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Introduction 

 

The Newton-Raphson method is a method for finding the roots of equations. It is particularly 

useful for transcendental equations, composed of mixed trigonometric and hyperbolic terms. 

Such equations occur in vibration analysis. An example is the calculation of natural frequencies 

of continuous structures, such as beams and plates. The purpose of this tutorial is to show how 

the Newton-Raphson method is applied to vibration problems. 

 

Derivation 

 

The Newton-Raphson method is derived from the Taylor series. 
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The Taylor series equation is taken from Reference 1. Consider a function f(x) which is 

continuous and single-valued and has all its derivatives on an interval including x = a.  

 

The Taylor series is defined as 
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The series represents f(x) for those values of x for which 0R n →   as  ∞→n .  
 

Now consider a simplified Taylor series. 
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Solve for x. 
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The roots are the values of x for which f(x) = 0.  Thus 
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Equation (7) is used in an iterative manner to find the roots. This process is demonstrated by an 

example. 

 

 

Example 
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Figure 1. 

 

 

Consider a cantilever beam undergoing bending vibration. The natural frequencies are governed 

by the following equation. 

 

1)xcosh()xcos( −=                                                                                           (9a) 

 

 

)xcosh(/1)xcos( −=                                                                                         (9b) 

 

 

Find the first and second roots. 

 

Equation (9) can be represented as a function. 

 

1)xcosh()xcos()x(f +=                                                                                          (10) 
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)xsinh()xcos()xcosh()xsin()x(f +−=′                                                                    (11)                         

 

 

The Newton-Raphson equation is obtained by substituting equations (10) and (11) into (8). 
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Graphical Analysis 

 

A graph is a useful tool for obtaining initial estimates of the roots. A graph of equation (9b) is 

shown in Figure 1, on the previous page. 

 

For reference, note that 
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Equation (10) can be rewritten as 
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By inspection, an approximate expression for the roots xn is 

 

 

( ) 2/1n2xn π−≈  , n=1, 2, 3, …..                                                                        (15) 

 

 

The subscript n is added to denote that there are multiple roots. Figure 1 confirms that equation 

(15) gives a reasonable approximation for the first and second roots. 

 

 

Numerical Analysis 
 

Formula 
 

Estimate the first root as π/2. 
 

Recall equation (12) which is restated as equation (16). 
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First Root 

 

The method is carried out by setting a = π/2 in equation (16). An x value is then calculated. Next, 

a is set equal to x. The process is repeated until x converges to a. The results are shown in Table 

1. 

 

Table 1. First Root 

Iteration a x 

1 π/2 1.969334 

2 1.969334 1.881061 

3 1.881061 1.875130 

4 1.875130 1.875104 

5 1.875104 1.875104 

 

 

The method yields a value of 1.875104 for the first root after five iterations. 

 

Verify by substituting the root into equation (10). Note that the root is in units of radians. 

 

 

07-2.842e 1)1.875104cosh()1.875104cos( =+                                            (17) 

 

 

The result is approximately equal to zero. Note that the “exact root” may be an irrational number. 

Only a few decimal places, however, are required for “engineering accuracy.”  The accuracy of 

the root is thus verified. 

 

Second Root 

 

Estimate the second root as 3π/2. The results are shown in Table 2. 

 

 

Table 2. Second Root 

Iteration a x 

1 3π/2 4.694424 

2 4.694424 4.694091 

3 4.694091 4.694091 
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The method rapidly converges to a value of 4.694091 for the second root. 

 

Verify by substituting the root into equation (10). Note that the root is in units of radians. 

 

06-7.134e- 1)4.694091cosh()4.694091cos( =+                                             (17) 

 

The result is approximately equal to zero. The accuracy of the root is verified. 

