Chapter 8

NATURAL FREQUENCIES OF
STRUCTURES

8.1 Introduction-Oscillating Systems

A conservative system exhibits oscillation or vibration phenemona when disturbed from
its equilibrium position and then released. The internal forces tend to restore the system
to the equilibrium position and this is resisted by the inertia forces of the system masses.
To illustrate the principle, the oscillation of a pendulum about its verictal equilibrium
postion is analysed.

8.1.1 Oscillation of a Simpe Pendulum

Fxample T
As an example consider the simple pendulum shown in Figure ({fig81consisting of a mass
M suspended by a long wire of length [ of negligible mass displaced by a small angle §
from its vertical equilibrium position.

From the figure the arc length is I3 so that the angular acceleration of the mass lﬁ
Then the equation of motion is written takimg moments about the support pin,

mlB = —mgsin 8 ~ —mgf (8.1)

That is, )

184+98=0 (8.2)
The solution of the differential equation is of the form,

3= Asinkt (8.3)
and is harmonic in nature. Substitution in the equation (8.2) gives,

(—ék2 +1)8=0 (8.4)
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Figure 8.1: Simple pendulum forces in displaced position

Figure 8.2: Single degree spring-mass system

Solution of this equation is possible only if the coeflicient of 3 is equal to zero. That is if,

k2:% k:\@ (8.5)

The period of the vibration 7 is such that

2 l
k(to +T') = k(to) + 27, T = % T = 27r\/; (8.6)

It is seen that there is an interchange between Potential Energy at 3., and Kinetic
Energy maximum at 8 = 0. In the case of the pendulum gravity provides the restoring
force. The longer the wire the longer the period and the weaker the gravity field the
longer the period. Elastic systems also exhibit the property of interchange of Potential
and Kinetic Energies. In elastic systems Potential Energy is the elastic strain enegry
stored internally in the material of the system.
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8.1.2 Simple spring-lumped mass systems

Ezample II Single spring-mass system
Consider the mass m attached to a rigid support by the spring (considered to be weight-

1
less), of stiffness k or flexibility f = T and supported on frictionless rollers. When the

spring is neither extended nor compressed, the system is in equilibrium. However if the
mass is displaced by an amount x it will oscillate about the equilibrium system coming to
rest finally because of damping in the system. The elastic force acting on the mass at any
displacement z will be —kzx.

D’Alembert’s inertia force —m#. so the the equation of dynamic equilibrium is written,

mi+kr=0 (8.7)
This is an equation for harmonic motion and the solution is,

r = Asinwt (8.8)
so that substitution in equation (8.7) gives,

(mw? +k)z =0 (8.9)

k
S 8.10
o= % (20
The period of vibration is given,

T = 27r\/% = 2ny/mf (8.11)

This problem can also be looked upon as the inertia force —m& producing the displacement
z. That is,

Solutions are possible if,

—mif=ua (8.12)

Then,
mfw® =1 (8.13)

and as before T is given by equation (8.11). th of the examples thus far are single degree
of freedom systems. That is a single displacement quantity may be used to describe the
displacement of the system. It is seen that the solution is possible for free vibration is and
only if the coeflicient of the displacement function is zero. The theory must be extended
for multi-degree freedom systems in which the coefficient matrix of the system is singular
and it is necessary to solve the system equations to determine the independent vibration
or eigenmodes. In order to introduce the general problem, a number of two degree of
freedom systems are first analysed.

Ezample III Two degree of freedom system
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Figure 8.3: Two degree spring-mass system

The two spring-two mass system is shown in Figure 8.3. This is a statically determinate
system so that the structure flexibility matrix [F] = [b]7[f][8] is easily calculated. The
D’Alembert inertia fporces on the two masses 1 and 2 are —m&, and —mis respectively.
The forces in the springs are found to be,

{%}:H H{%} (8.14)

The spring flexibilities are each equal to f, so that the node(mass) deflections are given,

i —wmaw=s[; 51{0} (315)

The D’Alembert’s forces are,
—mi':l
—MTo
The motion is periodic so that the displacements expressed as functions of time are,
71 = Ay sinwt

T9 = Ay sinwt

Substituting in equation (8.15), gives,

ed=rl o7 (3.16)

Hence the undetermined multipliers, are given,
A o 1 17 (A
{A2}_wfm{1 2}{142 (8.17)

Let A = ——— and collecting terms on the left handside give the homogeneous equations,

W2 fm
Hi ;}—AM}{ﬁ;}: (8.18)
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Figure 8.4: Spring-mass system, three springs, two masses

Solutions to these homogeneous equations is possible only if the The determinant of the
coeflicient matrix is equal to zero, that is,

‘1—)\ 1

: 2—)\‘:0 (8.19)

Solving the resulting quadratic equation gives the values of A,

_3x4V5
2

Substituting these values in the homogeneous equations, the modal shapes are obtained.

