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r of books, papers, and reports 

e). The present monograph attempts to 

shapes of free vibration of plates would be provided for the design or develop- 

ults would be provided for the researcher 

engineer can develop a qualitative understanding of plate vibrational behavior. 
For the afore a t  least two approximate formulas are given 
for estimates inally, the mathematical techniques used in 
the literature to solve the problem or related ones are pointed out in case more 
accurate results are needed, 

It is my hope that this monograph will reduce duplication of research effort 
in plate vibrations in the future (a very pointed example is that of the square 
plate clamped all around). In addition, the researcher is provided accurate 
numerical results for the testing of new methods (this is the reason that results 

ght significant figures in some cases). Finally, it is hoped that 
ive added perspective to the merits and complexities of applying 

analytical techniques to eigenvalue problems. 
IIE 
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Gaps in knowledge are made implicitly obvious by examining this work. 
For example, analytical results have been found for a clamped elliptical plate, 
and experimental results for the free case, but no results whatsoever have been 
found for the simply supported case. 

The scope of this study was limited by several considerations. Only the 
analytical results from plate theories were considered; that is, the governing 
equations are two-dimensional, not three-dimenpional. Materials were re- 
stricted to  those which are linearly elastic. Structures were not included in 
the study; for example, a rectangular plate supported by one or more edge 
beams was considered to be a structure. 

The primary logical division of this work is by the complexity of the 
governing differentia1 equations. Thus, the first eight chapters deal with the 
simplest “c1assicaI theory” of plates. The next three chapters introduce the 
complications of anisotropy, in-plane force, and variable thickness. Other 
complications are discussed in the twelfth chapter. The first subdivision is 
by geometrical shape; that is, circles, ellipses, rectangles, parallelograms, and 
so forth. Further subdivision accounts for holes, boundary conditions, added 
masses or springs, and so forth. 

I t  is presupposed that the user of this monograph will have at least an 
elementary understanding of plate theory. In  order to  increase understanding 
and to define notation and assumptions more clearly, a reasonably rigorous 
derivation of the plate equations is made in the appendix. 

Some statements about the format of presentation wil l  be useful in under- 
standing this work. It will be seen that the majority of results available are 
for the natural frequencies of free vibration and quite often only the funda- 
mental (lowest) frequency. Patterns showing node lines are frequently 
available for the higher modes. Mode shapes (deflection surfaces in two 
dimensions) are usually not completely specified in the literature. It should 
be remarked here that the mode shapes (eigenfunctions) cannot be completely 
determined until the frequencies (eigenvalues) are found. The mode shapes 
are generally known less accurately than the frequencies. 

Virtually no one in the literature evaluates the bending stresses due to a 
unit amplitude of motion. This information is obviously important, particu- 
larly for fatigue studies. The lack of results is undoubtedly due to the fact 
that the stresses must be obtained from second derivatives of the mode shapes. 
Not only does this require additional computational work, but also the mode 
shapes usually are not known with sufficient accuracy to give meaningful 
resdts for stresses. 

Frequency data were converted to the angular frequency o (radianslunit 
time) or to a corresponding nondimensional frequency parameter, where 
possible. Almost always the number of significant figures was kept the same 
as that in the original publication. In no case were significant figures added. 
In some few cases the number of significant figures was reduced because the 
accuracy of the calculations in the publication did not justify the numbers 
gven. Curves were not replotted but were photographically enlarged and 
traced to maximize accuracy. Quite often, when they are available, both 
tabular and graphical results are given for a problem. Tabular results are 
particularly important for measuring the accuracy of an analytical method, 
whereas curves are valuable for interpolation, extrapolation, and qualitative 
studies. In some cases many sets of results are given for the same problem. 
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In these cases each set was derived by a different theoretical or experimental 
technique; this permits a comparison of techniques. 

Two of the major goals of the project were accuracy and completeness. 
Some of the efforts made to maintain accuracy have been described in the 

eteness of results published through 
Writing of the manuscript began in the 

he well-known abstracting journals, 
re used in order to procure pertinent 
references were obtained from the 
e already procured. Approximately 

d. 

out the world who were 
ns. These letters listed 

r copies of any others which 
come to possess a reasonably com- 

plete set of literature in the field of plate vibrations. However, in spite of this, 
I am convinced that some significant publications are not included, particularly 
some which are known to exist but have been thus far unobtainable, especially 
books by Soviet researchers. 

In light of the preceding paragraph, I expect-indeed, hope-to receive 
considerable valuable criticism pointing out errors or omissions. In  addition, I 
would appreciate receiving copies of recent or forthcoming publications and 
reports which are pertinent. It is my intention to write a supplement to this 
volume after a few years have elapsed; such a document will correct any 
major mistakes or omissions in this work and wil l  report on further advances 
in the field. 

For historical record and recognition it should be pointed out that, ap- 
proximately 6 months after this project began, I discovered a notable work 
entitled “Free Vibrations of Plates and Shells,” by V. S. Gontkevich, published 
(in Russian) in 1964. A subsequent complete translation into English was 
made under the sponsorship of the Lockheed Missiles &, Space Co. This 
book purports to  do what the present monograph does and, in addition t o  plates 
and shells, covers the fields of membranes and stsened plates. I do not 
wish to criticize the work of Mr. Gontkevich. Indeed, if used with great care, 
his work can be used to supplement this monograph. Nevertheless, two 
objective comments concerning Gontkevich’s work must be made for the record: 

(I) The number of references on plate vibrations included is less than half 
of those in the present monograph. 

(2) The large number of typographical mistakes made and the difficulty 
in interpreting the work (in either the original Russian or in the English 
translation) decrease its usefulness enormously. 

The present monograph, sponsored by the National Aeronautics and 
Space Administration, is my first major undertaking in the mea of continuum 
vibrations. It is to be continued by a 2-year project which is currently in 
progress and summarizes the field of vibrations of shells. I would appreciate 
receiving technical papers and reports related to that field from the readers 
of this work. 

