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I. Introduction

During ascent of a space vehicle system from its launching pad, the noise
generated by its propulsion system creates considerable vibratory motion in the
vehicle structure. Consequently, any component and/or payload attached to the
structure will experience a dynamic loading condition. Predicting these acousti-
cally induced "random" loads is difficult because of the complexity of the acous-
tic environment and the vehicle structure. Conventional finite element analysis
can be used to predict the response, i.e., loads, for relatively low frequency
vibration, but the number of degrees of freedom becomes prohibitive for higher
frequencies.

In 1954, John W. Miles performed an analysis z that led to a simplified
method for calculating random loads. This analysis dealt with the response of a
single degree of freedom (SDOF) system to a white noise input. This analysis,
later to become known as Miles' relationship, provides estimates of the MSV (mean
square value) of the response of a SDOF system to a white noise excitation.
Miles' relationship (MSV) as used in industry today is:

Miles _(_/2)Q Fn Go (i)

where:

Q = system amplification factor = 1/25

= system damping

Fn = system natural frequency

Go = power spectral density of input signal (a constant)

The form of the Miles' relationship as shown in equation (1) was obtain d by
integrating the SDOF expression for all positive frequencies, i.e., MSV = Go_IH
(f) 12df.

II. Analytical Procedure

Miles' relationship gives a simple method of estimating the mean square re-
sponse of a component excited by white noise. However, Miles' relationship is
commonly used to predict the response of a component to a more complex input exci-
tation with the assumption that the complex environment can be approximated by
white noise, i.e., to any arbitrary shaped input spectra. Actually, a component
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will respond at manydifferent frequencies with different amplification factors,
but the greatest response, in general, is at the fundamental frequency and the
responses at all other modesare assumedto be insignificant. By estimating a
system gain (Q) and natural frequency (Fn) and using equation (i), the mean
square value of response for a componentor payload can be generated very quickly
and easily if the above assumption of a white noise spectrum is valid.

Miles' relationship has proved very popular when a random load must be gene-
rated quickly, precluding complex computer analysis. Nowthat small, inexpensive
desk-top micro computers are available a more exact but equally rapid method of
estimating meansquare responses for any type of input spectra is being sought.
This more accurate method would in effect reduce conservatism in manycases by
reducing inaccuracies. A comparison of one such method with Miles' relationship
is shownherein. Consider the following single input constant parameter linear
system:
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where: H(f) is the frequency response function and h(_) is the impulse re-
sponse function . For this system, the input and output can be related as
follows:

Gy(f) = IH(f)I2Gx (f) (2)

Where: Gx(f) = power spectral density (PSD) of the input (excitation)

Gy(f) = power spectral density of the output (response)

The meansquare value of the response is simply

_/2y= fo°°Gy(f)df = foOOiH(f) i2Gx(f)df (3)

which is the area under the response curve.

For a single-degree-of-freedom system IH(f) l 2 can be written as

iH(f) i2= I
[1 - (f/fn)_] _ + 4_z(f/fn) 2 (4)

where fn = natural frequency.

The above described SDOF system is illustrated in figure 2a.

For anything other than a white noise input spectrum, a closed form solution

of equation (3) is very cumbersome and tedious and can only be obtained for very
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idealized types of sloped input spectra. However, the mean square value can be
approximated by replacing the integral form of equation (3) with a summation:

N

_y2 : z Gi(fi)IHi(fi)12Z_f
i=O

(5)

If N is large enough, equation (5) converges to the exact solution. The real
advantage to equation (5), however, is that it can be solved with a computer
very easily.
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Figure 2. Typical SDOF Systems
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A computer program that solves equation (5) has been developed and was used
to compare an essentially exact solution to Miles' relationship. Three parame-
ters were varied in the comparison: the input spectrum shape, the amplification
factor, and the system natural frequency. The results of equation (5) were then
ratioed to the mean square value estimate provided by equation (I) and plotted
versus Q for each case This ratio, Miles/_y: then provides an immediate com-
parison between the idealized estimate of th_ I._SV of the response obtained by
using the _iles' relationship and the true MSV.

III. Comparison of Results

The first case that was examined was a flat (white noise) input spectrum to
validate Miles' relationship (see figure 2b). Figure 3 presents the ratio of the
Miles estimate to the true mean square value as detemined by equation (5) plot-
ted versus Q. The natural frequency of the SDOF system in this case was 100 Hz
and the limit of the summation was 0 - 2000 Hz (dashed line) and 20 - 2000 Hz
(solid line). The results indicate very good agreement with Miles' relationship
(<6%) at low Q values. Very little error associated with truncating the lower
end of the spectrum is evident and, further, the truncation at the high frequen-
cies (2000 Hz) produced essentially no error.

