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Pax Vobiscum 
 
Given the absence of a third choice, the 
Universe is either filled with some hypothetical
dark matter or Isaac Newton�s laws of motion
must be modified for extraordinarily low
acceleration rates.  Such is the dilemma that
astrophysicists have presented us, considering
orbital data for stars about their respective
galactic centers. 
 
Most astronomers accept the dark matter
theory along with that of dark energy.    On the 
other hand, Mordehai Milgrom and his
colleagues have proposed a modified 
Newtonian dynamics (MOND) theory.  This 
theory provides a numerical explanation of star
orbits, although it still needs a true theoretical
foundation in modern physics. 
 
The purpose of this Newsletter is to set forth
the idea that a terrestrial oscillator can be used
to test the MOND theory.  The results of this
test could be an important step in resolving the
validity of the MOND theory.  I would be happy 
to collaborate with other researchers in
performing these experiments. 
 
Sincerely,  

 
Tom Irvine 
Email:  tomirvine@aol.com 
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In Search of a Terrestrial Milgrom Oscillator    
 
By Tom Irvine 
 
 
A Milgrom Oscillator is an oscillator that demonstrates MOND at extraordinarily low 
acceleration levels.    
 
 
Newton�s Laws 
 
Isaac Newton�s second law of motion states that force is equal to the change in momentum 
per change in time.  Momentum is mass times velocity. 
 
The following equation thus applies for the force F acting on an object with constant mass: 
 

   F = m a                                                                                                          (1-1) 
 
where  
 

m is mass 

a is acceleration   
 
Newton�s second law of motion accurately accounts for the respective orbits of the nine 
planets about the Sun.  The law explains why Mercury only takes about 88 days to orbit the 
Sun, but faraway Pluto takes 90,550 days for its orbit.  
 
This law is also readily verifiable using experiments with simple objects in a high school 
physics lab. 
 
Furthermore, Newton�s second law is the basis of vibration analysis.  The natural frequencies 
of familiar objects such as a pendulum, tuning fork or wind chime can be derived from 
Newton�s second law. 
 
    
Einstein�s Relativity 
 
Albert Einstein, however, developed the Special Theory of Relativity which showed that 
Newton�s laws only apply if the velocity is substantially less that the speed of light, which is 
approximately 3.0e+05 km/sec in a vacuum.   
 
If Newton�s laws are only applicable below some speed threshold, could there also be some 
lower limit of validity in terms of velocity or acceleration? 
 
As an aside, ordinary human experience occurs at speeds that are a tiny fraction of the 
speed of light.  As a rather extreme example, astronauts traveling to the Moon must 
accelerate to a speed of 11.2 km/sec to escape the Earth�s gravity.  This is only 0.004% of 
the speed of light.  As of July 2006, only twelve men have set foot on the Moon.  Several 
others have flown around the Moon without landing. 
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A greater number of people have traveled at a supersonic speed either in a military aircraft or 
in the Concorde jet.  Mach one at sea level, however, is only 0.0001% of the speed of light. 
 
 
 

 
 
Figure 1-1.  Spiral Galaxy NGC 1232 
 
 
Spiral Galaxies and Dark Matter 
 
Consider stars in a spiral galaxy, orbiting about the galactic center.  The orbital velocity of a 
given star should follow Newton�s laws.  Specifically, the speed should be proportional to the 
inverse square of the distance between the star and the center, as is the case with the nine 
planets orbiting about the Sun. 
 
Surprisingly, the velocity tends to flatten out to a nearly constant value at large distances 
from the center.  Thus a star in the middle part of the galaxy would have nearly the same 
speed as a star on the outer edge, as shown in Figure 1-2. 
 
Astronomers have tried to resolve this discrepancy by assuming the existence of a halo of 
dark matter around every galaxy.   Swiss astrophysicist Fritz Zwicky was the first to infer the 
existence of what came to be known as dark matter in 1933. 
 