The support of the National Aeronautics and Space Administration is 
gratefully acknowledged. In particular, I am indebted to Mr. Douglas Michel 
of NASA, who not only recognized the potential value of this work, but 
was thinking of it before my proposal ever reached him. His technical com- 
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ments and advice during the course of the work were also greatly appreciated. 
I particularly wish to thank Messrs. Milton Vagins and S. G. Sampath, who 
did all the necessary work so that I could be free for the actual summarization 
and writing. Without their efforts in supervising the procurement of papers, 
in manuscript editing, and in providing technical criticism, this work would 
not have been possible. I wish to recognize the contributions of the project 
advisory panel, which consisted of Mr. Michel, Drs. Robert Fulton, W. H. 
Hoppmann, T. C. Huang, Eric Reissner, and Howard Wolko, who generously 
met with me twice during the course of the project and offered their comments. 
P also thank my colleagues, Drs. C. T. West and F. W. Niedenfuhr, for their 
technical advice. Finally, the enormous editorial assistance of Mr. Chester 
Ball, Mrs. Ada Simon, and Miss Doris Byrd of The Ohio State University is 
gratefully acknowledged. 

ARTHUR W. EEISSA 
T h e  Ohio State University 
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Chapter I 

un en s o  

The classical differential equation of motion 
for the transverse displacement w of a plate is 
given by (see app. A): 

d2W 
at2 DV4w + p -=O 

where D is the flexural rigidity and is defined by 

Eh3 
12(1-v2) D= 

E is Young's modulus, h is the plate thickness, 
v is Poisson's ratio, p is mass density per unit 
area of the plate, t is time, and V4=VzV2, where 
V2 is the Laplacisn operator. 

When free vibrations are assumed, the mo- 
tion is expressed as 

w= w cos wt 11.3) 

where w is the circular frequency (expressed in 
radianslunit time) and W is a function only of 
the position coordinates. Substituting equa- 
tion (1.33 into equation (1.1) yields 

(V4- k3 W= O ( 1 -4) 

where k is a parameter of convenience defined as 

(1.5) 

It is usually convenient to factor equation (1.4) 
into 

( V 2 f k 2 )  (V2-k2) w=o (1.6) 

y the theory of linear Merentia1 
the complete solution to equation 

(1.6) can be obtained by superimposing the 
solutions to the equations 

0.7) 

In  the case of a plate supported by (or 
embedded in) a massless elastic medium (or 
foundation), equation (1.1) becomes 

where K is the stiffness of the foundation 
measured in units of force per unit length of 
deflection per unit area of contact. If the 
foundation has significant mass, then its differ- 
ential equation must also be written and a 
coupled system of differential equations solved, 
which is beyond the scope of the present work. 

Assuming the deflection form (eq. (1.3)) and 
substituting into equation (1.8) again results in 
equation (1*4), where now 

Thus, all results presented in this section as 
pertaining to the classical plate equation (eq. 
(1.1)) can also apply to the case of elastic 
foundations by the simple use of equation (1.9) 
in place of equation (1.5). 

The location of a point P in polar coordinates 
is shown in figure 1.1. 

FIGURE l.l.-Polar coordinate system. 
1 
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1 .I .I Classical Equations 

coordinates is 
The Laplacian operator expressed in polar 

(1.10) V2= -+--+-- 3 2  1 b 1 2P 
W r b r  ?be’ 

Beding and twisting moments are related to 
the displacements by 

(1.11) 

ransverse shearing forces are given by 

b 
aT 

1 3  
rb8 

Qr= - D- (V’W) 
(1.12) 

Q@=-D--(V2w) 

edge reactions are 

he strain energy of bending and twisting of 
a plate expressed in polar coordinates is 

where dA=r dr de. 

.f .P Solutions 

When Fourier components in 6 are assu 

substituting equation (1.15) into equation (1.7) 
yields 

and two identical equations for W:* Equa- 
tions (1.16) are recognized as forms of Bessel’s 
equation having solutions (cf. work of McLach- 
lan, ref. 1.1) 

respectively, where Jn and Yn are the Bessel 
functions of the first and second kinds, respec- 
tively, and In and Kn are modified Bessel 
functions of the first and second kinds, respec- 
tively. The coeficients An, . . ., Dn determine 
the mode shape and are solved for from the 
boundary conditions. Thus, the general solu- 
tion to equation (1.4) in polar coordinates is 

W(r,  e>= 2 EAnJn(kr) +BnYn(b) 
n=o 

- t ~ n I n ( b ) + D n K ( ~ ) l  cos 

4- 5 [&Jn(kr) f EYn(bT) 
Tb=l  

+CIn(kr)+EKn(kr)]sin n8 (1.18) 

.P EtLlPTfCAL COORDlNATES 
Elliptical coordinates 4 , ~  are shown in figure 

1.2 and are related to rectangular coordinates 
x, y by the relation 

x + i y = ~  eosfi ( t+iq> (i= J-1) (1.19) 

where 2c is the interfocal distance. Separating 
real and imaginary parts of equation (1.19) 
yields 

(1.20) 
x=c cosh cos q 

y=c sinb sin 11 

3.1 Classical Equations 
The Laplacian operator in elliptical co- 

ordinates is (refs. 1.2 to 1.4) 

2 2- - 
cZ(c0sh 25-cos 2q) 
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Bending and twisting moments are related to  the displacements by 

2D d2w b2w (l--v)sinh2f *e (l--v)sin2q bw 

2 0  d2w b2w (l--v)sinh2f _- bw (l--v)sin2q bw 

Mi= - 2(Cosh 2,$-~0~2q) bpSYbqZ-(cosb 2t-cos2q) dt (cosh2f-cos 2q)& 

(1.22) c2(cosh 2.5-cos 2q) " ~ ~ ~ ~ ( c o s h 2 f - c o s  29) df (cosh2~-cos 2q) & M,= - 

