

Acoustic Test and Analysis

Heliospheric Imager on STEREO

Gordon Maahs

Applied Physics Laboratory Johns Hopkins University

June 26-28, 2007

Outline

- STEREO Mission
- Description of HI instrument
- Test Flow
 - Qualifying HI-A and HI-B
 - Random vibration
 - Acoustic
- Acoustic Prediction
 - Matlab implementation of low frequency acoustic reverberant field

STEREO Mission

STEREO

- STEREO (Solar TErrestrial RElations Observatory)
- Mission will employ two nearly identical spacebased observatories to provide stereoscopic measurements to study the Sun and the nature of its coronal mass ejections.
- Launched October 25, 2006 on a Delta II 7925 rocket.
- Johns Hopkins University Applied Physics Lab (JHUAPL) responsible for STEREO spacecraft design and fabrication, observatory integration, testing, and mission operations
- Naval Research Lab (NRL) responsible for SECCHI instrument suite
- University of Birmingham (UB) in England responsible for Heliospheric Imager (HI) instrument with Centre Spatial de Liege, Belgium

Spacecraft Configuration

- Four instrument suites on each spacecraft
 - SECCHI (includes HI)
 - IMPACT
 - PLASTIC
 - SWAVES
- Composite high gain antenna dish
- Two sets of solar arrays on each spacecraft

The Johns Hopkins University APPLIED PHYSICS LABORATORY

Heliospheric Imager

- The HI is a wide-angle imaging system for the detection of coronal mass ejection (CME) events in space between the Sun and the Earth.
- HI consists of two small telescope systems mounted on the side of each STEREO spacecraft, sheltered from the glare of the Sun by a series of baffles.

Test Flow

- Qualifying HI Units
 - Sine/Random at the instrument level
 - Acoustic at the spacecraft level
- HIB integration delayed
 - Does HI-B require a standalone acoustic test?
 - Compare test data from the HI-A unit

Accelerometer Locations

- Key locations discussed
 - CG, door

STEREO

Finite Element Model

- Finite Element Model
 - 58,000 nodes, 107,000 elements
 - Facesheets (M55J and T300 Fabric)
 - Honeycomb panels
 - Bonded panel connections

Vibration Test Setup

- Cleanroom shaker environment at CSL in Liege, Belgium
- Minor differences (thermal blanket)

X Direction Shake

Z Direction Shake

Sine Survey Comparisons

- HIA and HIB have similar responses
- Good match to FEM
- Determine damping

10

HI-B RV and HI-A Acoustic

- All HI responses are enveloped by random response
 - Except the door
- Increasing random vibe level would overtest the instrument

HI-B standalone acoustic test needed to see expected flight loads

The Johns Hopkins University APPLIED PHYSICS LABORATORY

HI-B Acoustic Test

- HI-B successfully qualified with standalone acoustic test
 - HI-B door responses almost perfectly match HI-A on S/C
 - Free-free and mounted instrument door responses identical

HI-B Responses Random and Acoustic

- HI-B qualification requires
 - Random vibe for telescopes and baffles
 - Acoustic for door
- Random vibe Grms on telescopes and baffles ~ 2x's acoustic Grms
- Acoustic Grms on door ~ 2x's random vibe Grms

				Max Grms HI-B response		
j		 				
			•	Standalone	Random	Vibe
	Channel	Accel	Accelerometer	Acoustic Test	Highest	Driven
	No.	No./Dir.	Description	Response Grms	Brms	Axis
	1	1x	CG	0.9	3.0	х
	2	1y		1.4	3.6	У
	3	1z		4.8	12.5	Z
	4	2x	CEB	1.3	3.8	z
	5	2у		2.0	4.4	У
	6	2z		2.5	10.9	z
	7	3x	TC2	4.8	8.5	z
	ý	Зу		4.7	9.3	Z
	9 /	3z		4.9	18.2	z
	10	-4x	Oval	3.5	7.9	z
	11	4y		7.7	15.9	z
	12	4z		7.2	16.0	z
	13	5x	HI-1 FPA	2.1	5.1	z
	14	5у		3.5	8.5	z
	15	5z		2.5	9.5	z
	16	6x	HI-2 FPA	2.8	5.2	X
	17	6у		2.7	18.6	у
	18	6z		28	11.5	Z
	19	7x	Door Fwd Corner	4.6	4.2	у
	20	7у		4.7	4.6	у
	21	7z		26.5	16.5	Z
	22	8x	Door Center	3.4	3.3	х
	23	8y		4.5	4.6	у
	24	8z		37.6	17.5	Z
	25	9x	Door Aft Latch	5.2	5.3	у
	26	9у		18.9	11.4	у
	27	9z		18.7	6.0	у
				\sim		

The Johns Hopkins University PPLIED PHYSICS LABC

Acoustic Analysis Methods

- Use test data to compare to analysis
- Several different analysis methods available based on frequency range of interest

