Toward Development of Standard Practices in Direct Field Acoustic Testing

Mike Van Dyke

The Aerospace Corporation

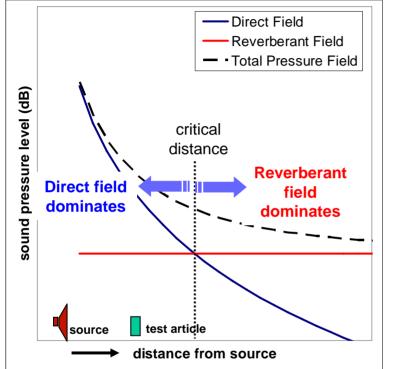
June 26-28, 2007

Copyright © 2007, The Aerospace Corporation. All rights reserved

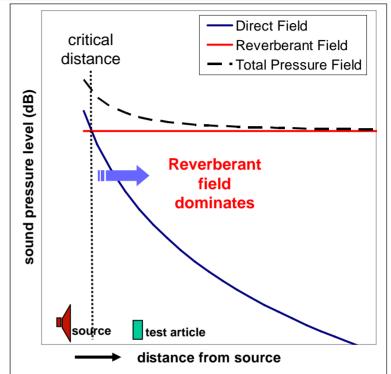
- Illustrate need for developing industry standard practices for direct field acoustic testing
- Highlight work done by Aerospace
- Solicit feedback and call for industry participation

Direct Field Acoustic Testing

- Acoustic testing that relies primarily on the control of the direct sound field from acoustic sources with the objective of exposing a test article to specified average test levels
 - Compared to reverberant chamber testing that relies on controlled excitation of the characteristic reverberant response of a chamber to achieve specified test levels
- Usually implemented with array of electrodynamic loudspeakers surrounding test article


Attractive Features of Direct Field Acoustic Testing

- Test can be performed in variety of test spaces
 - Reason: Less dependence on room characteristics to achieve desired levels
 - Portable test equipment
 - Test equipment can be configured to accommodate test article and space
- "In situ" testing minimizes issues related to transportation
- Eliminates logistic, safety issues associated with use of nitrogen (typically used in chamber testing to reduce attenuation of high frequency waves)
- Minimal number of personnel needed to operate test
- Testing can be performed by vendor if no equipment/expertise available
- Easy to make many test iterations for investigative, experimental testing
- Enables non-conventional test capabilities for specific purposes
 - Simulation of spatial sound gradients
 - Non-stationary acoustic testing
 - Narrowband control of sound spectrum (Larkin, Smallwood, 2003)



Relative Influence of Direct and Reverberant Fields on Test Article

Case 1: Room With Low Reverberance*

Test article lies in region dominated by direct field

Case 2: Room With High Reverberance*

Test article lies in region dominated by reverberant field

* Frequency Dependent

Sensitivity of Direct Field Acoustic Testing to Test Configuration

- Achievable sound levels dependent on proximity, number of sources
- Spatial distribution of direct acoustic field non-uniform and dependent on
 - Loudspeaker placement and orientation with respect to test article
 - Directivity of sound source
 - Directivity effect increases where half-wavelength < driver diameter
 - Control microphone placement
 - e.g., mic placed in acoustic minimum can cause over-test, visa versa
 - Test article size and geometry (scattering characteristics)
 - Correlation and phasing between source loudspeakers

Sensitivity of Direct Field Acoustic Testing to Test Configuration

- Acoustic waves impinge on test article at discrete incidence angles (vs. random incidence angles reverberant chamber diffuse field)
 - Dependent on source orientation and location
 - Affects vibroacoustic response and transmission loss of test structures
 - Difference in panel response to normal vs. diffuse incidence noted previously (Larkin, et al, 1999, Anthony, et al, 1999)
- All of the above considerations are frequency dependent

Research Efforts by Aerospace

• Immediate objective

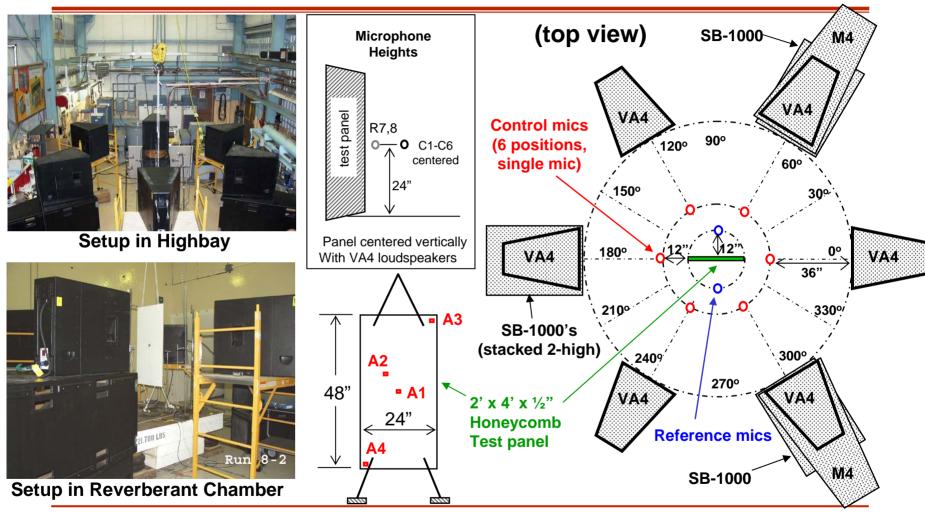
- Develop in-house direct field acoustic testing capability
 - Initial phases Testing at Sandia National Laboratories
 - Follow-on phase purchase equipment and demonstrate mobile test capability