3 b2W (cosh 2,$-cos 2q) 2D (1 -Y) 
~~~=--cz(cosh2f-cos2q)~ 

and the transverse shearing forces are given by (ref. 1.4) 

--(cosh 2f-cos 2q 

 COS 21) 
(1.23) 

242D 

2 3 D  

QE=C3(cosh 25-cos 2 ~ ) ~ "  

"=c3(cosh 2F-cos 2q)5/2 

where Ce,, ce,, Be,, se,, Fey,, Fek,, Gey,, 
and Gek, are ordinary and modified Mathieu 
functions of order m; C,, C:, S,, S:, F,, 
F:, G,, and G i  are constants of integration; 
and 

p=P=w .JJD (1.25) 

he complete solution to equation (1.4) is then 

= Wl+ w2 (1.26) 

For a solid region containing the origin, regdar- 
ity conditions require that half of the 'terms in 

equations (1.24) be discarded, and the complete 
solution becomes : 

Y 

X 

FIGURE 1.2.-Elliptical coordinate system. 
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1.3 RECTANGULAR COORDINATES 

shown in figure 1.3. 
The rectangular coordinates of a point P are 

Y 

FIGURE 1.3.-Rectangular coordinate system. 

.3.6 Classical Equations 
The Laplacian operator in rectangular co- 

ordinates is 

(1.28) 

ending and twisting moments are related to 
the displacements by 

b2W Mzu= --D (1  -v) - 
dy 

earing forces are given 

and the Kelvin-Kirchhoff edge reactions are 

The strain energy of bending and tuisting of a 
piate expressed in rectangular coordinates is 

dA (1.32) 

where dA=dx dy. 

1.3.2 Solutions 
General solutions to equation (1.4) in rec- 

tangular coordinates may be obtained by 
assuming Fourier series in one of the variables, 
say x; that is, 

Substituting equation (1.33) into equation (1 .S> 
yields 

d2Ym1 + (k2--a2)Pm1 =O 
(1.34) 

dY2 

dY2 
d2Ym2 - ( k q  d)Y,=O 

and two similar equations for y*,, With the 
assumption that k2>a2, solutions to equations 
(1.34) are well known as 

Ym,=A,sin Jk%2y+B, cosJk2-2y 

Ym2=Cm s i n h J W y + D ,  c o s h ~ ~ y  
(1.35) 

where A,, . . ., D, are arbitrary coefficients 
determining the mode shape and are obtained 
from the boundary conditions. If k2<a2, it is 
necessary to rewrite Y,, as 

Y,,=A, sinhd=y+B, c o s h J Z Z y  (1.36) 

hus the complete solution to equation (1.4) 
may be written as 

W(x, y) =g m=l  (A, sin J G Z y +  B, cos 4-y 
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f .4 SKEW COORDINATES 

shown in figure 1.4. 
related to rectangular coordinates by 

The skew coordinates 5, q of a point P are 
The skew coordinates are 

f=z--?/ tana 

q=- 
cos a 

Y (1.38) 

I .4.1 Ciassical Equations 

The Laplacian operator in skew coordinates 
is (ref. 1.6) 

Bending and twisting moments are related to 
the displacements by 

Transverse shearing forces are (ref. 1.7) 

b3W 3 CQS 8- 

+ (1  $2 cos2 p)  -2 b3W -cos p- 
Wrl 

-cos p a3w 4- (1+2 cos2 p> - a t 2 h  
(1.41) 

The edge reactions are (ref. where B= (?r/2) -a. 
1.7) : 

-2 cos p 

( 1.42) 
( I - Y )  d2W . b2W -sin a 

at The strain energy of bending and twisting of 
M,,=-D--- - 

C O S a  (b[bQ 
8 plate expressed in skew coordinates is 

(1.40) 

1.4.2 Sofutions 

--9 P 
I 
I 

I 
I 

There are no known general solutions to 
equation (1.4) in skew coordinates which allow 
a separation of variables. 

X * €  1.1.  MCLACHLAN, N.: ~ e s s e l  Functions for Engineers. 
Oxford Eng. Sci. Ser., Oxford Univ. Press 
(London), 1948. FIGURE 1.4.-Skew coordinate system. 
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Chapter 2 

es 

2.1 SOLID CIRCULAR PLATES 
When the origin of a polar coordinate system 

is taken to coincide with the center of the 
circular plate and plates having no internal holes 
are considered, the terms of equation (1.18) 
involving Yn(kT) and K,(kT) must be discarded 
in order to avoid infinite deflections and stresses 
a t  r=O. If the boundary conditions possess 
symmetry with respect to one or more diameters 
of the circle, then the terms involving sin ne 
are not needed. When these simplifications 
are employed, equation (1.18) becomes for a 
typical mode : 

Wn=[AnJn(kr) +CJ,(kr)] COS ne (2.1) 

where it will be understood in what follows that 
n can take on all values from 0 to 0 3 .  The 
subscript n will also correspond to the number 
of nodal diameters. 

4.1.1 Piates Ciamped All Around 

d around be a (see fig. 2.1). 
conditions are: 

Let the outside radius of the plate clamped 
The boundary 

en equation (2.1) is substituted into equa- 
tions (2.2), the existence of a nontrivial solution 
yields the characteristic determinant 

(2.3) 

where X ka and the primes are used to indicate 
erentiation with respect to the argument, io 

this case kr. Using the recursion relationships 
(ref. 2.1) 

X J ~ ( h > = n J n ( X > - X J n , , ( X )  
K ( X ) = n I a ( X )  + u w + , ( X )  (2.4) 

FIGURE 2.1.-Clamped circular plate. 

and expanding equation (2.3) gives 

J n ( X > l n + , ( X > + l n ( X ) J n + I ( x ) = O  (2.5) 

The eigenvalues h determining the frequencies w 
are the roots of equation (2.5). 

The Bessel functions are widely tabulated for 
small values of n. The Narvard tables (ref. 2.2) 
are a v a ~ a b ~ e  for n =< 120. Otherwise, the reeur- 
sion relationships 

or various forms of series expansions for the 
esse1 functions may be used. 
Values of X2 taken from references 2.3 to 2.5 

are tabulated in table 2.1, where n refers to  the 
number of nodal diameters and s is the number 
