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The Smallwood algorithm for calculation of Shock Response Spectrum is perhaps the
most widely used. It is based on the ramp invariant method for digital filter design. As
such, it has 2 built-in low-pass characteristic, which limits its usability. A simple and
computationally efficient pre-filtering of the signal under analysis is proposed that extends
the usable frequency region of the algorithm substantially.

NOTATIONS
=  acceleration [m/s"]
mass [kg]
=  damping constant [Ns/m]
=  spring constant [N/m}
laplace variable, complex frequency [rad/s]
=  resonance frequency [Hz)
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angular resonance frequency [rad/s)
=  resonance gain, quality factor

=  sampling interval [s]

=  z-transform variable
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INTRODUCTION

The Smallwood algorithm is thought to be the most commonly used method to calculate the shock response spectrum,
SRS. The algorithm was introduced in 1980 by David Smaliwood in the 51® Shock and Vibration Bulletin, [1].

The basic part of a SRS algorithm is the filtering mechanism of a damped single degree of freedom, SDOF,
mechanical system. The signal under analysis is fed to the SDOF filter and the maximum output is determined. Then
the SDOF resonance frequency is changed, the signal is filtered again, and a new maximum value is determined. The
plot of the maximum values versus the SDOF resonance frequencics makes up the SRS. The problem of how to
determine the maximum value in a sampled system is not discussed here.



SDOF SYSTEM

gree of freedom mechanical system is shown in figure 1 with the usual notations.

(',z SRS fitter. Resonancs frequency 100
y ‘

m a2 1
. 10
é’w"
£
k ‘————I c
10™
-2|
at 05 00200 %00
requency [Hz
1. Single degree of freedom system. Figure 2.  Transfer function for SI

Tras fe ¥ function from the applied base acceleration a, to the mass acceleration a, could be calcula
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is often characterized by its resonance frequency f, and its resonance gain Q:

1 |k
o —‘5;“/; (Hz]
gy =2n f, [rad/s)
2 fym

g="TL

c

20

H(s)=22=
4 2428402

A+ ¢ gde of the transfer function H(s) with f, = 100 Hz and Q = 10 is given in figure 2. Pleas & 1o <
“tivn value for zero Hz is exactly one, and that the gain at resonance is (approximately) Q.
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DIGITAL FILTER DESIGN, IMPULSE INVARIANT METHOD

There are many ways to construct a digital filter, once the analog function H(s) is given. One simple methc
“Impulse Invariant Transform”. In this method, a digital filter is designed that has the same (sampled) [ (o /7607 e
response as the analog filter. The scheme for the design is as follows: (a simple example is given)

¢ Start with H(s) !
s+a
e Calculate the impulse response e
e  Change the time t to a satpled version, nT e
e Take the z-transform with respect to n z—ez“‘T
. .. o T
e  Multiply by the sampling interval T and simplify PR

We now have arrived at a digital filter that could be realized in the usual manner with a recursive diy / #< / L1 #r
algorithm. The mechanics of the filter design could easily be performed for instance in Mathcad. The multip/ 7,’.7)
with T is necessary to get the right scaling of the filter.

If we apply this technique to the SDOF filter in (3), we get:
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To get the DC (zero frequency) response, one has to set z = 1. This gives



by + by

H(l)=
(1) I+a;+a,

2A+2A-¢*-(C-sinB-cosB)

H(l)=
1-2¢* - cosB+e %4

which is not identically equal to one. This is a major drawback of the impulse invariant method, and stems from the
fact that the impulse response is not filtered to avoid aliasing. If the sampling frequency is high compared to the
resonance frequency of the SDOF, H(1) tends to one. The DC response for the impulse invariant filter as a function

of the SDOF resonance frequency is given in figure 3.

T The high frequency part of the SRS comes from
T SDOF systems with high resonance frequencies. In
many cases the frequency content of the studied signal
is then below the resonance frequency, and the SRS
value is determined by the low frequency behavior of
the SDOF system. So, the bad behavior of the low
frequency part of the impulse invariant realization of
the SDOF filter results in errors in the high frequency
part of the SRS.
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RAMP INVARIANT METHOD

One way to get rid of the problem with the impulse invariant method is to use the ramp invariant method instead. In
this method, one can imagine that the samples of the impulse response of the SDOF filter are connected by straight
lines. This has a low-pass filtering effect, which helps with the aliasing problem. To make a ramp invariant filter, the
following procedure should be followed (the same example as for the impulse invariant method is used):

o Start with H(s)/s

s  Calculate the impulse response

e Change the time t to a sampled version, nT

Z

1
(s+a)sz

iz-(e'“T—I)+iT-

a a

1—-aTe™ —7 4 y(~]+aT+e7 )

e  Take the z-transform with respect to n
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aZ(Z__e—aT)

—l+aT+e T +77(1-aTe™ -7 )

. (z—1) -
e Multiply by T and simplify
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Figure 3. DC gain for impulse invariant method.