_ 3445 Vb —1

A

(8.20)

(1) A 5 let Ay =1, then A = ~—
3 V5 —V5+1
(2) A2 = 2\/_, lot Ay = 1, then A; = %

The first of these modes is a sway motion with both masses having displacements of the
same sign while the second is a breathing type of motion, the displacements of the masses
having opposite sign. The periods of vibration are given,

27
Ty o =" =927,/ \ 21
12 = — T/ A2V fm (8.21)

The more flexible the structure or the larger the masses the longer the period of vibration.
Also the greater A the longer T, so that the dominant mode is for A\ = 3 + \/5/2 This
occurs when the two masses are vibrating in harmony.
FEzample IV Statically indeterminate three spring-three mass system

In this example the system of three springs with two masses and two supports, shown
in Figure 8.4, is statically indeterminate. In the text of Chapter 2, for example, this
problem may have its flexibility matrix calculated via the stiffness method of analysis and
this proceedure will be set out in the analysis below. Let the forces in the springs be
(F1, Fy, F3) so that the equilibrium equations at the nodes 1 and 2 are,

31

{_(1) —1 ﬂ{?}:{%} [A{S} = {R} (8.22)
3
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This is clearly an indeterminate problem and the stiffness method is used, either to obtain
the nodal stiffness matrix or the inverse, nodal flexibility matrix. Thus, first to obtain the
stiffness matrix [K],

[K] = [A][k][AT" (8.23)

In this equation,

100
[k]:k[o 1 0]
00 1

Carrying out the matrix multiplications in equation (8.23),

2 -1

K=k 2

1
} and the inverse flexibility, [F] = % ﬁ H (8.24)

Again let the motion be harmonic so that,
T1 . Al .
{7”2 } = {A2 }smwt (8.25)
and using D’Alembert’s principle the deflections calculated from the inertia forces are

{Z;}:%&ﬁ H{Z} (8.26)

Let A = 3/(mfw?), so that for the solution of the homogeneous equations (6.66), the
determinant of the coeflicient matrix must vanish, that is,

givern,

ﬁ 2}—AU]:0 (827)

That is, rearranging terms,

(2 — X 1 ]
‘ : Q_Aw_o (828)

The roots of this determintal equation are,
AM2=1,3 (8.29)
The mode shapes are obtained by substituting these values in the homogeneous equations,

(1) A=3, let Ap =1, then Ay =1 antisymmetric mode

2) A = 1, let Ay = —1, (8.30)
then A1 = symmetric mode 8.31)
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Figure 8.5: Simply supported beam with distributed mass

Substituting these values of A2 the periods for the two vibration modes are,

27 mf
T o= — =274/ — .32
12 = — A2y (8.32)

The longest period is 77 = 27T\/§\/mf/3 = 27T\/ﬂTf and is associated with the antisym-
metric mode of vibration. In this case there is zero force in the centre spring. Because
there are two masses (2m) and two active springs (2k), this period is identical to that of
the single spring-mass (k, m) system of Fzercise II.

8.1.3 Beams with distributed mass

FEzercise V Simply supported beam-uniformly distributed mass

Having examined the simple cases of one and two degree of freedom systems, the
example of a simply supported beam is studied beceause with distributed mass this system
has an infinite number of vibration modes. The beam is shown in Figure 8.5 and the
distributed load for the mass density of m/unit length is, w = mi. The relationship
between the load and the bending forces is given,

d4
EId—xZ = w = —ddotx (8.33)
Choose a sine curve for the spatial function for the deflection y,
Y= sin# n=1,2,3, etc. (8.34)

Then y = 0 at = 0 and z = [, so the boundary conditions are statisfied. In time the
time domain, ¥ is a harmonic function so that,

yy = Asin # sin wt (8.35)
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The elastic force per unit length is then given,

d4

EIdgc4 EI( 7 )4A sin # sinwt (8.36)
For the first harmonic, n = 1.
—mjj = mw? Asin # sinwt (8.37)