of nodal circles, not including the boundary 

7 
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TABLE 2.1.-Values of XZ=wa2 Jn for a Clamped CtiTcUlaT Plate 

0 
~- 

10.2168 
39.771 
89.104 

168.183 
247.005 
365.568 
483.872 
631.914 
799.702 
987.216 

1 

21.26 
60.82 

120.08 
199.06 
287.77 
416.20 
654.37 
712.30 
889.95 

1087.4 

2 

34.88 
84.68 

163.81 
242.71 
361.38 
479.65 
627.75 
795.62 
883.07 
190.4 

- 

A3 for values of 1~ of- 

circle. I t  is seen from equations (2.2) that the 
frequency does not depend upon Poisson’s ratio 
in the clamped case. An accurate transcen- 
dental approximating equation for additional 
roots of equation (2.5) is given in reference 2.5. 

The mode shapes of equation (2.1) are 
determined from either of equations (2.2). 
Using the first of equations (2.2) 

where the X values are taken from table 2.1. 
The radii of nodal circles p=r/a are determined 
from the equation 

and are presented in table 2.2 as taken from 
reference 2.6. 

The procedure for determining the motion 
of a plate subjected to arbitrary initial dis- 
placement and velocity conditions is given in 
reference 2.7. 

The problem of finding stresses in a vibrating 
clamped circular plate was discussed by Ungar 
(ref. 2.8). The problem was also discussed 

references 2.9 to  2.18. 
For more information concerning this prob- 

lem, see the section in the present work on 
in-plane forces in clamped circular plates 
(10.1.1). 

.I.P Plates Simply Supported All Aroun 
Let the outside radius of the simply support 

plate be a (see fig. 2.2). The boundary 
conditions are 

W(a)=O 
M,(a)=Q 

Substituting equation (2.1) and equation (1.11) 
into equations (2.9) and noting that dZw/bfl2=0 
on the boundary give the equations 

A n J n ( X ) +  C n r n ( X > = O  

(2.10) 

PGUBE Z.Z.-Sionply supported eireukr plaie. 
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TABLE 2.2.-Radii of Nodal Circles p=r/ajor Clamped Circular Plate 

S 

0 

1.0 

1.0 
.379 

.583 

.255 

.688 

.439 

.191 

.749 

.550 

.351 

.153 

.791 

.625 

.459 

.293 

.127 

.822 

.678 

.535 

.393 

.251 
-109 

.844 

.720 

.593 

.469 

.344 

.220 

.096 

1.0 

1.0 

1.0 

1.0 

1.0 

1 

1.0 

1.0 
.4899 

.640 

.350 

.721 

.497 

.272 
1.0 
.767 
.589 
.407 
.222 

.807 

.653 

.499 

.344 

.188 

.833 

.699 

.566 

.432 

.298 

.163 

.853 

.735 

.617 

.499 

.381 

.263 

.I44 

1.0 

1.0  

1.0 

1.0 

where the notation of the previous section is 
used. It has been shown (ref. 2.11) that equa- 
tions (2.10) lead to the frequency equation 

ts of equation (2.11) and radii of nodal 
es for v=0.3 are taken from reference 2.6 

and presented in tables 2.3 and 2.4, respectively. 
son, in an early paper (ref. 2.12), and 
cott (ref. 2.11) g b e  X=2.204 for v=0.25. 

Bodine (ref. 2.19) (see section entitled “Plates 
808-337 0 - 7 L - 2  

p for values of n of- 

2 

1.0 

1.0 
.559 

.679 

.414 

.?46 

.540 

.330 

.789 

.620 

.449 

.274 

1.0 

1.0 

. - - - - - - - - - - 

3 

1.0 

1.0 
.606 

.708 

.462 

.?65 

.574 

.375 

.803 

.645 

.488 

.316 

1.0 

1. 0 

_ _ _ _ _ - _ _ _ _  

TABLE 2.3.-Values of X 2 = w a 2 J m  f o r  a 
Simply Supported Circular Plate; v=O.S 

A2 for values of n of- 
S 

I 
2 

13.94 
48.51 

102.80 
176.84 

25.65 
70.14 

134.33 
218.24 
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I 1 
1 

1 
.613 

.726 

.443 

.787 

.570 

.348 

1 

TABLE 2.4.-Radii of NGM Circles p=rlafor a 
Simply Supported Circular Plate; v=0.3  

p for values of n of- 
8 

I I 

1 
.736 
.469 
.204 

1 
1 

1 
.550 

.692 

.378 

.765 

.528 

.288 

t 

Supported on Circle of Arbitrary Radius” 
(2.1.7)) gives X=2.228 for v=0.333. 

The mode shapes are most conveniently 
determined from the first of equations (2.10) 
by use of the roots of table 2.3; that is, 

(2.12) 

he procedure for determining the motion of 
a plate subjected to arbitrary initial displace- 
ment and velocity conditions is given in 
reference 2.7. 

The simply supported case is also solved in 
reference 2.20. 

For more information concerning this pr 
lem, see section entitled “Simply Suppor 
Circular Plates’’ (10.12). 

9.3.3 Completely Free Plates 

Let the outside radius of 
free plate be a (see fig. 2.3). 
conditions are 

M,(Ct)=O 
V,(a)=o 

the completely 
The boundary 

(2.13) 

Using equations (1.11), (1.121, ( 1 . 1 3 ,  it has 
been shown (ref. 2.3) that equations (2.13) 
yield the frequency equation 

FIGURE 2.3.-Free circular plate. 

- - x3G(x>+(1--v)n2 IXJk@>-Jn(x>l (2.14) 
x31h(X)-(1 -v)n2 [AIh(A)-IJ,(x)] 

It has also been shown (ref. 2.20) that, when 
A>>n, one can replace equation (2.14) by the 
approximate formula 

n, J (A) IxZ+2(1--)n2jIIn(X)/1k(X)I-22X(1--) 
Jib>- x2-2(1--v)n2 

(2.15) 

According to reference 2.20, the roots of 
equation (2.14) are located between the zeroes 
of the functions Jk(X> and Jn(X> and the 
larger roots may be calculate 
expansion 

(2.16) 

wherem=4n2 and cy= (?r/2)(n+2s). The asymp- 
totic value is 

m+B 4(7m2$-22m+11)-. . . 
3 ( 5 w  

X=a--- 
8a! 

(2.17) ?r x z- (Tat- 2s) 2 

Uskg equations (2.15) an (2.161, values of 
k2 are computed in reference 2.20 for v=0.33? 
and in reference 2.3, for v=0.25. These are 