Figure 4 shows a Miles/¢y comparison with a shaped input spectrum. The in-
put spectrum has an increasing slope from 20 to 300 Hz that varies from 2 dB per
octave to 20 dB per octave. This figure shows a very significant result: for a
natural frequency at the break frequency (300 Hz), Miles' relationship is consider-
ably conservative, but at a natural frequency on the slope (i00 Hz) Miles'
relationship isunconservative. In the range of damping (Q = 4 to 12) and spectral sl_
(2 to 12 dB per octave) Miles' relationship varied from the true mean square value

c'by as much as _50,_. When the natural frequency of the system is moved to the flat
portion of the input spectrum above the break frequency (400 Hz) the input begins
to approach that of the white noise case and Miles' relationship approaches the
true mean square value (figure 5).

Next, a typical vibration criteria was used as an input to the SDOF system.
Figure 6 shows the spectral shape of the criteria and figure 7 shows the compari-
son. There is a rather large variation between Miles' relationship and the true
mean square value at the higher damping, depending upon the natural frequency.
The most deviation occurred when the natural frequency was at the transition from
a slope to a flat portion of the input spectrum (200 and 650 Hz). This case
illustrates the transition from conservatism to unconservatism by simply moving
the natural frequency.

The final case shown is that of an actual Space Shuttle criteria (figure 8).
The comparison is shown in figure 9. This input spectrum is relatively flat
(low slopes), i.e., approaching a white noise input, and Miles' relationship gives
a fairly good estimate of the true mean square value (within 20%).

The evidence shown above indicates that using Miles' relationship for other
than'that for which it was intended, i.e., white noise input, is an unreliable
estimator of the true mean square value of a SDOF system. Miles' relationship is
usually assumed to give a conservative estimate, but in many cases that is not
true and, in addition, it is very difficult to predict in advance whether the



Miles estimate will be conservative or not. By using a computer algorithm based
on equation (5), a muchmore accurate meansquare value can be calculated. This
would reduce uncertainty and, consequently, conservatism or unconservatism in
randomloads since there is more confidence in the answer.

IV. Further Consideration for Obtaining Design Loads

Twomore areas in predicting space vehicle design loads must be examined
more thoroughly in the future. First, the statistical crest factor for a random
response should be investigated. Currently, randomloads are calculated by
multiplying a crest factor by the RMSvalue of the predicted response. This gives
a statistical estimate of the peak response value, which would be the maximum
expected load. Generally this crest factor is based on a 99.87%confidence level,
which is the so-called "3o" value. This 3o value may in fact be too conservative
and should be reviewed.

Second, the method of combining low and high frequency (random) loads should
be examined. The current method is to combine the loads so that the absolute
worst case for both types of loads is used in the structural analysis. A statis-
tical survey should be conducted of the phasing as well as direction of the low
and high frequency loads so that all loading conditions are not ultra-conservative.
Finally, these load prediction methods must be backed up with flight instrumenta-
tion to verify the procedures. This study of randomloads prediction procedures
is part of a long-term study of loads combination technology.

Flight instrumentation will becomeincreasingly important for verification
of the combined loads prediction procedure. The only way to have a reasonable
amount of confidence in the loads is to measure the response of several payloads
on the Space Shuttle and correlate them with various prediction methods. To re-
duce the conservatism in dynamic loads, more work remains to be done both in
reverifying old methods and defining newmethods.

V. Conclusion

The results presented herein showvery clearly the limitations of the use of
Miles' relationship for estimating the meansquare value (MSV)of the response of
a single-degree-of-freedom system. Considerable uncertainty in the predicted
response results when applying Miles to any type of realistic shaped input spectra
(criteria). These predicted responses can be either conservative or unconserva-
tive and depend critically upon where the SDOFsystem's natural frequency falls
with respect to the input criteria.

It is also shownthat with the aid of small, desk-top microprocessors, soft-
ware can be very quickly and efficiently written which will provide a very
accurate and reliable value for the "true MSV"of the response of a SDOFsystem
to any arbitrary input spectrum shape (criteria).
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Gx(f)

Figure G. Typical VibraTion Criteria.
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