The equation of dynamic equilibrium using equation (8.33) is thus,

d4
Substituting for n=1,
EI(?)‘* = mw? (8.39)
The solution gives,
7? |EI
= —4/— 8.40
Y=\ ( )

and the period T’ is given,

2l2
k) 1/ = 0. 638z2,/ (8.41)

FEzxample VI Simple span beam lumped mass

The beam is shown in Figure 8.6, and has one half of its mass lumped at the centre. The

beam is now a single degree of freedom system with the beam providing the elastic spring

support. The spring flexibility using elementary beam theory, is thus,
l3

A8F T

f= (8.42)

Then the period of vibration of the beam is approximated by the spring/mass period and
is equal to,

T = 2mymf
ml 3

2 A8KET

m
— 0.648,/ = 4
0.6481 /== (8.43)

This value is in error from the distributed mass value, see equation (8.41). by only 1.5.
The mass of the individual members can thus be approximated by lumping the member

masses at the nodes of the structure. The mass of a member, length [, mass per unit length

m, will be replaced by ml/2 at the end nodes that the member connects. Because this

= 2r
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Figure 8.6: Simply supported beam central lumped mass

mass will be used as the dynamic force on the node, it will be applied in the coordinate
directions of the problem being analysed as follows:

Truss X,Y
Beam Y
Frame XY
Grid Y

8.2 Calculation of natural frequenciesof structures

The elastic properties of the system are modelled in the usual way as a distributed system
using the truss, beam, frame or grid elements. The masses are lumped at the nodes so
that the D’Alembert equations of dynamic equilibrium are written for the undamped free
vibration,

[K{r} +[M{7} =0 (8.44)
The motion is harmonic so write r and # as functions of the time ¢,
[M{#} = —[M]w?{X}sin wt
{r} = {X}sinwt (8.45)

Substituting in equation (8.44) gives the set of linear homogeneous equations,
(K]~ [Ml2){X} = 0 (8.46)

These equations may be solved for eigenvalues and eigenvectors. Also premultiplying by
the flexibility matrix [F] = [K]™!, dividing by w?, and substituting A = 1/w? gives the
eigenvalue equation in terms of flexibility,

A = [FIIM]{X} =0 (8.47)
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The eigenvector with the largest period can be found by matrix iteration choosing a trial
vector X, that contains part of this mode. That is iterate by taking successive products,

{Xi} = [FMI{Xo}; {Xo} =[FMN{Xi} etc. (8.48)

See the application of this technique in the calculation of the structure buckling loads in
Chapter 7. Alternatively a symmetric eigensolver routine can be used by first symmetrizing
equation (8.47) by making the substitution, {Y'} = [M/2]{X}. With [M] = [M'/?][M'/?].
Rewrite equation (8.47),

A2 — [ [F M) {Y ) = 0 (8.49)
This is now written with [M*] = [M'/2] and [F*] = [M/?][F][M1/?],
[A[MT] = [FF][{Y} =0 (8.50)

This is a symmetric eigenvalue problem. Solution gives the eigenvalues A and the eigen-
vectors Y. The X vectors are obtained,

(X} = (M) v} (8.51)

Finally the periods of vibration are obtained using A,

27
Vn

Ezample V11 Cantilever beam-uniformly distributed mass natural frequencies The can-
tilever beam of length [ is shown in Figure 8.7. It has a mass of m units per unit length
and a uniform bending stiffness £I. As shown in Figure 8.7, it has been subdivided into 10
equal sub-elements. See also the command sequence in B17 in the file DATN.DAT. There
are 11 nodes and each node has mass of mi/10 except at the free end which has one half
of this value. The flexibility matrix for this beam is easily calculated using the expression
[F] = [b]T[f][t]. The [b] matrix can be written down by inspection for a cantilever beam
subdivided into n sub-elements, as follows,

T, =

(8.52)

1 2 3 4 n

01 2 3 - n—1

01 2 3 - n—1

0 0 1 2 . n—2

[0] Plo o1 2 n—2 (8.53)

(2nxn) n :
1
1

L 0
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Figure 8.7: Cantilever beam uniformly distributed mass