presented tables 2.5 and 2.6, respectively. 
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TABLE 2.5.-Values of X 2 = u a 2 m f o r  a Completely Free Circular Plate; v=O.SS 

1 

L781 
-871 
.4972 
.932 
.643 
.351 
.946 
.723 
.498 
-272 
.956 
.773 
.590 
.407 
.222 

A2 for values of n of- 

2 
-- 

0.822 
.8897 
.562 
.936 
.678 
.414 
.95Q 
.746 
-540 
.330 
.959 
.790 
.620 
.449 
-274 

_ _ - - _ _ - - _ - _ _ - - _ _ - - _ - -  5. 253 

38. 55 59.86 83. 9 
87. 80 119.0 154. 0 

157. 0 198. 2 242.7 
245. 9 296.9 350. 8 
354. 6 415. 3 479.2 
483. 1 651. 8 627. 0 
631. 0 711. 3 794. 7 
798.6 888. 6 981. 6 
986. 0 1086 1188 

9. 084 20.52 35.25 
12.23 = 21.6 
52.91 e. 73. 1 

111.3 142. 8 
192.1 232. 3 
290. 7 340. 4 
408. 4 467.9 
546.2 615. 0 
703.3 781. 8 
880. 3 968.5 

1076 1175 
1292 1401 

___- 

a 33. 1 
95. 8 

175.0 
274. 6 
392. 4 
529. 5 
686.4 
864.4 

1061 
1277 
1513 

= 46. 2 
a 121.0 

210.3 
319.7 
447.3 
593.9 
760. 1 
952. 3 

1158. 7 
1384 
1631 

1 I I I I I 1 

= Values true within 2 percent (ref. 2.20). 

TABLE 2.6.-Vdues of X2=ua2dplD for a Com- 
pletely Free Circular Plate; v=0.(26 

! Xa for vdues of n of- 

I 

- - - - - - -. 
20.41 
59.74 

118.88 
196.67 
296.46 
414.86 
553.00 
710.92 
888.58 

2 

5.513 
35.28 
84.38 

153.29 
241.99 
350.48 
478.73 
626.75 
794.51 
982.01 

3 

12.75 
53.16 

112.36 
191.02 
289.51 
408.16 
545.83 
703.63 
881.20 

1078.5 

The radii p=r/a of the nodal circles may 
be found from reference 2.20: 

(1 - v) [ATn( x> - n2Jn (A) I +X2J,( 1) 
I ’ ( W  I (A> L - n 2 L  

J n ( X P )  J n ( b >  

J, (b>= 

(2.18) 

Table 2.7 gives values of p=r/a for v=O.33 
computed from equation (2 .18) .  

For large values of n and s it has been shown 
(ref. 2.20) that the radii of nodal circles can be 
computed from the .approximate formula 

TABLE 2.7.-Radii of Nodal Circles p=rla for a 
Completely Free Circular Plate; v=O.SS 

p for values of n of- 

0 
- 

1.680 
.841 
.391 
.893 
.591 
.257 
~ 941 
.691 
.441 
. I92  
.952 
.752 
. 52 
.352 
.154 

3 

1.847 
.925 
.605 
.939 
.704 
.460 
.951 
.763 
.572 
.374 
.960 
.803 
.644 
.483 
.316 

4 

1.863 
-926 
.635 
.943 
.726 
.498 
.955 
.779 
.600 
.411 
.963 
.814 
.644 
.512 
.351 

5 

0.881 
.993 
.663 
.947 
.745 
.529 
.958 
,793 
.623 
f443 
.966 
.825 
.682 
.536 
.381 

- 

(2.19) 

where is the pth root of the equation 
Jn(X) = O .  

Experirnen tal results were tained for a free 
circular brass plate (ref. 2.21). The ratios of 
frequencies of free vibration o to the funda- 
mental frequency wo are presented in table 2.8 
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I 

0.781 
.497 
. 867 
. 349 
. 643 
.902 
. 269 
.495 
. 726 
.928 

Number of Diameters, n 

2 
-~ 

0. 823 
. 562 
.887 
. 415 
. 681 
.913 
. 328 
f 540 
. 748 
. 934 

FIGURE 2.4.-Experimental values of frequency ratios 
(After w / o o  for a completely free circular brass plate. 

ref. 2.21) 

0. 859 
. 635 
. 906 

and figure 2.4 taken from reference 2.21. Radii 
of nodal circles p=r/a are given in table 2.9.  
Other experimental data are presented in 
references 2.20 and 2.22 to 2.28. Further dis- 
cussion of this problem is given in references 
2.10, 2.11, 2.12, 2.15, 2.17, 2.29, 2.30, and2.31. 

2.1.4 Plates With Elastic Edge Supports 
Consider a circular plate of radius a. sup- 

ported elastically by springs uniformly dis- 
tributed about its contour as shown in figure 
2.5, Translation in the direction of w is op- 
posed by springs having distributed stiffness 
K ,  (force/(unit length)'). Edge rotation fi is 
opposed by spira1 springs having distributed 
stzness K+ (moment/unit length). 

0. 871 0. 880 
.662 . 681 
. 915 . 922 

FIGURE 2.5.-Elastically supported circular plate. 

ABLE 2.9.-Experimentally Determined Radii of Nodal Circles p=rfa for a Completely Free 
Circular Brass Plate 

Circles s 

0 

0. 680 
. 391 
.843 
. 257 
.591 
. 895 
. 190 
.441 
.692 
.918 
. 154 
. 351 
. 548 
.753 
.956 
. 131 
. 292 
.456 
. 624 
.794 
. 958 

p for values of n of- 

3 

0. 843 
. 604 
. 898 
-461 
. 706 
.919 
.374 
.571 
.764 
.938 

_____.  
- _ _ _ _ _  
-____. 
-----. 

-I-- I 

- 

0.889 0. 897 0.903 0. 909 0.912 
. 702 1 ~ 715 I _ _ _ _ _ _ _  I _ _ _ _ _ _ _  1 - _ _ _ _ _  
.927 .932 _ _ _ _ _ _ _  _ _ _ _ _ _ _  _ _ _ _ _ _  
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The boundary conditions are 

Substituting equation (2. I) into equations 
(2.20) and using recursion formulas of the type 
of equations (2.4) and (2.6), i t  can be shown 
that equations (2.20) become 

and 

J*(N 2Kwa2 2(3--v)n2--X2--- D 

4 
x +-j 2(2 - 3~ Inz+ X2- 

(2.223 

~ o r m ~ a t i o n  of the second-order characteristic de- 
terminant for the frequencies from equations 
(2.29) and 42.22) is a trivial operation. In the 
case n=O, the frequency equation simplifies to 

where 
K+a x p  = -- (1 - Y) D 

and 
x 3 p-- -Kd3 

D 

The problem was formulated in a similar 
manner in reference 2.32 for the special case 
when only an elastic moment edge constraint 
is altowed; that is, the boundary conditions are 

W ( a ,  e>=o 

This case is obtained by setting K,=m in 
equation (2.22). Numerical results for the 
first four frequencies for equations (2.24) for 
varying amounts of rotational constraint are 
