SIMPLE DROP SHOCK Revision D

By Tom Irvine
Email: tomirvine@aol.com

November 10, 2004

DERIVATION

Consider a single-degree-of-freedom system in a free-fall due to gravity.
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Where

m is the mass,

k isthe spring stiffness,

X is the absolute displacement of the mass,
g isthe gravitational acceleration.

Note that the double-dot denotes acceleration.
Assume

The object can be modeled as a single-degree-of-freedom system.

The object is dropped from rest.

There is no energy dissipation. The collision is perfectly elastic.

The object remains attached to the floor via the spring after initial contact.
The object freely vibrates at its natural frequency after contact.

The system has alinear response.
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Theinitial velocity of the system asiit strikes the ground can be found by equating the
change in kinetic energy with the change in potential energy.
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where Ah isthe drop height.
Dividing through by (m/2),

%2 = 2gAh 2
Thus, theinitial velocity when the mass encounters the floor is

x(0) = \/2gAh €)

Furthermore, the initial displacement istaken as zero.

x(0)=0 (4)

Assume a displacement equation with constant coefficients aand b.
X(t) =asinwnpt + bcoswnt (53)

Equation (5a) assumes oscillation at the system’ s natural frequency. Note that the natural
frequency in radians per timeis
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(5b)
The zero displacement initial condition requiresb = 0. Thus
x(t) =asinwnt (6)
Thevelocity is
X(t) = awp coswnt (7
Recall
x(0) = \/2gAh (8)
Thus

(9)



Substitute equation (9) into (6). The resulting displacement is

v 20Ah
X(t) ={ (fn

}sinwnt
The velocity equation is

x(t) = \/Mcoswnt
The acceleration equation is
X(t) =-own \/mgn wnt
The force transmitted through the spring f(t) is

f(t) = kx

£(t) =k {Vngh

sSinwnt
Wn } n

Note that

k:oon2 m

Substitute equation (15) into (14).

f(t) = —wpm4/20Ahsin wnt

The peak instantaneous power flow is

P=wn mgAh

Equation (17) isderived in Appendix A. The total impulse over a half-sine period is

| =2m,/2gAh

Equation (18) is derived in Appendix B.
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The shock analysisis only concerned with the maximum values. These are summarized

inTable 1.

Table 1. Maximum Absolute Values

Parameter Symbol Maximum Equivalent Form
\JJ2gAh 2mgAh
Displacement X 0? mEA
n
Velocity X 2gAh \20Ah
Acceleration % wWn /2040 2gkan
m
k
Jrk X wn”+/2gAh H« 2gA
Transmitted / [
Force f men y20Ah ZmokAn
: k

Potential Energy of PE max —ZgAh mgAh
Spring Wn

_— k
Kinetic Energy of KE max —ZgAh mgAh
Mass Wn
Peak Instantaneous y
Poover Flow P wnmgAh JkmgAh
Total Impulse over | 2m /ZgAh 2m,/2gAh

aHalf-sine Period

The values in Table 1 demonstrate that there are some tradeoffs involved in designing an
object with respect to drop shock.




EXAMPLE

Consider a fixed drop height. Also consider that the mass is fixed, but that the spring
stiffness is variable. The table values show that lowering the stiffness reduces both the
acceleration and the force. A lower stiffness could be achieved by adding isolator mounts
or some cushioning material. On the other hand, lowering stiffness also increases
displacement. This is acceptable as long as the system remains linear and does not
“bottom out.”

The displacement limit of the spring is thus a practical constraint.

CONCLUSION

A simple method for modeling drop shock was derived. The derivation was based on a
simplified free-vibration model.

A rigorous derivation of the free-vibration equation is given in Appendix C.



APPENDIX A

Again, the mass undergoes free vibration at its natural frequency. The instantaneous
power flow is

() = f(Ov()) (A-1)
P(t) =[mwp+/20Ah sinwnt][/2gAh coswnt] (A-2)
P(t) = 2mgAhwy, sinwptcoswnt (A-3)

Apply atrigonometric identity.