This hypothetical dark matter does not emit light but it does induce a gravitational pull. 
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Figure 1-2.   Typical Spiral Galaxy Rotation Curve 
 

(Image Courtesy of Wikipedia) 
 
 
 
Milgrom�s MOND 
 
Mordehai Milgrom is a physics professor in the department of Condensed Matter Physics at 
the Weizmann Institute in Rehovot, Israel. 
 
His work was the subject of an article �Gravity�s Gadfly� in Discover magazine, August 2006.  
He has also published numerous papers in scientific journals going back to 1983. 
 
Milgrom has put forward the modified Newtonian dynamics (MOND) as a physical theory 
which attempts to explain the galaxy rotation problem by changing Newton's second law of 
motion.  It is an alternative to the dark matter theory. 
 
Milgrom has proposed 

 

aF m a
ao

 
= µ 

 
                                                                                           (1-2) 

where 

  µ(x)=1  if  x>>1 

  µ(x)=x  if  x<<1  
and 

                           2a 1.2e 10 meters / seco = −  
 

Distance 

Velocity 

A

B
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Thus, 

2aF m
ao

=       for  a << ao                                                                             (1-3) 

 
 
Again, MOND theory provides a numerical explanation of star orbits, but it still needs a true 
theoretical foundation in modern physics. 
 
Furthermore, if equation (1-3) is correct, it must hold true for a mechanical oscillator on the 
Earth as well as for a star�s orbit. 
 
 
Some Basic Equations  
 
The following formulas are given to introduce the approach for the recommended tests in the 
following sections. 
 

1T
f n

=                                                                                 (1-4) 

 
2 fn nω = π                                                                            (1-5) 

 
2A Xmax n max= ω                                                              (1-6) 

 
where  
 

T is the period in seconds 

f n  is the natural frequency in Hertz 

nω  is natural frequency in rad/sec 

Amax  is peak acceleration   

Xmax  is peak displacement   
 
 
Equation (1-6) holds true for linear Newtonian dynamics.  Nonlinear systems, whether 
Newtonian or otherwise, have more complicated relationships, however. 
 
 
Recommended Tests 
 
An intermediate goal is to find and measure an acceleration amplitude much less than  

 

2a 1.2e 10 meters / seco = −  
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An accelerometer with such a fine resolution may not exist.  
 
On the other hand, displacement can be measured to very low values.  The goal then is to 
find an oscillator with such an extraordinarily low frequency that it experiences measurable 
displacement but with a corresponding acceleration well below the ao  threshold.   Note that 
an oscillator with a very low natural frequency would have a very long period.  
 
The resulting measured displacement time history can then be differentiated twice to yield 
the corresponding acceleration time history.  The resulting displacement and acceleration 
time histories can then be compared with both the Newtonian and Milgrom oscillator models, 
as discussed in the next article. 
 
Three candidate test methods are discussed in the following sections.   Each method uses 
either a man-made or a natural oscillator.  In each case, the oscillator is idealized as an 
undamped, spring-mass system, as discussed in the next article.  Each choice will have 
many technical hurdles, but these hurdles should be surmountable with dedication and 
persistence. 
 
The final recommendation is to pursue all of these options in parallel. 
 
 
Man-made Oscillator 
 
There are several possibilities for a man-made oscillator to test the MOND theory.   The 
challenge is that the period should be at least one hour.   
 
A highly modified Lehman seismometer might be the answer.  This seismometer uses a 
horizontal pendulum in a �swinging gate� manner.    Using some simple parts, I constructed a 
Lehman seismometer with a 14-second period as described in the November 2004 
Newsletter. 
 
Now assume that a Lehman seismometer with a 1-hour period could be devised, perhaps 
with a �very long� boom.  The purpose of this seismometer would not be to measure 
earthquakes, however.  Rather it would be given an initial displacement and allowed to 
vibrate freely. 
 