given in table 2.10. Poisson's ratio is not 
given in reference 2.32, but it appears to  be 
0.3 for table 2.10. 

ABLE 2.10.-Vdues of ~ ~ = w a ~ d p I D  for a 
Circular Plale With No Edge De&ctions and 
Elastic Moment Constraint; v=Q.3 

i 
I 1  

a 0 

9.1.5 Plater ClamDed 

.t 

8= 1 
~- 

39.7 21.2 
39.7 21.2 
39.1 20.9 
35.2 18 .6  
30.8 15.0 
29.7 13.9 

2 

34.8 
34.8 
34.2 
30.8 
26.7 
25.6 

and Simply Supported Along Remainder 

ows 5 circular plate whi 
s edge for the interval 

on y<e<2*--~. 
artlett (ref. 2.33) 

by an interesting variational approach to give 
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Bound 

- 
upper _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
Lower _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

FIGURE 2.6.-Circular plate partially clamped and 
partially simply supported. 

upper and lower bounds for the eigenvalues. 
The method is based upon two per 
One is a perturbation of the problem when the 
plate is clamped all around (y=.rr) an 
upper bounds for A; the other is a pert 
of the simply su 
lower bounds. 
X2 for the case v =  114 are presented in table 2.11 
as taken from reference 2.33. 

given by Noble (ref. 2.34), who showed that a 
good approximation of the frequency parameter 
X is given by the roots of the equation 

An approximate solution to this 

- 

x2 for values of y of- 
-_ 

0 r / S  2r/8 3r/8 4 ~ 1 8  5u/S 6r18 7r/8 ?r 

---_________----- 
_ _ _ _ _ _ _ _  5. 871 6. 350 6.880 7.508 8.231 9. 120 9. 885 10. 21 

4.862 5.842 6.335 6. 864 7.480 8. 162 8.880 9. 126 _ _ _ _ _ _ _ _  

(2.25) 

A comparison of the values of X obtained from 
equation (2.25) and the more accurate results of 
reference 2.33 is given in figure 2.7. 

This problem was also discussed in references 

\ 

FIGURE 2.7.-Comparison of frequency parameters 
obtained by two methods for a circular plate with 
mixed boundary conditions; Y= 114. (After ref. 2.34) 

2.35 and 2.36 wherein a method superimposing 
concentrated moments along parts of the bound- 

was pro A n  
) "4u= 3. given 

case when one-fourth of boundary is 
clamped, but this is clearly erroneous because 
it is greater than the value for a completely 
clamped plate. 

2.1.6 Plafes Clamped at Center With Various 
Conditions on Contour 

In the case of plates clamped at the center 
that have various conditions on contour, it is 
obvious that for two or more nodal diameters 
(n22) the resultant frequencies and mode 
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.--I_-- 

shapes are identical to those obtained in the 
previous sections when no constraint was 
applied a t  the center. This can be seen be- 
cause a t  the intersection of two node lines the 
slopes in all directions, as well as the deflection, 
are zero. 

Southwell (ref. 2.37) discussed the problem 
of a free disk clamped at the center as a special 
case of an annulus free on the outside and 
clamped on the inner edge (see section entitled 
“Annular Plates Free on Outside and Clamped 
on Inside” (2.2.7)). It is necessary to evaluate 
the fourth-order characteristic determinant by 
a careful limit process as the inner radius ap- 
proaches zero. He showed that in the case of 
one nodal diameter (n= 1) the set of frequencies 
is identical to those for the completely free 
plate. For the axisymmetric case (n=O>, the 
first four roots for v=0.3 are given as: 

X2=0a2@=3.752 

I 10 
~~- 

1088 

0 1 2 3 1 4  5 6 7 

3. 752 20. 91 61. 2 120.6 1 199. 9 298. 2 416.6 555. 1 

where E = h  2)-Euler’s constant=0.11593. 
The first 11 roots of equation (2.26) for v = 1 / 3  
are given in table 2.12. It is seen that higher 
roots of X are separated by T. 

The equation determining nodal radii p=r/a 
is (ref. 2.20) 

E J o ( X P ) = Y o ( X P )  (2.27) 

S 

X p  _ _ _ _ _ _  

and has roots given in table 2.13 for v=1/3. 
Reference 2.11 gives w a 2 m = 3 . 7 1 7  for V =  

0.25. 
The axisymmetric cases for the pIates having 

simply supported or clamped edges in addition 
to a point support a t  the center are discussed in 
reference 2.38. The frequency equation for the 
simply supported plate becomes 

10 
~- g i g  1 2 3 4 5 6 7 

3. 97 7. 08 10. 20 13. 33 16. 49 19. 61 22. 75 25. 90 I 29. 04 32. 18 
I 

X’“14.8 
=49.4 

TABLE 2.12.-Vdues of X2=uWa2m for Axiqrnmtric Vibrations of a Free Circular Plate Fixed 
at the Center; v=l/S 
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The frequency equation for the clamped plate is 

which has as its first two roots: 

A'= 22.7 
=61.9 

9.1.7 Plates Supported on Circle of Arbitrary 

A circular plate having a free outside edge of 
radius a is supported on a concentric ring 
having a radius b as shown in figure 2.8. The 
solution of this problem is very straightforward. 
One can recognize symmetry and take 

Radius 

Wn,=An,Jn(b)+ Bn,Yn(b)+ Q n J n ( b )  

+D&n(h) ( i=1 ,2)  (2.30) 

from equation (1.18), where the subscript 1 
refers to the region O<r<b and the subscript 2 
refers to b<r<a; Bnf and Dnt are discarded 
to satisfy regularity conditions at r=O. 
The remaining six boundary and continuity 
conditions 

w(b)=wz(b)=O 

bw,(b) atop)  
Br ar 

-=- 

M,(4 = V,,(a) =o 

are satisfied by substituting equation (2.30) into 
equatious (2.31) and forming a sixth-order ehar- 