The last multiplication takes away the z-transform of the ramp 1/s® that has been introduced and scales the filter
properly. Details of the mathematics behind the method may be found in the literature.

One finds that the ramp invariant method introduces a lot more algebra to calculate the filter coefficients. For general
second order filters (for instance SDOF relative displacement or filters defined by poles and residues) it’s a
formidable task. David Smallwood writes in his paper “(afier much algebra)” which is an understatement. Today it is
much simpler with programs like Mathcad, but still one has to very careful. The complexity of the calculation
depends heavily on the choice of parameters. With the selection of intermediate parameters A and B in this paper, the
work for the SRS is quite straightforward.

The ramp invariant SDOF filter turns out to be:

bD +bj ‘Z‘l +b2 ’Z~2
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where
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o Be m
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a,=-2¢* cosB

_ =24
a,=e

and

A:mLT
20

B=w,T- {1~

7 (10)

402
as before.

We find that the denominator is the same as for the impulse invariant filter, and that one extra term is added to the
numerator. The DC response is identical to one for all parameter combinations. This means that the SRS for high
frequencies, where the frequency content of the analyzed signal is much less than the SDOF resonance frequency,
will be error-free.

What is then the price we have to pay?

As mentioned before, the ramp invariant method is equivalent to connecting the samples with straight lines. That is
again equivalent with convolving the sampled time signal with a triangle, see figure 4. That means that the spectrum
of the signal is the multiplication of the signal spectrum with the Fourier transform of the triangle, see figure 5. The
expression for the Fourier transform of the triangle is:

 sin{ fT ) R
T
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Figure 4. Convolution with a triangie Figure 5. Fourier transform of triangle

Figure 7 shows the result of a simulation. The test signal is an exponentially damped sine, which frequency is allowed
to vary. The SRS is computed and the SRS maximum value is saved and then plotted as a function of the test signal
frequency. As a comparison, the same procedure is performed with ten times higher sampling frequency. The ramp
invariant SRS algorithm is used in both cases, and the result is normalized to the value for Jow frequencies. As
expected, we find an error in the calculation that is explained by the introduced low-pass filter.
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igure 6.  Filter shapes for ramp invariant method Figure 7.  Simulation result
PRE-FILTER OPTIMIZATION

It the operations involved in the calculations gre linear, we may introduce a pre-filter, acting on the input signal, to
Co hepensate the low-pass filter effect, A low order filter has been chosen, and the parameters of the filter were given
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Maximum SRS for test signal, ramp invariant method
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Figure 8. Result of pre-filter optimization. Figure 9.  Simulation with pre-filter.

Figure 9 shows the result of the same simulation as above, this time the comparison is made between standard ramp
invariant method and the version with pre-filter. We find that we no longer have the bias from (11), the only errors
are basically coming from the maximum detection problem. The useful frequency range is now extended to 40% of
the sampling frequency. The pre-filter from the optimization furns out to be:

0.8767 +1.7533z~ +0.87677* 12
1416296771 +0.8111z7% +0.0659773

Hy(z)=

The filter is applied in MATLAB with the filtfilt function, which means that we have no phase distortion of the input
signal. From the MATLAB manual:

“After filtering in the forward direction, the filtered sequence is then reversed and run back through the filter; The
result is the time reverse of the output of the second filtering operation. The result has precisely zero phase distortion
and magnitude modified by the square of the filter's magnitude response.”

As the low-pass filter in (11) is independent of the SDOF parameters and only determined by the sampling frequency,
we may use the same pre-filter for all SDOF filters. So, the input signal is pre-filtered with the filter in (12) and then
the usual method is used. This adds only a small extra computation time to the process, as it is only performed once.

DISCUSSION AND CONCLUSION

A pre-filter has been introduced, that substantially expands the useful frequency range of the ramp invariant method
for SRS calculations. H possible, one should use a sampling frequency that is at least ten times the highest frequency
of interest. This makes the errors small when using the standard (Smallwood) ramp invariant method and it also
makes the maximum detection problem easy to handle. If for some reason one has to analyze a recorded signal in a
frequency range that is above some 10 % of the sampling frequency, the proposed method may be used. It eliminates
the low-pass problem of the standard method and the SRS may be calculated up to 40% of the sampling frequency.
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