The natural frequency would be 278 micro Hertz.  A displacement of 10 microns peak-to-
peak would yield an acceleration of 1.52e-11 meters/sec^2 per Newton�s law, which is less 
than the ao  threshold. 
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Figure 1-3.  The Author�s Lehman Seismometer 
 
 
 
I invite readers to submit ideas for their own �very long period� oscillators.  Perhaps, NASA, 
USGS, Los Alamos or some university already has a suitable device.   
 
 
 
Earth�s Fundamental Vibration Mode 
 
The Earth experiences seismic vibration.  The Earth itself may be a suitable oscillator to test 
the MOND theory per the following example. 
 
The fundamental natural frequency of the Earth is 309.286 micro Hertz.   This is equivalent to 
a period of 3233.25 seconds, or approximately 54 minutes. 
 
The frequency reference is: 
 

T. Lay and T. Wallace, Modern Global Seismology, Academic Press, New York, 1995. 
 
A typical amplitude is not immediately available. 
 
Assume a displacement amplitude of 10 microns peak-to-peak.  The corresponding 
acceleration per Newton�s laws is 1.885e-11 meters/sec^2, which is less than the ao  
threshold. 
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Seiche Method 
 
 

 
 
 
Figure 1-4.  (Image courtesy of Professor Brennan, Geneseo State Univ. of New York) 
 
 
 
 
 
A body of water with a very long seiche period may be a suitable oscillator for the MOND 
test.  This body can rock back and forth in its basin.  The water may be initially excited by 
wind or some other source.  
 
The period of this oscillation depends on the basin�s geometry. In a cylindrical tank, this 
rocking motion is called �slosh.� In a natural basin, it is called a �seiche.� This term is 
pronounced as �saysh.� It is an old Swiss French word meaning "to sway." 
 
There are a number of candidate bodies of water with very long periods, although Lake 
Geneva�s period is too brief. 
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As an example, Cayuga Lake in New York has a seiche period of 60 hours per the following 
reference: 
 
 

http://test.utilities.cornell.edu/utl_lsceis_toc.html 
 

http://test.utilities.cornell.edu/utl_lsceis_thermal.html#232132 
 
 
The corresponding natural frequency is 4.63 micro Hz.   Assume that this a linear Newtonian 
value. 
 
Now assume a 20 mm peak-to-peak (10 mm zero-to-peak) displacement.  The 
corresponding acceleration per Newton�s laws is 8.46e-12 meters/sec^2, which is much less 
than the ao  threshold. 
 
The water displacement measurements could be made over a period of perhaps weeks or 
months.  The data should be lowpass filtered at a frequency of perhaps 20 micro Hz.  This 
filtering can be performed as a post-processing step, but a suitable analog anti-aliasing filter 
should be used in the data collection.  
 
 
The best approach for evaluating terrestrial MOND would be a multidisciplinary effort 
involving seismologists, oceanographers, and mechanical engineers! 
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The Mathematics of a Milgrom Oscillator  
 
By Tom Irvine 
 
 
 
Consider a spring-mass system. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-1. 
 
 
where 
 
 

m is the mass 
k is the stiffness 
x is the displacement of the mass 

&&x  is the acceleration of the mass 
 

 
 
Assume the following: 
 

1. The system is undamped. 
2. The system has linear stiffness. 

3. The peak acceleration is << ao .                                                                  

4. The system obeys the hypothetical Milgrom equation for force at extraordinarily 
low acceleration levels.  

5. The system is a single-degree-of-freedom system. 
6. Require that displacement, velocity and acceleration must each be real in the time 

domain. 
7. The system undergoes free vibration due to an initial displacement or velocity. 
8. The acceleration must have the opposite polarity as displacement for a stable 

oscillation. 
 
 
 

  m 

     k 

&&x
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The free body diagram is 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-2. 
 
 
 
Recall that Milgrom�s equation for MOND is  
 

2aF m
ao

=       for  a << ao                                                                  (2-1) 

 
 
Apply MOND to the spring-mass system. 
 