• Interested in Low Frequency FEM

The Johns Hopkins University PPLIED PHYSICS LAB

Motivation for Low Frequency

- Structural damage occurs at low frequency
 - "Estimation of Payload Random Vibration Loads for Proper Structure Design", Chung et all
 - Frequency cutoff for Grms : Limit PSD integration under 300 Hz
 - Based off of strain gage data
 - Displacement (and stress) rolls off with acceleration/(freq)²

$$x = e^{j\omega t} \qquad \ddot{x} = -\omega^2 e^{j\omega t}$$

$$x = -\frac{1}{\omega^2} \ddot{x}$$

$$x = -\frac{1}{\omega^2} \ddot{x}$$

10

FE Analysis outside of Nastran

- External programs can include functionality/insight beyond Nastran
 - "Solving Dynamic Problems Outside of Nastran", Scott Gordon, FEMCI Workshop, May 22, 2002
 - Typical solutions easily done in Matlab
 - Frequency response
 - Transient response, including jitter
 - Base Shake
 - Random Analysis
 - Acoustic Analysis: include correlation coefficient matrices which are not easily incorporated in Nastran, such as for a reverberant acoustic field

The Johns Hopkins University

- Use Nastran as eigensolver only
 - Eigenvalues (natural frequencies)
 - Eigenvectors (mode shapes)

Acoustic Analysis Prediction

- Purpose of analysis
 - Use Stereo test data to compare to Matlab approach for low frequency acoustic response
- Low frequency acoustic analysis
 - FEM method only
 - Area of interest is hinge and latch stress
- Approach
 - Extract eigenvalues and eigenvectors from Nastran
 - Extract nodal forces from unit pressure from Nastran
 - Use Matlab to solve SDOF modal equation for each loaded node
 - Obtain transfer functions between each loaded node and response node
 - Solve random solution with specified PSD
 - Include sin(kx)/kx spatial correlation matrix for reverberant field
 - Include surface correction factor

Acoustic Analysis Prediction

- Determine transfer function {H} between each loaded node {Fi} and the response point, for each driving frequency, Wd
 - Use SDOF solution in generalized coordinates to simplify calculations
 - Solve random solution as transfer function squared
 - Multiply by input PSD to obtain response PSD
 - Include spatial correlation coefficient matrix, sin(kx)/kx
 - Include surface correlation correction factor, maximum of 3.0

٠

The Johns Hopkins University APPLIED PHYSICS LABORATORY

Theory (1/2)

Dynamic equation

Eigenvector transformation

Dynamic equation in mass normalized modal coordinates

SDOF system solution

Physical coordinates Solve for each F (nodal force from unit pressure)

 $M\ddot{x} + C\dot{x} + Kx = F$

$$x = \phi q, \quad \ddot{x} = \phi \ddot{q}$$

 $\ddot{q} + 2\zeta\omega\dot{q} + \omega^2 q = \phi^T F$

$$\ddot{q} = h\phi^T F$$
 $h = \frac{-\omega^2}{(1-\omega^2) + 2i\zeta\omega\omega_n}$

$$\ddot{x} = \phi \ddot{q} = H$$
 Transfer function
From unit pressure

Theory (2/2)

Random solution at each driving frequency

$$PSD_{resp} = \{H\} [\rho] \{H\}^T * \{PSD_{in}\} * surfcorr$$

$$1xpg pgxpg pgx1$$

The Johns Hopkins University

Vector size: pg is # of loaded nodes

Correlation coefficient matrix, $[\rho]$, is symmetric matrix of sin(kx)/kx, where k is wavenumber and x is distance between any two loaded points

Including $[\rho]$ is difficult in Nastran – default is a matrix of ones for all frequencies (perfectly correlated pressure field)

Reverberant field on HI Door sin(kx)/kx

21

HI Door Results

Door Center
Door Corner

22

Additional Acoustic Results

- Extract side panel of STEREO FEM
 - High Gain Antenna
 - Compare reverberant to perfectly correlated pressure field
- Apply normal pressure to colored surfaces

The Johns Hopkins University

APPLIED PHYSICS LABORATORY

High Gain Antenna Acoustic Response

- High Gain Antenna Feed
 - Reverberant field more accurate
 - Can give larger or smaller response to perfectly correlated pressure
 - Surprisingly accurate to 400 Hz

24

High Gain Antenna Acoustic Response

- High Gain Antenna Top Edge
 - Reverberant field more accurate
 - Accurate to 200 Hz
 - Model frequencies slightly low

25

HI Door Opening Movie

• Movie of HI Door opening (conceptual)

26

The Johns Hopkins University APPLIED PHYSICS LABORATORY

HI1-B 1st Data Movie

 McNaught Comet, January 11- 18, 2007. http://stereo.gsfc.nasa.gov/gallery/highlight.shtml

27

Conclusions

- Successful test program
 - HI-B required both random and acoustic test for qualification
- Fully operational flight units
- Matlab acoustic analysis
 - Low frequency response
 - Include spatial correlation matrix
 - Compared well to test data
 - More accurate than perfectly correlated pressure field
 - Only as good as the FEM

Coronal Mass Ejection from HI http://www.stereo.rl.ac.uk/STEREO_Gallery.html

The Johns Hopkins University

ED PHYSICS LABC