The matrix [f] of member flexibilities is of the form,

(2 1.0 0 0 0]
2 1 00 0 0
0 0 2 1 0 0
U L g 01 2 0 0 (8.54)
(2n x 2n)  n6EI
0 0 0 v oo on-
00000 v «or oo 1 2]
Similarly the mass matrix is given as the diagonal (n x n) matrix,
l
[m] = 22 [2m 2m 2m -+ 2m m]| (8.55)
n

Using the above matrices to calculate [F| amd [M] in equation (6.9), the natural frequen-
cles can be calculated in terms of /(mi*/EI). The value obtained for the fundamental
period is,

2 [mit

This value compares with (3.516) from the analytic solution with dortributed mass, see
Timoskenko. The cantilever beam problem is reworked in Exercise VIIT using the STATTCS-
2020 to calculate the beam flexibility matrix see B18 in the DATN.DAT file.
Ezample VIII Cantilever beam natural frequencies using command BEAMEX

The cantilever beam has distributed mass as in Fzample VII and the command sequence
to carry out the analysis is available in DATN.DAT, B18. The command BEAMEX is
used to generate A, B and C matrices for the cantilever beam. The command BEAMEQ
sets up the equilibrium equations and inverts to produce the [b] matrix. The cantilever
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beam is as shown in Figure 8.7 with 10 equal segments and 11 nodes including the support.
Now when the equilbrium matrix is inverted and the beam flexibility matrix calculated
it includes the rotational degrees of freedom and is a (22 x 22) matrix, including both
support flexibilities. In terms of the transverse and rotational flexibilities the [F] matrix
is partitioned,
Fii Fi2

(F] = { o Fm} (8.57)
The matrices [F11], [F21] are extracted from [F] with the command EXTRAC and diagonal
terms corresponding to the support degrees given small flexibilities at least 1/100 of the
next smallest flexibility. The mass matrix generated in the usual way is used with [F1] to
calculate eigenvalues and mode shapes. No rotary inertia is included. That is, equation
(8.47) is used to calculate A and Y. The X mode shapes are obtained from equation
(8.50). In order to calculate the nodal rotations in the mode shapes(for plotting), first
[F11] is inverted and nodal forces R obtained for the X deflections,

{R} = [Fu]"{X} (8.58)
Then the accompanying nodal rotations are calculated from,
{0} = [F2l{ 1} (8.59)

Combining X;, 6; for the ith mode, the shape may be plotted, interpolating deflections of
elements between the node points. The results obtained for the period T,

_ 2w mlt

T, = —\—= .
=\ BT (8.60)
The first 4 modes calculated in this way, are given in the Table 8.1 below.
Table 8.1
I a;  REF(1) % difference
4 116.59 120.91 3.6
3 60.12 61.70 2.55
2 21.69 22.30 2.74
1 3.50 3.52 0.45

If the simply supported beam with distributed mass in Figure 8.5 is subdivided into 10
equal elements (11 nodes including support) and the above theory again applied to obtain
the a; values, the results and the comparison with the theory are given in Table 8.2. This
problem can be run using SUBMIT B19 and the mode shapes drawn and compared with
the corrsponding sine curves.

Table 8.2
I a;  REF(1) % difference
4 157.52 157.91 2.45
3 8877 88.83 0.07
2 3947 39.47 —
1 987 9.87 -
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Figure 8.8: Frame structure with nodal masses
The error in the 1st and 2nd modes is less than 0.01%.

8.2.1 Statically indeterminate beams

The procedure to calculate eigenvalues and mode shapes for indeterminate beams is iden-
tical to that given in Example VII, once the beam flexibility matrix has been determined,
in this case as the inverse of the stiffness matrix [K]. The two span beam of Figure (3.17)
(7) is analysed for equal spans of length unity and with m=1 and EI=1. The period is
calculated as,

_ 2w mlt

Ti=—A|—= .61

the values of «; so obtained will be the same as for the simple sapn beam of unit length
so that again for 10 divisions per span the results for the eigenvalues will be as calculated
in Table 8.2. the three cases, specially setup to illustrate the indeterminate beam modal
analysis are in B27, B28 and B29. For these problems the command to generate the data
is,

BEAMEX E=(27-28 or 29) 1.=7,? N=?