P(t) = mgAhwp, sin2wt (A-4)

By inspection, the peak instantaneous power flow occurs at

Tt

2(A)nt = E (A-5)
T
t=—— A-6
4w, (A-6)
Substitute (A-5) into (A-4).

Pmax = ®@nmgAh (A-7)
P = \/E mgAh (A-8)

max m

Note that the instantaneous power flow changes direction as the polarity changes with
time in equation (A-4).



APPENDIX B

Thetotal impulse over a half-sine duration is

| = jg’ Dn £ ()]t

| = J';/a”[mwnJZQAh sinwyt]dt

17RO
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| = —mwMZgAh{i} COSWp,

| =-m./2gAh[-1-1]

| =2m ,/2gAh

(B-1)
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(B-5)



APPENDIX C

FREE VIBRATION DERIVATION

Consider a single-degree-of-freedom system.
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Where

m is the mass,

c isthe viscous damping coefficient,

k isthe stiffness,

X is the absolute displacement of the mass,
g isthe gravitational acceleration.

Note that the double-dot denotes acceleration.
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Summation of forcesin the vertical direction

D F= mx

The free-body diagramis

(C-1)



mx = —cx —kx

mx +cx +kx =0

Divide through by m,

By convention,

(c/m)=2¢w,
(k/m)=w,>

where

wy, isthe natural frequency in (radians/sec),
¢ isthe damping ratio.

By substitution,
X+2£wn>'<+con2x =0
Now take the Laplace transform.
L{X +28w, X +oon2x} =1{q
s% X(9) - sx(0) — x(0)

+28wLSX(9) —2&wpx(0)
+wp2 X(9) =0

{2 +280wps+ w2 | X(9 +{ -3 x(0) +{ -5 -2 £} x(0) =0

[ +280ps+ w02 | X(9 =x(0) +{s +2 £} (0

(C-2)

(C-3)

(C-4)

(C-5)

(C-6)

(C-7)

(C-8)

(C-9)



X - {)‘((O) +{s+28w,) x(O)}

 + 28w [+ W2

Consider the denominator of equation (C-10),
% +28WpS+ wp? :(S+E(’°n)2 +0p? _( E‘*h)z
& +2Ewps+w,? :(5+E°°n)2 +‘*h2(1_ E2)

Now define the damped natural frequency,

Wy = Wpy1- &

Substitute equation (C-13) into (C-12),

$ +28wps+ w2 =(s+ Ewn)z + 2

X :{X(O)+{s+22wn} x(O)}

(5+ E(’On)2 + (’Odz

(s+€wn)x(0) }+ { X(0) +(Ewn)x(0) }
2

X =
(9 {(S+Ewn)2 o,

%(0) +(Ewn )x(0)

(S"'E(’On)2 +wd2

o

x(S)={( SREN0 }+ { @

2
s+Ewn)” + g2

10

(S+Ewn)2 + w2

(C-10)
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Now take the inverse Laplace transform using standard tables. The resulting
displacement is

Wy

x(t) = exp(-Ewp, t){[x(O)] cog{ wq 1) {X(O) * (zmn)x(O)}m(wd t)} (C-18)

x(t) = {w—ld} exp(— W t){ cod[x(O)] cos(ood t) +[>‘((O) +( E%)X(O)] sin( oy t)} (C-19)

Thevelocity is

_Ewn
Wy

x(t) = { }exp(— wp t){ Wy [x(O)] coi Oy t) + [)‘((0) +( E%)X(O)] s n( (0 t)}

+exp(-Ewp, t){ — og[x(0)] sin(wy t) +[>’<(O) +( E%)X(O)] cog t)}
(C-20)

x(t) = exp(- £, t){ ~&£wn[x(0)] cod wy t) +[>‘<(0) + Eoon)x(O)]{_ £ }sin(ood t)}

Wy

+ exp(—E(on t){ —wd[x(O)] sin(wu t) +[>'<(0) +( E%)X(O)] cos( (0 t)}

(C-21)
x(t) = exp(-Ewp, t){—Ewn[x(O)] +[x(0) +(zwn)x(0)]} cod{ y t)
+exp(-Zo, t){—wd[x(O)] +{x(0) +(Eoon)x(0)]{_ i(:n} sinfeog 1
(C-22)