FIGURE Z.$.--Cireuiar plate supported on a concentric 
circle. 

acteristic determinant equation. The roots of 
the determinant are found by evaluating it 
by computer €or many values of X for a given 
b/a ratio. 

The numerical solution of this problem is 
reported in reference 2.19 for the fundamental 
mode. The frequency parameter X2 is plotted 
in figure 2.9 and mode shapes for three repre- 
sentative b/a ratios are shown in figure 2.10, 
both for ~'113. 

9.1.8 Plates With Concentrated Mass at  Center 

The problems of free and clamped circular 
plates having a concentrated mass m a t  the 
center were solved by Roberson (refs. 2.39 and 
2.40) for the case of axisymmetric modes. The 
concentrated mass was treated as an impulse in 
the mass density function. The impulsive 
change in density makes it convenient to solve 
the problem by Laplace transform methods. 

In the case of the plate having free edges, it 
is shown (ref. 2.39) that the frequency equation 
takes the f o m  

where 

(2.32) 

L 
-- x (1 -v,>Y,(x>r,(x) 

(2.33) 

and p is the ratio of the concentrated mass at  
the center to the mass of the plate; that is, 

(2.34) 

The first four roots of equation (2.32) are shown 
in figure 2.11 (for v=O.3) as func- 

tions of the mass ratio p. An asymptotic- 
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WO 

FIQURE 2.9.-Vdues of h2=wa2dTD for a circular 
plate of radius a supported on a concentric circle 
of radius b (for fundamental mode); V= 1/3. (After 
ref. 2.19) 

I W  

W 

s 

I W  

BC i 

FIGURE 2 . ~ ~ . - ~ ~ n ~ a ~ e n ~ ~  mode shapes for a circular 
plate supported on a concentric circle; v=1/3. 
(a) b/a=0.392; Xa=6.502. (b) b/a=Q.699; P=9.024. 
(c) b/a=0.814; X2=7.3Q1. (After ref. 2.19) 

FIQURE 2.1l.-Values of V=ua2&JB for various mass 
ratios for a free circular plate having a concentrated 
mass at the center; v=0.3. (After ref. 2.39) 

expansion estimate of the higher roots for the 
above problem can be obtained from the 
frequency equation 

(2.35) 

The accuracy of equation (2.35) is shorn 
table 2.14 for the extreme mass ratios of p=m 
and p = O .  The first mode shape is shown in 
figure 2.12 for three values of mass ratio. 

For the clamped plate (ref. 2.40) the fre- 
quency equation is also given by equation (2.32) 
where, in this case, 

(2.36) 
1 

&(A)= J~(X)K,(X>-J,(X)K,(X) +x 
~ ~ ~ ) = ~ ~ ~ ~ ~ J ~ ( X ~  f ~ , ( ~ ) J O W  

he Erst four roots of equation (2.32) are shown 
graphically in figure 2.13 as functions of the 
mass ratio p. It is noted that in the case of 
clamped edges the frequencies are independent 
of Poisson’s ratio. More precise values of X2 
for p=O, 0.05, and 0.10 are given in table 2.15. 

It should be noted that for both types of edge 
conditions (free or clamped) the frequency 
changes rapidly with the addition of a small 
amount of mass at the cenler, particularfy for 
the higher modes. 
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00 

s 

TABLE 2.14.-Comparison of Roots X2 From Asymptotie-Expansion Estimate With Exact Values; 
v=o.s 

0 

- I- I 

-33.8 
6. 2 
I. 9 
1. 0 

S for values of p of- 

9.006 
38.44 
87.76 

156. 75 

Error of 
eq. (2.32) estimate, eq. (2.32) estimate, 

2. 47 
22.20 
61.69 

120.91 
199.85 
298.56 
416.98 

9. 87 
39.48 
88.83 

157.90 
246.74 
355.32 
483.60 

9. 6 
2. 7 
1. 2 

I O  

W 

3 
a 

a io 
1 .o 

0 01 0 2  0 3  0 4  0 5  06 07 08 09 IO 

FIQURE 2.12.-First mode shape for a free plate having 
(After a concentrated mass a t  its center; v=0.3. 

ref. 2.39) 

F r a n ~ ~  2.13.-Values of P = w u * ~  for various mass 
ratios for a clamped circuhr plate having a con- 
centrated mass at the center. (After ref. 2 . 9  

TABLE 2.15.-Precise Values of X2=coa2cD for 
a Clamped Circular Plate Hawing a Concen- 
trated Mass at the Center 

0 

10.214 
39.766 
89.114 

158. 18 

0.05 

9.0120 
32.833 
72.012 

129.39 

0.10 

8.1111 
29.681 
67.733 

125.69 

The clamped case having a general concen- 
trated impedance at  the center was discussed 
in reference 2.41, though no numerical results 
were presented therein. 

4.9 A ~ ~ ~ ~ A ~  PLATES 
An annular plate consists of a circular outer 

boundary and a concentric circular inner bound- 
ary. Throughout this work the radii a and b 
will define the outer and inner boundaries, 
respectively. 

There exist nine possible combinations of sim- 
ple boundary conditions (i.e., clamped, simply 
supported, or free) for the two boundaries. An 
outstanding set of results was given by Raju 
(ref. 2.42) for all nine combinations of boundary 
conditions for a Foisson's ratio of 1/3, and the 
results which follow draw h e a d y  from his work. 
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r=u 

c 
c 
c 
SS 
SS 
ss 
F 
F 

Joga-Rao and Pickett (ref. 2.43) also evaluated 
the exact characteristic determinants in the 
axisymmetric case when the outside boundary 
is clamped, simply supported, or free and the 
inside boundary is free. Their results closely 
match those of Raju and will not be repeated 
here. They also analyzed these cases for 
aJb=0.5 by the Rayleigh-Ritz method and 
obtained confirming results. 

Two-term Rayleigh-Ritz solutions were used 
in reference 2.44 to obtain approximate axi- 