• Long term objectives

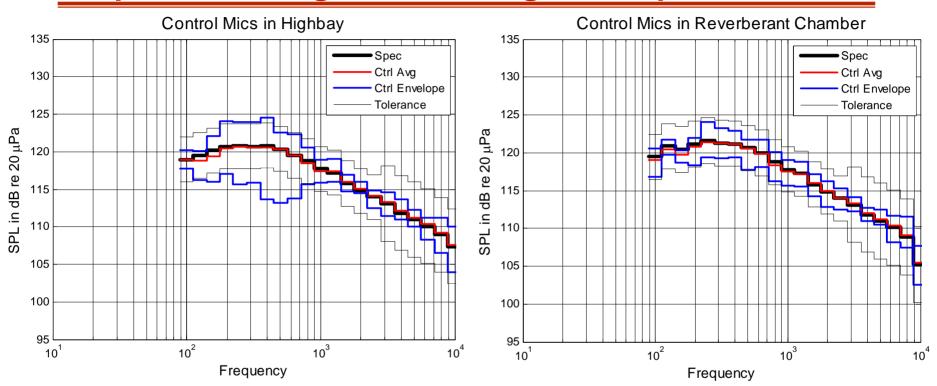
- Customer support using test capability
 - Portable characterization testing, vibroacoustic anomaly resolution
- Actively participate in developing industry best practices

Current Research Activities

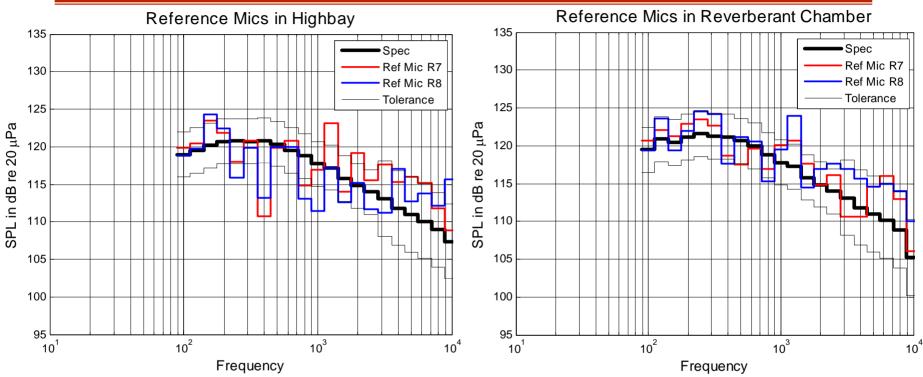
Performed testing at Sandia National Laboratories facility*


- Validated equipment suite as prototype for Aerospace portable direct acoustic testing laboratory
 - To be used for characterization testing of small to mid-sized test articles
 - Achieved 132 dB overall SPL in direct field dominant test space (highbay)
- Collected initial data sets for characterizing direct acoustic testing
 - Comparison between two test spaces
 - Highbay low reverberance (T60 < 1 sec), direct field dominates at test article
 - Reverberant Chamber high reverberance (T60 ~ 10 sec) reverberant field dominates
 - 52 test runs using various configurations
 - Loudspeaker configuration
 - Control microphone number and placement
 - Test article orientation
 - 24" x 48" x ¹/₂" aluminum honeycomb panel for nominal test article