 

Application to a Cantilever Beam 

 

A cantilever beam is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 

 

 

E is the modulus of elasticity 

I is the area moment of inertia 

L is the length 

ρ  is the mass density (mass/length) 

 

 

Again, the natural frequencies are given by equation (9).  Let x = Lnβ  

 

Table 3. Roots 

Index Lnβ  

n = 1 1.875104 

n = 2 4.694091 

 

 

 

EI, ρ 

L 



 7

ρ
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By substitution, 
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Note that the natural frequency nω  is typically expressed in units of (radians/sec). 

 

Further details about the cantilever beam problem are given in Reference 2. 

 

 

Additional Examples 

 

Additional examples are given in the appendices. 
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APPENDIX A 

 

 

Equation (A-1) is obtained for certain vibration problems. It is the characteristic equation for the 

following beams: 

 

1. free-free beam 

2. clamped-clamped beam 

3. clamped-pinned-clamped beam (1 of 2 equations) 

 

 

1)xcosh()xcos( =                                                                                           (A-1) 

 

An equivalent form is shown in equation (A-2). This equation is graphed in Figure A-1. 

 

)xcosh(/1)xcos( =                                                                                          (A-2) 

 

The graph in Figure A-1 shows that the roots are given approximately by equation (A-3). 
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Return to equation (A-1). The function equals zero if the dependent variable is a root. 

 

1)xcosh()xcos()x(f −=                                                                                   (A-4) 

 

The derivative is 
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Recall the Newton-Raphson equation. 
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By substitution, 
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The first two roots are calculated as shown in Tables A-1 and A-2, respectively. 

 

 



 9

 

 

-2.0

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

2.0

0 π/2 π 3π/2 2π 5π/2 3π 7π/2 4π 9π/2

y=1/cosh(x)
y=cos(x)

x   (radians)

f(
x
)

 
 

 

Figure A-1. Graph to Estimate Roots 

 

The roots occur at the intersection of the two curves. Zero is not counted as a root for the purpose 

of determining the natural frequencies 

 

 

Table A-1. First Root 

Iteration a x 

1 4.5 4.80388 

2 4.80388 4.73492 

3 4.73492 4.73006 

4 4.73006 4.73004 

5 4.73004 4.73004 
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Table A-2. Second Root 

Iteration a x 

1 7.9 7.85527 

2 7.85527 7.85321 

3 7.85321 7.85320 

4 7.85320 7.85320 

5 7.85320 7.85320 
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APPENDIX B 

 

Equation (B-1) is obtained for certain vibration problems. It is the characteristic equation for the 

following beams: 

 

1. free-pinned beam 

2. clamped-pinned beam 

3. clamped-pinned-clamped beam (2 of 2 equations) 

 

 

)xtanh()xtan( =                                                                                               (B-1) 

 

Equation (B-1) is graphed in Figure B-1. The graph in Figure B-1 shows that the roots are given 

approximately by equation (B-2). 
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Return to equation (B-1). The function equals zero if the dependent variable is a root. 
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The derivative is 
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Recall the Newton-Raphson equation. 
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Simplifying 
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The first two roots are calculated as shown in Tables B-1 and B-2, respectively. 
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Figure B-1. Graph to Estimate Roots 

 

The roots occur at the intersection of the two curves. Zero is not counted as a root for the purpose 

of determining the natural frequencies. 
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Table B-1. First Root 

Iteration a x 

1 3.9 3.927298 

2 3.927298 3.926603 

3 3.926603 3.926602 

4 3.926602 3.926602 

 

 

 

Table B-2. Second Root 

Iteration a x 

1 7 7.073064 

2 7.073064 7.068603 

3 7.068603 7.068583 

4 7.068583 7.068583 

 



 14 

 

APPENDIX C 

 

Equation (C-1) is obtained for certain vibration problems. It is the characteristic equation for the 

following beams: 

 

1. free-sliding beam 

2. clamped-sliding beam 

 