11



x(t) = exp(-Ewn t x(0} cogwg't)

+exp(-Ewh, t){_i(j” }'((O) ~ wg[x(0)] +[(zwn)]{_i(;’” }x(O)}sin(wd t)

(C-23)
x(t) = exp(— Ewp t){)‘((O)} cos(cod t)
+ exp(‘ Ewn t){_i(:n })‘((O) + {—wd +[(Ewn)]{_i::n }}X(O)}sin(ood t)
(C-29)
x(t) = exp(— Ewp t){)‘((O)} cos(cod t)
2
+ exp(— Ewp t){[_i(:n })‘((0) + {—wd +{_ (E(:*;n) ]}X(O)}Sin(ood t)
(C-25)

x(t) = exp(-Ewn, t){X(O) cog{ wg 1) +{' i ‘:n })‘((O) + {— Wy +[‘ (¢ Cj:n)Z ]}X(O)}sin(wd t)}

(C-26)

wdz +(E(’On)2

x(O)}sin( wy t)}

=gk +

_wd

x(t) = exp(— Ewp t){)‘((O) cos(ood t)

(C-27)
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Aside

[“’dz +(E‘°n)2] =(1- &) an2 +(gen)?

[(,odz +(Eoon)2] = w2

x(t) = exp(—E(on t){X(O) cos(cod t) —w—ld{EwnX(O) +con2x(0)} sin(wd t)}

x(t) = exp(— Ewp t){)‘((O) cos(ood t) —z—;‘{é x(0) +oonx(0)} sin(cod t)}

The acceleration is

X(t) = exp(— Ewp t){— &wnx(0) cos(u)d t)

2
wp

+

o {£x(0) +wx(0)} sin(wg t)}

+exp(—Eoon t){—de(O)sin(wd t) - uh{ &(0) + uhx(O)} cos( Gy t)}

X(t) = exp(—E(on t){ =& wnx(0) cos(ood t) - cqq{ &(0) + uhx(O)} cos( (o) t)}

+ exp(—E(on t){—de(O)sin(wd t) +

Ewp?
w
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; {€x(0) +o,x(0} sin(wg t)}

(C-28)

(C-29)
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%(t) = exp(- Ewp t) ~ £0nX(0) - wn{ EX(0) +wnx(O}} cof wy t)

Wqg

2
+exp(—€oon t){—de(O) +Ewn {E)‘((O) +oonx(0)} }sin(cod t)

%(t) = exp(— Ewp th ~ E0nx(0) - 0, EX(0) - w2x(0) cog oy t)
2 2 3
rexp(~Ean t){—mdxm) WS (:” %(0) +E$;‘ x(O)}sin(cod )

() = exp(—Eoon t){—ZEwnX(O) —wnzx(O)} cos((qj t)
3

2., 2
+exp(—Eoont){F ©n —wd}X(OHES” x(O)}sin(wd t)
d

Wqg

X(t) = exp(— Ewp t){ wn}{ -2¢&x(0) - oonx((}) cos( Wy t)

+exp(-Ewp, t){w_ld}{[E 202 - wdz]X(O) + Ewp x(O)} sin( oy t)

Furthermore
ot linf] - s
[“"dz +(E°°n)2] =(-1+82)wn? +{Ea,)?

[—codz +(Ewn)2] :(—1 +2£2)wn2
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By substitution,
X(t) = exp(— Ewp t){ wn}{ -2¢&x(0) - u)nx((}) cos( Wy t)
+ EXP(— §wn t){w—ld}{[(—l+222)wn2]x(0) +Ewp,3 x(O)} sin(u)d t)

(C-41)
X(t) = exp(— Ewn t){ (*’n}{ -2¢&x(0) - wnx(O}) cos( Wy t)
2
+exp(-Ewp t){%”d }{[—l+2§2]>‘((0) +£0 (0} sin(eg 1)
(C-42)

X(t) =

Wn exp(— &wnp t){{ -2 ¢&x(0) - oonx(O)} cos( Wy t) +{2—2}{[— 1+ ZEZ]X(O) +Ew nx(O)} sin(wd t)}

(C-43)
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