 

m 2F x
ao

=∑ &&                                                                                      (2-2) 

 
 

m 2x kx
ao

= −&&                                                                                                        (2-3) 

 
 
The equation of motion is 
 

( )m 2x sign x kx 0
ao

+ =&& &&                                                                                 (2-4) 

 
 
The acceleration must be real and it must have the opposite polarity as displacement in 
equation (2-1).  Thus the sign function is needed.  
 
 

 m 

 kx     

&&x
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Note that for a variable y 
 
 

( ) ys ign y
y

=                                                                                                       (2-5) 

 
 
 
Divide through by mass. 

 

( ) k a2 ox s ign x x 0
m

+ =&& &&                                                                                 (2-6) 

 
 
 
 

Define a constant 
 

k ao
m

β =                                                                                                       (2-7) 

 
 

Note that  0β > . 
 
 

   ( )2x s ign x x 0+β =&& &&                                                                                     (2-8) 
 
Again, 

 

( ) ( )s ign x s ign x= −&&                                                                                     (2-9) 
 

 
Substitute equation (2-9) into (2-8). 
 
 

( )2x s ign x x 0− +β =&&                                                                                     (2-10) 
 
 

2x sign(x) x=β&&                                                                                            (2-11) 
 
 

2x x sign(x)= β&&                                                                                            (2-12) 
 

 

  x x sign(x)= β&&                                                                                           (2-13) 
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x x= β&&                                                                                                         (2-14) 

 
 
 
Again, the acceleration must have the opposite polarity as displacement for a stable 
oscillation.  Thus, a sign(x) term is applied with some hand-waving. 
 

 

         x sign(x) x=− β&&                                                                                       (2-15) 
 
 

The resulting equation is nonlinear.  It lacks a closed-form solution.  A numerical solution is 
thus required. 

 
 

State Space Model  
  
The governing second-order ODE can be reduced to a pair of first-order ODEs.  
 

 
 

v sign(x) x= − β&                                                                                          (2-16) 
 
 

v x= &                                                                                                                   (2-17) 
 
 
 

The pair of equations can be solved numerically using the Runge-Kutta method via Matlab. 
 
Note that the theoretical period τ  for this system is 
 

4/1
mu

98.5 







β

≈τ                                                                              (2-18) 

 
 
where mu  is the maximum displacement in terms of consistent units. 
 
Equation (2-18) was derived using a method in  
 

Weaver, Timoshenko, and Young; Vibration Problems in Engineering, Wiley-
Interscience, New York, 1990. 
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Example 
 
Consider the Cayuga Lake seiche as a single-degree-of-freedom system.  The fundamental 
frequency is 4.63 micro Hz, as discussed in the first article.   
 
 
First solve for 
 

k ao
m

β =                                                                                                       (2-19) 

 
 
Explicit knowledge of the mass and stiffness is not required.  Use the assumption from linear, 
Newtonian dynamics that 
 
 

k2 fnn m
ω = π =                                                                                   (2-20) 

 
 

 

[ ]22 fn aoβ = π                                                                                       (2-21) 
 
 

 
The actual calculation of β is performed via Matlab for convenience.  The result is 
 

β= 1.016e-19 (m/sec^4)                                                       (2-22) 
 

 
Assume a 10 mm zero-to-peak initial displacement, with zero initial velocity.  The resulting 
displacement and acceleration are shown in Figures 2-3 and 2-4, respectively, for several 
cycles.  The phase portrait is given in Figure 2-5. 
 
Note that the Milgrom natural frequency is 9.0 micro Hz, as calculated by Matlab.  The 
theoretical frequency per equation (2-18) is about 3% lower. 
 
The calculated 9.0 micro Hz frequency is nearly double that from the linear Newtonian 
model, which was 4.63 micro Hz. 
 
This shift has the undesired consequence of increasing the peak absolute acceleration to 
3.7e-11 m/sec^2 which is still < ao , but perhaps not << ao .   
 