L(1) gives the overall length and T.(2) the end span lengths, the beams being symmetric
about their centre lines. N=? gives the number of beam elements in each span(the same
in all spans). For example in B27, 10 subdivisions have been used.
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Figure 8.9: Two storey frame structure with nodal masses

8.3 Frame structures-natural frequencies and mode shapes

The theory is developed for any two dimensional plane frame vibrating in the plane of
the frame. If vibrations occur out of the plain it may be possible that a grid analysis
can be used. If however, both inplane and out of plane displacements are coupled then a
three dimensional frame analysis that is beyond the scope of the present studies, should
be used. The general principles still apply however in the eignvalue analysis. A statically
determinate plane frame (the light post problem) is shown in Figure 8.8.The basic prin-
ciples of plane frame analysis used here have been developed in Chapter 4. If the plane
frame is determinate then the theory to set up the equilibrium equations is very simple,
inversion gives the member force transformation matrix and hence via the member flex-
ibility matrices to obtain the nodal flexibility matrix. See section(4.22). The frame will
have a mass from its members that will be lumped at the nodal points. In Figure 8.8 there
are 5 such nodes. It has been assumed that the post carries some extra masses on nodes
3 and 6 and these have been included. Because accelerations occur in both the X and
Y directions, the same nodal mass will be added at a node for both of these directions.
No rotary inertia terms will be used so that the eigenvalue analysis can be carried out
on the X — Y displacements only. The same process of extracting the relevant flexibility
submatrix [F11] as for the beam structure is used. The light post shown in Figure 8.8 as
modelled has 10 active degrees of freedom. This approximation will be adequate for the
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fundamental frequency. However nodes will be required for obtaining accurate values of
higher frequencies. Of course the rotation degrees of freedom are active, they simply do
not have any rotary inertia forces. The properties used for the members 1 to 5 are given
in Table 8.3.

Table 8.3
Number diameter(mm) wall(t mm) mass/metre(Kg) area mm?  L-mm?
1,3,4 150 1 3.3 438 1.3 x 108
2,5 100 1 2.8 381 76 % 10°

Masses on nodes 3 and 6 have been increased to 30Kg to simulate light fittings on the
pole extremities. The data for the analysis of the light-pole is given in the DATN.DAT
file under B19. The natural frequencies can be plotted with the command

PLTFRM A B C DEF N=6 M="?

The student should plot and print at least the first 4 modes and explain their shapes. For
statically indeterminate frames the stiffness matrix has been calculated and inverted in
the matrix K. With this modification the calculation of the natural frequencies follows the
same sequence as the statically determinate case. The two storey frame whose geometry
can be generated using FRAMEX E=3, is shown in Figure 8.9 dimensions are given in
millimetres and the frames are at 15m spacing. The columns consist of ASC sections and
the beams ASB. Assuming a concrete floor supported by member 3 and 1/2 of this mass
acts on member 4 the nodal masses are:

Table 8.4 nodal masses Table 8.5 member section properties
nodes masses(Kg) numbers  area  second mement Young’s modulus
2,5 12630 mm? mm? MPa
3,6 6300 1,256 12.4E3 223E6 300E3
3,4 16.0E3 9866 300E3

8.4 Natural frequency exercise module

A number of exercises, some of which have been discussed in Sections 8.3 and 8.4 are given
on the DATN.DAT file, numbers 42.46 and 61-66. The list is given in the table below for

reference.
(61) Cantilever beam 10 div/span frequencies (B17) (V,DEF)

(62) Cantilever beam 10 div/span frequencies: BEAMEX E=2(B18) (V,DEF)
(63) Simple span beam 10 div/span frequencies (B19) (V,DEF)

(64) Two span beam 10 div/span frequencies Figure 3.17(7) (B27)(V,DEF)
(65) Three span beam 10 div/span frequencies Figure 3.17 (8) (B28) (V,DEF)
(66) Four span beam 10 div/span frequencies Figure 3.17 (9) (B29) (V,DEF)
(42) Determinate frame Figure 4.7 (9) frequencies (F'10) (V,DEF)

(46) Two storey frame  Figure 4.6 (3) frequencies (F'31) (V,DEF)

