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Introduction

Dynamic systems can be characterized in terms of one or more natural frequencies. The
natural frequency is the frequency at which the system would vibrate if it were given an
initial disturbance and then allowed to vibrate freely.

There are several methods available for determining the natural frequency. Some
examples are

Newton's Law of Motion
Rayleigh's Method
Energy Method
Lagrange's Equation
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Note that the Rayleigh, Energy, and Lagrange methods are closaly rel ated.

Some of these methods directly yield the natural frequency. Othersyield a governing
equation of motion, from which the natural frequency may be determined.

Thistutorial focuses on Lagrange's Equation, which yields the equation of motion.

Derivation
The following derivation is taken from Reference 1.
Lagrange's equations are based on generalized coordinates.

Generalized coordinates are independent coordinates which describe the motion of the
degrees-of-freedom of a system.

Consider a conservative system where the sum of the kinetic and potential energiesis
constant. Thedifferential of the total energy isthen zero.

d(T+U)=0 (1)



Let
gj beageneralized displacement coordinate,
gj beageneralized velocity coordinate.

The kinetic energy T isafunction of both the generalized displacement and velocity
coordinates.

T=T(ay,d2, -...aN, 81,82, 0N) (2

The potential energy U isafunction only of the generalized displacement coordinates.

U=U(q1.92, -.-.aN) 3

Thedifferential of T is
[o] o] .
The equation for kinetic energy can be stated as
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T=sa a mijdidgj (5)
i=1j=1

Differentiate the kinetic energy with respect to g .

N
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=a Mijqj (6)
The previous differentiation step is explained by the examplein Appendix A.

Multiply equation (6) by ¢; and sum over i from 1 to N.
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Equation (5) can be expressed as
N
=a a mijaidj (8)
i=1j=1
Now substitute equation (7) into (8).

2T = a ﬂch (9)

Form the differential of 2T by using the calculus product rule.
N
ﬂT

o dg; (10)
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2dT = adg— ';
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Subtract equation (4) from (10). Note that the second term in equation (10) is eliminated.
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The quantity dt can be shifted such that
f.j O'eﬂT dQ|
dg_—— (13)
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Substitute equation (14) into (12).
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Now take the differential of the potential energy term.

U
du = a = dg; (17)
2, 1

Add equations (16) and (17).
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dT+U)=q i—§-—i- — +-—ydq; 18

(r+v) El}dtgﬂqi,e, T ﬂQi%q' (9
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The N generalized coordinates are independent of one another. Thus dg; may assume
arbitrary values. Thus, equation (19) requires

desfT o T |, U
dtgﬂqlﬂ p[[oF ﬂq.

=0, i=12---,N (20)

Equation (20) is Lagrange's equation for the free vibration of a conservative system.

Equation (1) can be modified if the system is subjected to work by external, non-potential
forces.

d(T+U) =dW (21)

where dW isthe work of the forces when the system is subjected to an arbitrary
infinitessmal displacement.

The principle of virtual work allows the work to be expressed in terms of generalized
forces Q; associated with generalized coordinates q; .



N
dW = § Q; da; (22)
i=1

Lagrange's equation for a system with a nonconservative force is thus

desfT o 9T U
dtgﬂqlﬂ p[[oF ﬂq.

=Qj, i=12---,N (23)

Application

Examples are given in Appendices B and C.
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APPENDIX A
Again, the equation for kinetic energy can be stated as

N
Q o

T=-a a mijdidj

i=1j=1

N

N
o]
1=

Note that

mjj = Mjj
Assume that N=3.
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T=2a a mjdiq
i=1j=1

1 . o o
T=§{an1Q1+m12Q1Q2+m13Q1Q3

+M21 Q201 + M2 Q242 +M2302 Q3
+mz1 4341 +M320302 +m33Q3Q3}

Simplify equation (A-4) in terms of mass symmetry.

1 . o .
T=§{an1Q1+m12Q1Q2+m13Q1Q3

+mM120201 + M2 Q202 +M23420Q3

+m13Q3Q1+m23Q3Q2+m33Q3Q3}

1 . . L
T= E{mnmz +2myp g142 +2my3G1 93
+ Moy G2 +2mp3 6243

+mgz3 CI32}

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)



T =%l m]lle +mpQ1Q2 +mM130; 43

N
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Now take the partial derivatives.