*Tests conducted by SNL using SNL equipment

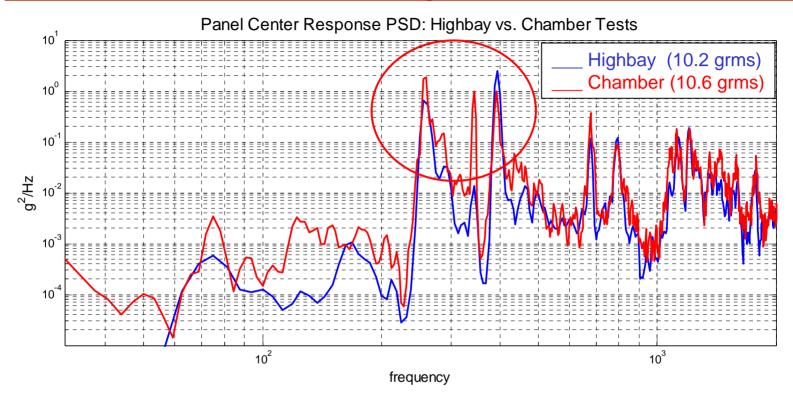

Example Test Configuration

Test Control – Highbay vs. Chamber Example test configuration – diagram on previous chart



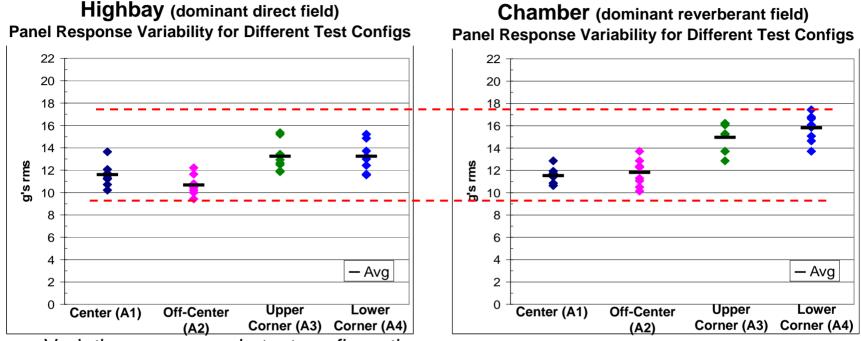
- Control mic average well within tolerance for both highbay and chamber test spaces
- Spatial variability between control mics more pronounced in mid-frequency range for direct field dominated highbay test space (shown by envelope of control mic max and min)

Reference Mics – Highbay vs. Chamber Example test configuration



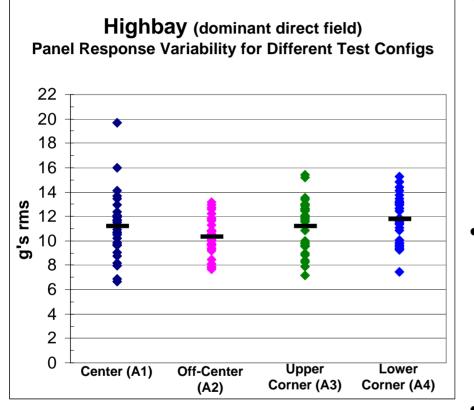
- Reference mics not in control loop purpose to measure sound field near test article (12" from center)
- Frequency response variance from nominal spec more pronounced in highbay test space (direct field dominated)

Panel Response – Highbay vs. Chamber Example test configuration (Response at panel center)



- Primary differences noted in major panel mode responses
- Overall grms response is comparable for this particular configuration

Panel Response Comparison Selected Configurations



- Variations on example test configuration
 - Fixed test article and loudspeaker placement VA4's placed at 60 deg
 - 3 control mics @ 120 deg, 6 control mics @ 60 deg, clocking of control mics
- Response variation between configurations comparable between highbay and chamber. Overall responses slightly higher for runs in reverberant chamber test space

Highbay Test Space: Panel Response vs. All Test Configurations

- 31 runs performed in highbay with different test configurations
 - Loudspeakers spaced @ 120 deg vs.
 60 deg.
 - Test article orientation (clocking) with respect to loudspeakers
 - Control mic number, placement

Measure of panel response shows significant scatter around mean

- Changes in loudspeaker spacing and test article orientation contributed significantly to scatter
- Note: results highly repeatable for any single configuration

Initial Observations from Testing

- Test specification with overall SPL = 132 dB achieved well within tolerance with equipment used
- Spatial variability of sound field more pronounced for highbay test space (direct sound field dominant) than for chamber (reverberant sound field dominant)
- Panel response comparable between highbay test space and chamber test space for similar selected test configurations
 - Differences pronounced in comparison of response of major modes
- Wide variability of panel response noted between different configurations in highbay test space (dominated by direct field)

General Observation

- Direct field acoustic testing prone to variability in results, depending on test configuration
 - Lends itself to wide variation of test configurations, while particularly sensitive to test configuration
 - "Achieving spec" with control mic average does NOT guarantee consistent test results
 - No direct control of entire sound field at test article
 - Structural response, sound transmission and scattering also dependent upon angle of incidence and spatial correlation not indicated by control SPL
- Industry-wide acceptance of direct field acoustic testing calls for development of an industry standard practice
 - Based on experience and theoretical/experimental investigation
 - Current IEST Recommended Practice for High-Intensity Acoustic Testing (see bibliography) contains brief description of typical practices for direct field acoustic testing – can act as starting point