Some of the examples are of interest. For (63) the simple span beam, good results are
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obtained for the first mode, even with a coarse mesh subdivision of the beam. By way
of contrast the cantilever beam (61) and (62) requires a relatively fine mesh subdivision
(10 equal intervals) to obtain a similar degree of accuracy. The 2,3 and 4 span continuous
beams (64)-(66) have their first modes as a higher mode obtained for the simple span
beam for the cases where zero displacement corresponds to support points of the contin-
uous beam. For the frame structures (42) and (46), the member masses are lumped at
node points that define the member junctions or changes in geometry. With this coarse
subdivision modes corresponding to inertia forces along members will not be captured. For
better accuracy on the higher modes, additional nodes subdividing members are required.
This is in contrast to static analysis in which the member elastic stiffness is adequately
approximated. Note that for statically determinate structures the flexibility matrix is FL,
where as for indeterminate structures it has been calculated in K, the inverted stiffness
matrix. Any of the exercises may be used as analysis templates for other problems as
given in the commands BEAMEX and FRAMEX. An annotated listing of this command
sequence for problem (64)-(B27), the two span continuous beam, is given below.

... (64) continuous beam distributed load analysis and calculation of
.. natural frequencies

... Two span continuous beam equal spans

27

SR "NONONONONS

C ... choose two span continuous beam exercise E=27

C .... total length =2, 10 elements per span

BEAMEX E=27 1.=2.0.1.0 N=10

C ... calculate the beam equilibrium matrix (EQ ) and make a copy

C ... of its transpose in EQTT. A=coordinate array, B=element numbers array,
C=boundary array

BEAMEQ A B C

C ... distributed load only
LOADRFR=1C=20-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
C ... setup nodal load vector in L.O

BEAMI.D A B E F C=0 D=1

C ..

C ... read in Young’s modulus and element second moment of area in IN
LOADR INT R=1 C=21

11111111111111111111111

C ... Calculate member stiffnesses in MS as diagonal submatrices
BMMSTE B IN MS

C ... calculate gobal stiffness matrix K and invert

BMGSTFEF EQ MS K
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C..

C ... From K(FL) extract out F11(A1) the flexibility matrix for Y forces and
C ... F21(B1) cross flexibility from nodal forces to nodal rotations
EXTRAC K Al B1 T=1

PRINT A1l

C .. Duplicate Al into A2 and invert A2 to obtain nodal stiffness matrix
ZERO A2 R=21 C=21

ADD A2 Al

INVERT A2 T=1

C ... load nodal masses as row matrix M1 and then duplicate into square
C ... matrix with values as diagonal terms copies an M and M2

LOADR M1 R=1 C=21
0.050.10.10.10.101010.10.10.10.10.10.10.10.10.10.10.10.10.10.10.05
ZERO M R=21 C=21

ZERO M2 R=21 C=21

STODG M2 M1 N=1 L=1

STODG M M1 N=1 I.=1

PRINT M

C .. calculate square root of diagonal terms

SQREL M

PRINT M

C .. calculate FIF*=M*A1M* generalized flexibility

MULT ATM T

MULT M T F1

PRINT F1

C .. load V1 as row vector and transpose into column vector V (to suit EIGEN )
LOADR R V1 R=1 C=21

111111111111111111111

TRAN V1V

C ... Calculate mode shapes N and eigenvectors V

EIGEN F1 N V T=16

C .. invert diagonal terms of V

INVEL V

PRINT V

C ... load scale factor for matrices SC here =1.0

LOADR SC R=1 C=1

1.0

SCALE V SC

C ... Now take square root of all diagonal terms (see theory)

SQREL V

PRINT V

INVERT M T=1
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C .. Now transform eigenvectors N back to N1 in Y coordinate system
MULT M N N1

PRINT N1

C ... calculate nodal forces that produce the Y shape and then the

C ... accompanying nodal rotations in X2

MULT A2 N1 N3

MULT B1 N3 X2

PRINT X2

C ... Now put nodal deflections and nodal rotations into DEF

C ... (deflections in top half and rotations into bottom half)

ZERO DEF R=42 C=21

STOSM DEF N1 L=1,1

STOSM DEF X2 1.=22,1

PRINT DEF

C ... calculated beam bending moments (MO), shears (VO) and reactions (SO)
C ... finally calculate beam deflections RV for the original loading
BEAMMO MO VO SO

MULT K L.LO RV

RETURN

Remember the command to plot mode shapes,
PLTBEM A B C DEF N=6=6 M="?
N=6 for mode shapes and the value of M gives the required mode to be plotted.



