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Introduction

The purpose of this tutorial is to derive for a method for analyzing rotating beam vibration
using the finite element method. The method is based on Reference 1.

Theory

Consider a beam, such as the cantilever beam in Figure 1. Assume that the hub radius is
negligible compared with the length L.
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Figure 1.

The variables are

E is the modulus of elasticity

is the area moment of inertia

is the length

IS mass per length

is the hub rotational frequency (radians/sec)
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The product El is the bending stiffness.



Let y(x,t) represent the displacement of the beam as a function of space and time.

The free, transverse vibration of the beam is governed by the equation, as taken from
Reference 1.
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Equation (1) neglects rotary inertia and shear deformation. Note that it is also independent
of the boundary conditions, which are applied as constraint equations.

The following derivation is an extension of the one given in Reference 2.

Assume that the solution of equation (1) is separable in time and space.
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The partial derivatives change to ordinary derivatives.
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The left-hand side of equation (6) depends on x only. The right hand side depends on t
only. Both x and t are independent variables. Thus equation (6) only has a solution if both

sides are constant. Let c02 be the constant.
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Equation (7) yields two independent equations.
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Equation (10) is a homogeneous, forth order, ordinary differential equation. The weighted
residual method is applied to equation (10). This method is suitable for boundary value
problems.



There are numerous techniques for applying the weighted residual method. Specifically,
the Galerkin approach is used in this tutorial.

The differential equation (10) is multiplied by a test function ¢(x). Note that the test
function ¢(x) must satisfy the homogeneous essential boundary conditions. The essential
boundary conditions are the prescribed values of Y and its first derivative.

The test function is not required to satisfy the differential equation, however.

The product of the test function and the differential equation is integrated over the domain.
The integral is set equation to zero.
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The test function ¢(x) can be regarded as a virtual displacement. The differential equation

in the brackets represents an internal force. This term is also regarded as the residual.
Thus, the integral represents virtual work, which should vanish at the equilibrium
condition.

Define the domain over the limits from a to b. These limits represent the boundary points
of the entire beam.
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Integrate the first integral by parts.
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Note that
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Thus,
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Integrate by parts again.
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The essential boundary conditions for a cantilever beam are

Y(a) =0 (19)
dy
i 0 (20)
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Apply the boundary conditions to equation (18). The result is
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Note that equation (26) would also be obtained for other simple boundary condition cases.

Now consider that the beam consists of number of segments, or elements. The elements
are arranged geometrically in series form.

Furthermore, the endpoints of each element are called nodes.

The following equation must be satisfied for each element.
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Now express the displacement function Y(x) in terms of nodal displacements y -1 and y j

as well as the rotations 6 ;1 and 6 j .
Y(x) = Ll yj_l + L2 yj + L3 hej_l + L4 hej_l , (J-1h <X< jh
Note that h is the element length. In addition, each L coefficients is a function of x.
Now introduce a nondimensional natural coordinate & .
E=j—x/h

Note that h is the segment length.

The displacement function becomes.

Y@ =L1yj1+Loh6j1+L3yj+Lghbj 1, 0 <E<1
The slope equation is

Y'(€)=L'"yj1+L2"hOj 1 +L3"yj +L4'h0j1, 0 <E<1

The displacement function is represented terms of natural coordinates in Figure 2.
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Figure 2.

Represent each L coefficient in terms of a cubic polynomial.

L = Ci1+Cip&+CigE2 +Cj4 £, i=1,2 34
(33)
Y(E) = {011+012§+013 &% +c14 iS}yj—l
+ {021+C22i+023§2 +024~i3}hej—1
+ {031+C325+C33&2 +C34&3}yj
+ {C41+C42<§+C43§2 +C44&3}h9j ,  0<g<1
(34)
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Y'(©)= {C12+ 20135 +3C14 iz}yj'—l
+ {C22+2023§+3C24§2}h9j_1
+ {C32+2033§+3C34§2}yj

+ {042+Zc43§+3c44§2}h6j . 0<e<1

(35)

Solve for the coefficients ¢ j. The constraint equations are
Y(0) =y; (36)
YO =yjq (37)
Y '(0) =—ho;j (38)
Y'(®)=-h6jy (39)

The coefficients were determined in Reference 1. The resulting displacement equation is

o=+ {32 -28fya + | 2-fnojs
+{1—3 §2+2§3}Yj +{—§+2§2—§3}hej , 0<&<1

(40)