AL M1 G + M2 g +M134Qs3
Ta1

R m1p Q1 + M22 2 + M2303
faz

AL m13Qq + Mp3 0 +M3343
fas

Equations (A-8) through (A-9) can be summarized as
ﬂ_ﬂ;:mﬂ 41 +mpyi g2 +mg 43
|

By symmetry,

1T . ) )
—— =Mj1q1 +Mj2(2 +Mj3q3

flai
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fai
=1

(A-7)

(A-8)

(A-9)

(A-10)

(A-11)

(A-12)

(A-13)

By induction, the partial derivative formulafor a system of N degrees-of-freedom would

be
N
i o) )
o a Mijdj

=1

(A-14)



APPENDIX B

Simple Pendulum Example

Consider a conservative system. An exampleisthe pendulum shown in Figure B-1.

Figure B-1.

Let
m = pendulum mass,
= length,
g = angular displacement.

Assume a small angular displacement.

Recall Lagrange's equation.

deeflT o T U
dtgﬂq.g flai ﬂq|

=0, i=12--,N (B-1)

The partial derivatives are changed to ordinary derivatives for a single-degree-of-freedom
system. The appropriate form for the pendulum exampleis

Ao oT du_ 62

dt&dgp dg  dq



The potential energy is

U =mgL(1- cosq)
du _ :
— =mgLsanq
dq

Thekinetic energy is

1 ")
T==—m(L
2(Q)

Now substitute equations (B-8) and (B-4) into (B-2).

m(L2@) +mgLsng=0

+=9nqg=0
q L q
g

g+>snq=0
q L q

For small angular displacements,

g

1+ 94=0
q Lq

Equation (B-12) is the governing equation of motion.

Simple harmonic systems are known to have an equation of the form

d"‘anq:O

(B-3)

(B-4)

(B-5)

(B-6)

(B-7)

(B-8)

(B-9)

(B-10)

(B-11)

(B-12)

(B-13)



where wp, isthe natural frequency. Thus, the natural frequency for the pendulum is

Wy, = % (B-14)
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APPENDIX C

Consider the two-degree-of-freedom system in Figure C-1. This system is an example of

coordinate coupling.
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The gray dot is the center of mass.

Figure C-1. Two-degree-of-freedom System

Let

m = mass,
J =rotational inertia,
k = gpring stiffness,
X =
q

trandation of center of mass,
=rotation.

Lagrange's equations of motion for this system are
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Thekinetic energy is
7=1m2 +£Jq2
2 2

Consider the kinetic energy with respect to the trandational displacement.

E:O
fix

T

—‘:m)'(
fix

gaéﬁij_mxz

dt X g

Consider the kinetic energy with respect to the angular displacement.

ﬂ:o

The potential energy is

U =%k1(x- Lq8n q)2 +%k2(x+L25in q)2

Consider the potential energy with respect to the trandational displacement.

%J:kl(x- Lysing)+ko(x +Losinq)

Consider the potential energy with respect to the angular displacement.
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(C-3)

(C-4)

(C-5)

(C-6)

(C-7)

(C-8)

(C-9)



%J =-kqLq(x- Lysing)cosq+koL o(x + Lo sn g)cosq (C-10)

The two Lagrange equations are thus

mx +kq(x- Lysing)+ko(x+Losng)=0 (C-11)

Jq- kqL1(x- Lysng)cosq+koLo(x +Losng)cosq=0 (C-12)

Now assume small angular displacement.
ms +ky(x - L1g)+ka(x +L20)=0 (C-13)

3q- kilg(x- Lg)+koLlo(x +L2q)=0 (C-14)

The two equations can be expressed in matrix form.

éan Ouexu é Kkp+ko - k1L1+k2L2u' l‘J é0u
é ué u, é ué u éu
e ué u-é 5 L,ueu-éua
g0 Jogad & kilg+kplo kil1? +koL22HE0f 804

(C-15)
Equation (C-15) is an example of static coupling.
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