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INTEGRATION OF THE POWER SPECTRAL DENSITY FUNCTION  Revision B

By Tom Irvine
Email:  tomirvine@aol.com

March 18, 2000
_____________________________________________________________________

Introduction

Random vibration is represented in the frequency domain by a power spectral density
function.  The overall root-mean-square (RMS) value is equal to the square root of the
area under the curve.  The purpose of this tutorial is to explain the integration procedure.

A power spectral density specification is typically represented as follows:

1.  The specification is represented as a series of piecewise continuous
segments.

2.  Each segment is a straight line on a log-log plot.

An example is shown in Figure 1.
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  Figure 1.
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Note that the power spectral density amplitude is represented in units of (G 2/Hz).  This is
an abbreviated notation.  The actual unit is (GRMS 2/Hz).

Derivation

The equation for each segment is
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The starting coordinate is ( )f y1 1, .

The exponent n is a real number which represents the slope.  The slope between two
coordinates ( )f y1 1,  and ( )f y2 2,  is
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The area a1 under segment 1 is
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There are two cases depending on the exponent n.

The first case is
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The second case is
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In summary, the area under segment i is
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The overall level L   is
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where m is the total number of segments.
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Example

Consider the power spectral density function in Figure 1.  The breakpoints are given in
Table 1.

Table 1.
Power Spectral Density

Freq
(Hz)

Level
(G 2/Hz)

10 0.002
100 0.04

1000 0.04
2000 0.02

Consider the first pair of coordinates:

f 1 = 10 Hz y 1 = 0.002 G2/Hz
f 2 = 100 Hz y 2 = 0.04 G2/Hz

Calculate the slope.
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n = 1.3                                                                                                            (14)

Substitute into equation (11).
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Consider the second pair:

f 2 = 100 Hz y 2 = 0.04 G2/Hz
f 3 = 1000 Hz y 3 = 0.04 G2/Hz

Calculate the slope.
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Substitute into equation (11).
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Consider the third pair:

f 3 = 1000 Hz y 3 = 0.04 G2/Hz
f 4 = 2000 Hz y 4 = 0.02 G2/Hz

Calculate the slope.
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Substitute into equation (11).
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a 3 27 726= .                                                                                                                        (26)

Now substitute the individual area values into equation (12).

( )L G= + +1726 36 000 27 726 2. . .                                                              (27)

The overall level is

L GRMS= 8 09.                                                                                           (28)

Additional information on slopes is given in Appendix A.
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APPENDIX A

Introduction to dB/octave Slopes

NAVMAT P-9492 gives the power spectral density specification shown in Figure A-1.
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                     Figure A-1.

The task is to determine the coordinates of the endpoints.

Derivation

Assume that 1a  and 2a  each has an amplitude in G
2
/Hz.  The difference in dB between

1a  and 2a   is
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Furthermore,
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Additional equations are needed.

The slope N between two coordinates ( )1a,1f and ( )2a,2f in a log-log plot is
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Solve for 2a  .
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Take the anti-log.
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Now consider a one-octave frequency separation.

1f22f =                                                                              (A-9)

Substitute equation (A-9) into (A-3).
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Substitute equation (A-1) into (A-10).
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Note that ∆ dB represents the dB/octave slope in equation (A-11).  Again, equations
(A-10) and (A-11) assume a one-octave frequency separation.

Now substitute equation (A-11) into (A-8).
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Example

Calculate the amplitude at 2000 Hz for the power spectral density in Figure A-1.  The
slope is -3 dB/octave.

Note

Hz/2G04.01a

Hz20002f
Hz3501f

=

=
=

Substitute into equation (A-12).
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Hz/2G007.02a =  at 2000 Hz                                                                      (A-14)

Now calculate the amplitude at 20 Hz for the power spectral density in Figure A-1.  The
slope is +3dB/octave.

Note
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Substitute into equation (A-12).   Note that this equation allows 1f2f < .
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Hz/2G01.02a =     at 20 Hz                                                                           (A-16)