Recall
g=]-x/h (41)

Thus
dg = —dx/h (42)
—hdg = dx (43)
g—i =-1/h (44)
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Note
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dx dx dg
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Now Let
Y)=L' @&, (i-Dh<x<jh, &=j-x/h (48)
where
Ly =382 -2¢3 (49)
Ly =g%-¢° (50)

Ly=1-3 &2 +2¢3 (51)
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Ly =-£+28% g3 (52)

E:[ Yj-1 h6j1 yj h6; ]T (53)

The derivative terms are

Enam=(1%.gTa, (-Dh<x<jh, &=j—x/h (54)
dx h

2
-Q—Yu)=Q£J1;T a, (j-Dh<x<jh, &=j—x/h (55)
dx? h2

Note that primes indicate derivatives with respect to &.

In summary.
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Recall

e e

w2 [ 00 Y(x) dx =0
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The essence of the Galerkin method is that the test function is chosen as

d(x) =Y(x) (60)

Thus

ol2 1 990 [dY(X) x2 )dY(x)

—pcozj [Y(X)] 2 4x =0

(61)
Change the integration variable. Also, apply the integration limits.
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dg = —dx/h (63)
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&=j—x/h

E—j=—x/h
j—&=x/h
(i=gh=x

R e D T
e A SR

16

-

(64)
(65)
(66)

(67)

(68)

(69)



ep{lmelleT ol
+§EQZLZI§{1“‘E#J@]E a]}da

—hpcozj.(:)L ETi]ET é] dg=0

(70)
[h%JEIj; PaTeeT a e
2,2
e s e
—hpmzj; { ETI:I:T a }d&:O
(71)

+a T{%%QZLZI;{[l—MJuLT }d&}a

(72)

17



h3 L2

)Gl }déﬁﬁﬂzﬂfé{[l—mjbi]}da
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For a system of n elements,

Kj—©®Mj=0, j=12,..n (74)
where

T T T R e I

h L2

(75)

M= hpfo {LLT Jae (76)

An element stiffness matrix for the first term on the right-hand-side of equation (75) was
derived in Reference 2. The elemental mass matrix was also derived in Reference 2.

By substitution,

| 6c-622 |lpe-6:2 26-3t2 —6 4682 —14+48-3c2
pTo| s
- 6 £+682

| —1+4£-3¢2 |

(77)

The following matrix multiplication and integration were performed using wxMaxima
12.01.0.
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36e4-72¢3 43622 1864 -30e3 +1062 -3pe% +72¢3 - 3682
94 1263 +4e2  -188% +3083 -12¢2
36e4 - 7223 + 3662

T11 T12 T13 Ti4

Ul (G-e2n2 [, .1 T22 T23 T24
Io{l—JbL—]}dg_ T33 T34

|2
T44

T11=(42%L2-42%h 2% 2+42%h"2%j-12%h"2)/(35*L12)
T12=(7*LA2-T*hA 2% 2+2*h"2)/(70%L"2)
T13=-(42*LA2-42%hA 2% 2+42%h"2%j-12*h"2)/(35*L"2)
TL14=(7*LA2-T*NA2%A2+ 14*NA2%]-5*h2)/(T0%L"2)
T22=(14*L"2-14%h"2%jA2+21%hA2%j-9%h"2)/(105*L2)
T23=-T12
T24=-(T*LA2-T*h"\2%jA2+T*N"2%j-3*h"2)/(210%L"2)
T33=T11

T34=-T14

T44=(14*1L"2-14*h"2*j"2+T*h"2*j-2*h"2)/(105*L"2)
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The displacement vector for beam is

Y1
0
' (90)
Y2
| 02 ]
The elemental stiffness matrix for beam bending is
12 6h -12 6h T11 T12 T13 Ti4
El ah? —eh 2n%| 1p 5 5 T22 T23 T24
Kj=|—=% +==Q°L
h3 12 -6h| 2h T33 T34
4h? T44
(91)
The elemental mass matrix for beam bending is
156 22h 54 —13h
o (e 4h? 13 —3h? 0
1= {420 156 —22h (92)
4h?

Note that h is the element length. Also, j is the node number in the following formulas.
The following limits apply to the next set of equations.

(1-Dh<x<jh, &=j-x/h, 0 <&<1
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