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Displacement Gradient

Suppose a body having a particular configuration at some reference time ty changes to
another configuration at time t, with both rigid body motion and elastic deformation
possible.

Figure 1.

A typical material point P undergoes a displacement u so that it arrives at the position

x = X+u(X,1) (1)



A neighboring point Q at X + dX arrives at

X+ dx =X+dX+u(X+dXt)

Thus

dx = X+dX+u(X+dXt)-x
dx = X+ dX+u(X +dX, t) -[X+u(X,t)]

dx = dX+u(X +dX, t)-u(Xt)
This equation may be rewritten using the gradient of a vector field.
dx = dX +(Vu)dX

Vu is a second order tensor known as the displacement gradient with respect to X.
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Note that for rigid body translation Vu =0.
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Lagrangian Strain Tensor

Consider two material vectors dX* and dX? issuing from point P in Figure 1.

Through the motion, dX* becomes dx*and dX*becomes dx>.
dxt = dxt + (Vu)dx? (8)

dx? = dX? +(Vu)dx? 9)
A measure of the deformation is given by the dot product of dx*and dx>.
dxt e dx? = lXm + (Vu)XmJ- ldX2 + (Vu)dXZJ (10)

dxt e dx? = dXt e dX? +dXE e (Vu)dX? +dX? « (Vu)dxt + {(VU)dxl } {(Vu)dxz}

11)
By the definition of the transpose,
dx2 . (vu)dxt = dxt . (Vu)" dx? (12)
And
{(Vu)Xm } {(w)dx2 }: dxt . (vu)" (Vu)dx? (13)
By substitution,

dxtedx? =dxtedx2 +dXt . (Vu)dXx? +dxt . (vu)"T dx? +dxt . (Vu)T (Vu)dx?

(14)

it ix? = dxt . dx? + dx? | vu). (vulT + (vulT (vu) jix2 (15)



Define the Lagrangian strain tensor as

Ex— %[ W)+ (vu)T +vu)T (w)}

dxt e dx? =dXxt e dX? + 2dXt [E*]dX?

E* characterizes the deformation of the neighborhood of the particle P.

Note that for rigid body translation:
Vu=0

E*=0

dxt o dx? = dxt . dx?

For Cartesian coordinates
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For small deformations (Vu)T (Vu)~0.
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The omission of the * symbol indicates small deformations.

For small deformations in Cartesian coordinates,

c_ 1] duj Mj
2| 0Xj  X;

(16)

7)

(18)

(19)

(20)

(21)

(22)

(23)



The infinitesimal strain tensor is
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The unit elongation in the x; direction is
(25)
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APPENDIX A

Deformation Gradient

X is the coordinate in the deformed configuration

is the coordinate in the undeformed configuration

C is the curve

®(z) | is the deformation map

¢(C)

Z(stAs) Z(s+As) - z(s)

X(s+As) X(S+AS) - X(s)

Z;

Undeformed Coordinates Deformed Coordinate

Figure A-1. Measuring the distance between two points on a curve



Noting that the parameterized curve in the deformed configuration is determined by the
deformation maps as x(s) = ¢(Z(s)), one can apply the chain rule for differentiation to
relate the vectors tangent to the curves in the deformed and undeformed configurations.
In components, noting that the map can be written

Xi (8) = 0;(21(5), 22(5), 23(5)) (A-1)

We can compute the derivative by the chain rule as

4 9= 20 Z56)
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(A-2)
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Note that the components are simply the components of the tensor V ¢.

This tensor plays such an important role in the subsequent developments that we shall
give it a special name and symbol.

We call F(z) the deformation gradient because it characterizes that rate of change of
deformation with respect to material coordinates z.

F(z)=V§z2) (A-3)
Thus
di_pdz _
ds - ds (A-4)

The deformation gradient carries the information about the stretching in the infinitesimal
neighborhood of the point z. It also carries information about the rotation of the vector
dz/ds.

The deformation gradient F is a tensor with the coordinate representation.



F(z) = %d)i @i @] (A-5)

where

{ei} are the base vectors in the deformed configuration

{g; } are the base vectors in the undeformed configuration

Strain in Three-dimensional Bodies

The Green deformation tensor C is

C=F'F (A-6)

The stretch of the line oriented in the direction n of the undeformed configuration can
then be computed as

A2(n) =n.Cn (A-7)

Equation (A-7) holds for any curve with dz/ds = n.

The Lagrangian strain is the difference between the square of the deformed length and the
square of the original length divided by twice the square of the original length.

The strain E in the direction n is
112
E(n)=§[x (n)—1]zn.En (A-8)

The Lagrangian strain tensor E is defined to be have the difference between the Green
deformation tensor and the identity tensor | as

el i
E=2[C 1] (A-9)



APPENDIX B

Z3

Deformed state

Undeformed state

Figure B-1. Lagrangian Coordinates

The undeformed state is defined by rectangular Cartesian coordinates, and the deformed
state by arbitrary curvilinear (convected) coordinates.

Strain Tensor in Solids

d52 —d502 = (Gij —Sij)dXide = ZYijdXide (B-1)

The metric tensor G;j;j is
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where

Note that

where

r =Xj ij

R =zj ij

IS a tangent vector

IS the position vector to the point P in the deformed state at time t=t

Gj= (Ski +gu—xli()ik (B-3)
0Zy, - ]

Gj= ox; I'm (B-4)

R =R(r, 1) (B-5)

is the position vector from the origin of the rectangular Cartesian
coordinates to a point Pg at time t=t, in the undeformed state

(undeformed) (B-6)

(deformed) (B-7)

The displacement vector u is

u=R-r (B'S)
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Jacobian

The Jacobian J is

821 621 621
8X1 aXZ 6X2
|5Zi| 822 822 522

J= = (B-9)
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1=4G = /|Gjj| (B-10)
The Jacobian for dilatation is
3290 (B-11)
dQ,
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APPENDIX C

Finite Strain Tensor

H*=1[ aui +6uj +8uk 6Uk ]
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