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Launch Vehicle Acoustic Environments

Liftoff
Transonic

Max-g

Acoustic levels within the
fairing are generally most
severe shortly after liftoff.

Acoustic levels outside the
faring are generally most
severe at and near transonic
conditions.
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Acoustic Test Procedures

Reverberant Chamber
» Test levels can be set with high accuracy
» Test is repeatable

> Acoustic field is diffuse — sound waves are
iIncident from all directions

Progressive Wave
» Higher levels can be achieved

> Sound waves incident from one direction -
grazing
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Acoustic Test Specifications

Specifications for acoustic spectra are meet with
great accuracy using today’s test chambers.

Specifications for spatial cross-correlation (or
wavenumber spectra) are given less attention —
testing in a reverberant chamber may be required.

When testing is conducted to determine fairing
noise reduction performance, the directivity of the
liftoff acoustic field should be considered.
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Payload Space Acoustic Levels
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Flight/Test Differences

Differences between the fairing noise reduction
measured in a test chamber and measured in flight
are attributed to the differences in the directivity of
the acoustic field during liftoff.
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Modal Response

The response of a single mode can be determined
theoretically

W, (F) =| Hy () [ dx [] dx" Wiy (%, X', )W (X)W (X')
\ )
. NRD S

frequency response cross-spectrum of the mode
function for the mode acoustic field shape

Unfortunately, the cross-spectrum for the flight
environment is not known so that engineering
judgment must be used in evaluating the modal
response.
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Modal Response - Wavenumber

The response of a single mode can also be
determined from the wavenumber spectrum

W, (F) = [Ho (F) [ dk Wi (k) [@n (k)]
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spectrum of the transform
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mode
shape

frequency response
function for the mode
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Modes in Wavenumber Space
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Classification of Resonant Modes

Resonant mode

o
@ Non-Resonant mass-law mode

(@) Non-Resonant stiffness-law mode
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Excitation of Modes by a Diffuse Field

Resonant mode

o
@ Non-Resonant mass-law mode

(@) Non-Resonant stiffness-law mode
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Modes excited by a diffuse field K,
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Excitation of Modes by a Progressive Wave

Resonant mode

o
@ Non-Resonant mass-law mode

(@) Non-Resonant stiffness-law mode
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Modes excited by a Ky
progressive wave
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Excitation of Modes by a Semi-Diffuse Field

Resonant mode

o
@ Non-Resonant mass-law mode

(@) Non-Resonant stiffness-law mode
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Modes excited by a semi-diffuse field Ky
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Conclusions

Flight measurements of the cross-spectrum of the
liftoff acoustic field are needed.

Measurements of fairing noise reduction obtained
In a test chamber must be corrected to obtain
flight predictions.

Noise mitigation methods should take into
account the directivity of the excitation.