Equation (C-1) is graphed in Figure C-1.  
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The graph in Figure C-1 shows that the roots are given approximately by equation (C-2). 
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Return to equation (C-1). The function equals zero if the dependent variable is a root. 
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The derivative is 
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Recall the Newton-Raphson equation. 
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Simplifying 
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The first two roots are calculated as shown in Tables C-1 and C-2, respectively. 
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Figure C-1. Graph to Estimate Roots 

 

The roots occur at the intersection of the two curves. Zero is not counted as a root for the purpose 

of determining the natural frequencies. 
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Table C-1. First Root 

Iteration a x 

1 2.4 2.363846 

2 2.363846 2.365019 

3 2.365019 2.365020 

4 2.365020 2.365020 

 

 

 

Table C-2. Second Root 

Iteration a x 

1 5.5 5.497799 

2 5.497799 5.497804 

3 5.497804 5.497804 
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APPENDIX D 

 
 

Certain vibration problems have a solution in terms of zero order Bessel function.  An example is 

the longitudinal vibration of a tapered rod.   Another example is the natural frequencies of the 

acoustic pressure modes inside a cylinder.  Note that there are also acoustic modes associated 

with higher order Bessel functions, which are covered in Appendices E and F. 
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Figure D-1.  Graph to Estimate Roots 

 

Find the roots of the Jo(x) function. 
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)a(f

)a(f
ax

′
−=                                                                                             (D-3) 

 
 

)x(J)x(J
dx

d
10 −=                                                                                   (D-4)   

 

  

)a(J

)a(J
ax

1

0

−
−=                                                                                         (D-5) 

 

 

Table D-1. First Root 

Iteration Estimate 

1 2 

2 2.388211 

3 2.404770 

4 2.404826 

5 2.404826 

 

 

Table D-2. Second Root 

Iteration Estimate 

1 5 

2 5.542149 

3 5.520030 

4 5.520078 

5 5.520078 

 

 

Table D-3. Third Root 

Iteration Estimate 

1 8 

2 8.731561 

3 8.653220 

4 8.653728 

5 8.653728 

 



 19 

APPENDIX E 

 

 

Certain vibration problems have a solution in terms of a first order Bessel function.  
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Figure E-1.  Graph to Estimate Roots 

 

Find the roots of the J1(x) function. 
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Table E-1. First Root 

Iteration Estimate 

1 3.9 

2 3.8309999 

3 3.8317059 

4 3.8317060 

5 3.8317060 

 

 

Table E-2. Second Root 

Iteration Estimate 

1 7 

2 7.0155706 

3 7.0155867 

4 7.0155867 

5 7.0155867 

 

 

Table E-3. Third Root 

Iteration Estimate 

1 10.2 

2 10.173427 

3 10.173468 

4 10.173468 

5 10.173468 
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APPENDIX F 

 

 

Certain vibration problems have a solution in terms of a second order Bessel function.   
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Figure F-1.  Graph to Estimate Roots 

 

Find the roots of the J2(x) function. 
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Table F-1. First Root 

Iteration Estimate 

1 5 

2 5.1309781 

3 5.1356160 

4 5.1356223 

5 5.1356223 

 

 

Table F-2. Second Root 

Iteration Estimate 

1 8.5 

2 8.4158328 

3 8.4172438 

4 8.4172441 

5 8.4172441 

 

 

Table F-3. Third Root 

Iteration Estimate 

1 11.5 

2 11.618540 

3 11.619841 

4 11.619841 

5 11.619841 
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APPENDIX G 

 

Certain vibration problems have a solution in terms of the derivative of a zero order Bessel 

function. An example is the fluid slosh in a cylindrical basin. 

 

Find the roots of the )x(J
dx

d
o  function. 
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0)x(J1 =                                                                                                  (G-3) 

 

 

The roots are thus the same as those in Appendix E, as repeated in Table G-1. 
 

 

 

Table G-1. Root Summary 

Root Estimate 

1 3.8317060 

2 7.0155867 

3 10.173468 

 

 

 


