then the equations that are not required are discarded. Note
that for these members in the intimal state, cosa =1, sina = 0.0.

0 0 10 0 0](AS, AR,

—1 00 1 0 0| ASp AR,

0 01 0 0 0|)ARu | ) AR

1 =1 0 0 0 0| YARy [ ) ARy (7.119)
0 00 0 1 0f|ARus ARy

L0 1.0 0 0 1] lARus ARy

The first, third and last equations can be deleted, as can the reactions, AR 1, AR..3 as
equations in the X direction are not considered.

AS,;

-1 0 1 0 AS ARy1
[AG]ASg=| 1 -1 0 0 ARW =< ARy (7.120)
0 1 01 el ARy3

ARcy?)
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Assume that the reaction stiffnesses are infinite and with constant tension 1" in the cable,

T
— 0 0 o0
o
[kg] =< 0 7 0 0 (7.121)
0 0 oo O
0 0 0 oo
Then forming [K(],
[Ka) = [Acllkal[Ac)" (7.122)
T
00 —— 0 A AR,
a Tyl 1
T +% _% {Ary2 } - {ARﬂ} (7.123)
“ S Arys ARy3
0 —— o0
b
The solution of these three equations give, Ary; = Aryz = 0 and,
T T
{— + —} A?”yQ = ARyQ (7.124)
a b
that is,
ab
Aryy = T ARy (7.125)

This same result may be obtained from Figure 7.14(b) by resolving forces at C in the YV
direction. It is seen that with the geometric stiffness matrix included the equations are
written in the undeformed position and the displacements then obtained from that position
correspond to calculating the equilibrium in a displaced position close to the undeformed
position. Finally, Ar is limited to 1/400 of the span, so that with a = b = [/2 in equation

(7.125),
l l

gives, the value of the required tension,
T = 100AR,» (7.127)

7.5.4 Three dimensional cables

The derivation of the geometric stiffness for a cable in three dimensional space presents
additional problems because the direction of the transverse displacements cannot be deter-
mined a-priori as in the two dimensional case. A cable member I —.J in three dimensional
space is shown in Figure 7.15. The axes Y’, Z’ in a plane perpendicular to I —.J are chosen
and the components of displacements at each end are (v ;,v%;) and (vy ;,vY;). These
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(a) (b)

Figure 7.15: Cable members in three dimensions

may be combined into a single vectors v}, v’; at the ends I and J and then the relative
displacement in the Y'Z’ plane J to I is v} — vj. However its direction depends on the
displacement components. To overcome this problem the relative components in the XY’
and X'Z’ planes can be used or alternatively it is possible to work directly with XY and
X Z components and derive a geometric stiffness matrix for the member, directly in the
XY Z axes. This means that the [Ag] matrix will not be formed explicitly except in the
global axes.

7.5.4.1 Three dimensional cable net stiffnesses

The member I — J. length [, has direction cosines,

{c} = { Z } (7.128)

Then the global components of the member force £ are given,

P, Co
{P1} = { P, } = { cy } P={C}S (7.129)

P, Cy
and for both the ends I and .J, for a force increment AP
AP _ [-C
{APJ}_{ C}AS (7.130)

Contragredience applied to equation (7.130) gives the change of the length of the member
Al for the increments in the nodal displacements,

Al = Avp = [~C (] {ﬁg } (7.131)
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And the member stiffness kg is the inverse of the flexibility,
ASE = kgAvg (7.132)

Combining equations (7.130)- (7.132) the stiffness relationship for the elastic forces and
nodal displacements is given,

EA (AP _ (-C Avy
=amt = {Tejreafn
EAT ccT —ccT
1 |—-cct oot

{ﬁg } (7.133)

this is the usual expression for the elastic stiffness of a single truss or bar type of element.
Combining equation (7.133) for all members,

[Acl{S} = {£} (7.134)

Where [kg] is a diagonal matrix with terms kp; as diagonal terms, an oo or a large number
for the support stiffnesses. Then for all the nodal forces,

A{R} = [Ag][kp][As]" A{v} = [Kp]A{v} (7.135)

gives the elastic stiffness relationship for the whole cable net.

7.5.4.2 Geometric stiffness

The displacements (vg,vy) of an end I or J may be resolved into vector components
parallel v and and perpendicular v to the member. That is, in vector form,

{v} ={v} +{vs} (7.136)

The magnitude of v is given by the projection of X,Y,Z components on the direction
I—J.
oy = {CY {v} (7.137)

and the vector along I — J is given by the resolution of ]v”] into its components.

{va} = {CHCY {va} (7.138)

The expression for the component perpendicular to the member is thus given by,

{var} = {va} = {CHCY {va} (7.139)

The vectors {vr) } and {v;1} at the two ends of the member are shown in Figure 7.15,
a = or.J. It is seen that the measure of the rotation of the member is given by {v}, such
that,

{v} = %[{Uu} —{vrL}] (7.140)
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Substituting from equation ( 7.139) gives,

{0} = 7 {1l — {OHOY) 11— {CHOY)} jjj} (7.141)
Using equations (7.140), (7.141)
s[Bl-n[@l-nlHe o

The vectors {APrg} and {AP;g} are the changes in the global components due to the
rotation 6 = {v}, see Figure 7.15. Then,

Prle 1 [-IB-{CHCY] [B-{CHC}]]q
This is the equation for the member geometric stiffness
{APg} = [kagil{vi} (7.144)
Combining equations (7.133) and (7.144)
Finally, [k7] is written as a 6 X 6 partitioned matrix:
[ kR R
[fer] = {_ ky ,{J (7.146)
where,
EA P P
] = |55 - 22| foHey + X (7.147)

7.5.5 Iterative calculation

Simple Newton-Raphson type iteration can be carried out as follows. The total member
force Py is given by

{R;} = 0 zero initial load vector
{z;} = 0 set initial position to initial coordinates
{R;} = 0 input load increment (7.148)
EA EA
Py = =5 (- o) = == Aung (7.149)
0 0

in equation (7.149), lp are unstrained lengths and Awyg are thus the initial member strains.
(1) {Riy1} = {Ri}+{AR;} increment load vector

(2) {Avni} = [ani]{Arni} calculate {Avy;}
{AR; 11} {Ri} — [anil{Pn} (7.150)
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Check convergence of iteration,

AR

AR, < toler go to 1 next load loop

(Next iteration step)
[Kri] = [Kgi] +[Kgi] tangent stiffness
Ariyq = [K7;]™!  displacement increment
{Pns1y} = {Pni} + [FillaniArig1  cable force increments

{wiz1} = {2} + [killani]Ariz1  update coordinates

Go to (2) start of iteration
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(7.151)

7.152)

7.153)
7.154)
7.155)

o~ o~ o~ e~
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