Detection of the frequency increase might be the best metric for evaluating MOND. 
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Matlab Scripts 
 
The Matlab scripts are; 
 

Milgrom_free_function.m 
 

Milgrom_oscillator_ode45.m 
 
 
The scripts are posted at: 
 
http://www.vibrationdata.com/matlab.htm 
 
 

Comments including suggestions for additions and corrections are welcome. 
 

Further research is absolutely needed! 
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Figure 2-3.  Displacement Time History 
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Figure 2-4.  Acceleration Time History 
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Figure 2-5.  Phase Portrait 
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Postscript 
 
By Tom Irvine 
 
 
Milgrom, Abramovici, and Vager 
 
Since initially releasing this Newsletter, I have corresponded with Professor Milgrom who 
directed me to several papers. 
 
Professor Milgrom�s colleagues published a paper with the following paragraph: 
 

This modified dynamics seems to be consistent with many observed features of 
galaxies and galaxy clusters.  Observational aspects of open clusters in the solar 
neighborhood indicate that Newtonian behavior is reestablished once the system 
moves in an external acceleration field larger than ao , even if the system�s internal 
movements proceed at accelerations smaller than ao , which amounts to a violation of 
the strong equivalence principle (SEP).  As a consequence, no deviation from 
Newton�s second law would be detectable in earthbound laboratory experiments, 
since the apparatus is immersed in the strong gravitational field of the Earth.  If, on 
the other hand, the partial restoration of Newtonian behavior in the neighboring open 
clusters is due to some, as yet, unsuspected mechanism, peculiar to these clusters, 
while the strong equivalence principle is preserved, laboratory experiments involving 
accelerations small than ao  should display deviations from F=ma. 

 
Reference: 
 

Abramovici and Vager, Test of Newton�s Second Law at Small Accelerations, 
Physical Review D, Volume 34, Number 10, 15 November 1986. 

 
These researchers then described a laboratory experiment which verified Newton�s second 
law down to 3e-09 cm/sec^2.  This is equivalent to 3e-11 meters/sec^2.  
 
 
 
Strong Equivalence Principle 
 
There are several �equivalence principles� regarding gravity and motion.   
 
An article in the Wikipedia encyclopedia describing these principles notes: 
 

They are related to the Copernican idea that the laws of physics should be the same 
everywhere in the universe, to the equivalence of gravitational and inertial mass, and 
also to Albert Einstein's assertion that the gravitational "force" as experienced locally 
while standing on a massive body (such as the Earth) is actually the same as the 
pseudo-force experienced by an observer in a non-inertial (accelerated) frame of 
reference. 
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Furthermore, this reference describes the �strong equivalence principle� as 
 

The outcome of any local experiment, whether gravitational or not, in a laboratory 
moving in an inertial frame of reference is independent of the velocity of the 
laboratory, or its location in spacetime. 

 
The strong equivalence principle is related to Einstein's theory of general relativity. 
 
Circumventing the strong equivalence principle may be a greater challenge than modifying 
Newtonian dynamics for Milgrom and his colleagues. 
 

 
Final Comments 
 
I have profound respect for the work of physicists involved in all aspects of research, whether 
they are proponents of dark matter or MOND.   Yet, there is simply no direct satisfactory 
explanation for the observed behavior of stars in spiral galaxies. 
 
My suggested experiment with Cayuga Lake may or may not be an appropriate test of 
MOND, depending on the disposition of the strong equivalence principle. 
 
I still consider that Cayuga Lake is potentially an excellent platform for extraordinarily low-
amplitude, extraordinarily low-frequency vibration research.  Given its 60 hour period, it may 
be Earth�s ultimate natural seismometer, when equipped with proper instrumentation.   
 
This lake may yet reveal serendipitous discoveries whether related to astrophysics or to 
other branches of physics, Earth sciences and engineering.  
   
 
     