Suggested Areas for Development

- Characterization of direct sound field
 - Acoustic spatial variability, diffuse vs. discrete incidence, statistical uncertainty, etc.
- Optimization of test configuration and control parameters to achieve desired acoustic power, sound field characteristics
- Characterize response and sound transmission of structure as function of defined direct sound field characteristics
 - Develop means of comparison with reverberant chamber testing and flight
- Guidelines for meeting safety and environmental regulations

- Convene industry experts in the field
 - Assess current state-of-the-art, discuss concepts, methodologies
 - Chart course toward accepted industry standard practices

Acknowledgements

- Sandia National Laboratories, for use of facilities and equipment
- Paul Larkin, Sandia National Laboratories, for consultation and coordination of testing at SNL
- David Gurule, Eric Stasiunas, Sandia National Laboratories, for conducting testing at SNL
- Work supported by The Aerospace Corporation's Internal Research and Development funds

Bibliography

- P. A. Larkin, D. O. Smallwood, "Control of an Acoustical Speaker System In a Reverberant Chamber", (presented at the 21st Aerospace Testing Seminar), Journal of the IEST, Vol. 47, No. 2, 2004, pp. 82-111
- P. A. Larkin, M. Whalen, "Direct, Near Field Acoustic Testing", Paper 1999-01-5553, presented at SAE World Aviation Congress, San Francisco, CA, Oct 19-21, 1999
- D. Anthony, T. Scharton, A. Leccese, "Direct Acoustic Test of Quikscat Spacecraft", Paper 1999-01-5550, Presented at 1999 SAE World Aviation Conference, San Francisco, CA, Oct 19-21, 1999
- "High-Intensity Acoustic Testing", Institute of Environmental Sciences and Technology, Design, Test, and Evaluation Division Recommended Practice 040.1, IEST-RP-DTE040.1, 2003, Rolling Meadows, IL
- Pierce, A. D., *Acoustics, An Introduction to Its Physical Principles and Applications*, 2nd ed., Acoustical Society of America, 1989, Woodbury, NY
- Kinsler, Frey, Coppens, Sanders, Fundamentals of Acoustics, 3rd ed., Wiley & Sons, 1982, New York
- L. L. Beranek, Acoustics, 2nd ed., Acoustical Society of America, 1993, Woodbury, NY

Call for Discussion

Backup

Test Equipment – Sound System

• Loudspeakers

- 6 VA4 full range (Maryland Sound)
 - contain high, mid and low drivers
- 4 SB1000 sub bass (Maryland Sound)
 - Each contain 2 18" woofers
- 2 M-4 mid-bass horn (JBL)
 - Supplement acoustic power near 250 Hz

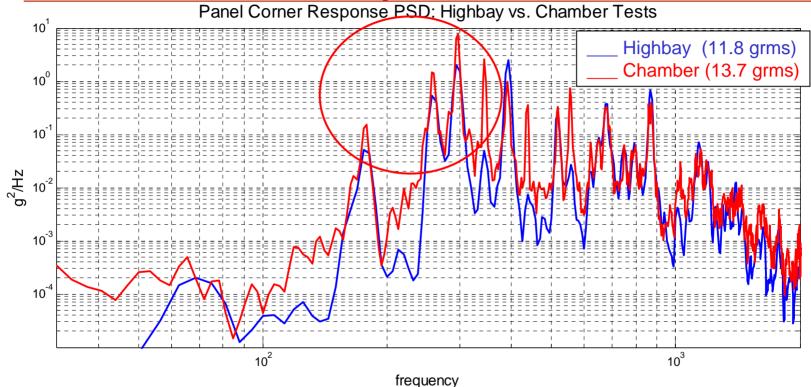
• Amplifier rack

- 5 Crown MT5002VZ
 - 5 kW (2.5 kW/chan)
 - w/ programmable input processor module
- 1 Crown MT2402
 - 2.5 kW (1.25 kW/chan)
 - w/ programmable input processor module
- IQPIP-USP2 computer control system

PC-based digital amplifier control

- Control parameters set over ethernet
- Set driver crossover frequency
- Set voltage limits for protection
- Monitor power draw and thermal

Test Equipment - Control


- Random controller and data acquisition
 - Spectral Dynamics Jaguar Acoustic Control & Analysis
 - Same HW as used for random vibration closed loop control
 - SW modified for random acoustic control and analysis
 - Data acquisition and data reduction (spectral analysis)
 - SCSI drive
 - Real time data streaming and storage
- Remote communication interface for Jaguar
 - Sun workstation

Panel Response (cont.)

Example configuration (Response at panel free corner)

- A number of modes more readily excited in chamber space test than in highbay test
 - May possibly be effect of support boundary conditions at corners