symmetric frequency parameters for all but the 
free-free eases. These results are summarized 
in table 2.16 for v =  113 and are compared with 
exact solutions. The b/a ratio is 0.5 throughout 
the table. 

Sakharov (ref. 2.45) solved the cases for 
plates with the outside clamped or simply sup- 
ported and the inside free, and Gontkevich 
(ref. 2.6) presented results for four additional 
cases but omitted those for the simply supported 
inside boundary. VogeI and Skinner (ref. 2.46) 
in a recent paper also obtained exact solutions 
for all nine cases. 

r = b  

e 
SS 
F 
c 
ss 
F 
(2 
ss 

In  addition, Southwell (ref. 2.37) presented 
results for the outside-free, inside-clamped case; 
Hort and Koenig (ref. 2.47) and Kumai (ref. 
2.48) gave theoretical and experimental results 
for annular plates of given dimensions; reference 
2.47 deals with the free-free case and reference 
2.48, with the case for both edges either clamped 
or simply supported. 

2.2.1 Annular Plates Clamped on Outside and 
inside 

Substituting the complete solution (eq. 
(1.18)) for the cos ne terms into the boundary 
conditions W=dWJdr=O a t  r=a and r= 
yields four homogeneous equations in A,, B,, 
C,, and D, for which a nontrivial solution can 
exist only if the determinant of coefficients is 
zero. Using recursion relationships of the types 
in equations (2.4) and equations (2.6), deriva- 
tives of the Bessel functions can be expressed 
in terms of functions of the zeroth and first 
orders. The frequency determinants for n=O 
(axisymmetric), n= 1 (one diametral node), and 
n=2 (two diametral nodes) are given below 
(ref. 2.6). 

TABLE 2.16.-Azisynmetrie Frequeny Parametersfor Annular Plates; v = I / S ;  b/a=0.6 

Boundary 
conditions a 

a c, clamped; ss 

For n=op 

~ 

Deflection function W(r)  
Exact 

solution 
Rayleigh- 

Ritz 
solution 

89.30 
64.06 
17.51 
59.91 
40.01 

13.05 
5.040 

4.060 

89.42 
65.17 
17.56 
61.81 
43.19 

13.59 
5.062 

4.084 

simply supported; F, free. 

where a= ala. 
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For n=1, 

For n=2, 

= O  

Fundamental roots for these three frequency equations are given in table 2.17. 

These results are plotted in figure 2.14, along 
with the eigenvalues for the second mode of 
n=O taken from reference 2.6. Extrapolations 
are shown as dashed lines as they were ,proposed 
in reference 2.42. Note that for b/a=O accurate 
values are given in the section entitled “Plates 
Clamped at Center With Various Conditions 
on Contour” (2.2.6). 

A more comprehensive set of results is given 
in table 2.18 (see ref. 2.46). 

Theoretical and experimental resulk for 
s b/a 5 0.5 are given for the first three mode 

Additional informa- shapes in reference 2.48. 
tion is given in table 2.16. 

9.9.9 Annular Plates Clamped on Outside and 
Simply Supported on inside 

The ease of plates clamped on the outside 
and simply supported on the inside is not dis- 
cussed in reference 2.6. Fundamental eigen- 
values from reference 2.42 are given in table 
2.19 and are plotted in figure 2.15. Accurate 

10 

9 

8 

x 7  

6 

5 

40 01 0 2  0 3  0 4  0 5  06 07 0 8  

8 
FEGWRE 2.14.-Values of A= (pd/D)lJ4a for a clamped, 

clamped annulus. (After refs. 2.6 and 2.42) 

values for b/a=O are given in the section en- 
titled “Plates Clamped at  Center With Various 
Conditions on Contour” (2.1.6). Additional 
information is given in table 2.16. 
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0.5 

64.06 
.______ 

.______ 

TABLE B.IS.-Values of A2=oa2mD for  a 
Clumped, Simply Supported Annulus; Y= 1 JS 

0.6 
______ 

99.16 
98.01 

104.46 

10 

9 

8 

6 

5 

40 01 0 2  03 0 4  0.5 06 0 7  08 

1 
FIGURE 2.15.--Values of A= ( p 1 2 / D ) ~ f ~ a  for a clamped, 

simply supported annulus; Y= 1/3. (After ref. 2.42) 

- 
0.2 

26.57 
29.11 
37.54 

0.3 
_I_- 

33.66 
_ _ _ _ _ _ _  
_ - - - - _ _  

0.5 
-- 

89.2 
90.2 
93.3 
99.0 

246 
248 
253 
259 

0.7 

248 
249 
251 
256 
686 
686 
689 
694 

0 1 0 
I 0 
2 0 
3 0 
0 1 
1 1 
2 1 
3 1 

22.6 
25.1 
35.4 
51.0 
65.6 
70.5 
86.7 

111.0 

xz for values of b/a of- 

0.4 

44.89 
47.09 
51.81 

A more comprehensive set of results is given 
in table 2.20 (see ref. 2.46). 

TABLE 2.18.-Frepuency Parameters @a2,/@ 
for a Clumped, Clamped Annular Plate 

TABLE 2.2O.-Frequency Para~e te r s  wa2,1J- 
f o r  a Clumped, Simply Supported Annular Plate 

1 1 o a 2 m  for values of bla of- 1 ! U U Z ~  for values of b/a of- 
- 
0.7 
- 

175 
175 
178 
185 
558 
560 
563 
570 
- 

~ 

0.9 - 
1550 
1551 
1553 
1558 
5004 
5004 
5007 
5012 
- 

- 
0.9 
- 

2237 
2238 

2243 
6167 
6167 

6174 

_ _ _ _ _  

_ _ _ - _  

- 

0.5 0.3 

45. 2 
46. 6 
51. 0 
60. 0 

125 
127 
134 
145 

0.3 

33. 'I 
35.8 
42. 8 
54.7 

104 
107 
116 
130 

63.9 
65.4 
70. 0 
78. 1 

202 
203 
210 
218 

9.2.3 Annular lates Clamped on Outside and Free an inside 

The frequency d e ~ e r ~ ~ n a ~ ~ s  for n=O, 1, and 2 taken from reference 2.45 for plates clamped 

= O  

on the outside and free on the inside are as follows: 

where 

orn= l  
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0.6 

25.60 
28.52 
36.60 

23 

0.7 0.8 
_________ 

42.38 85.32 
51.12 _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ _  72.17 

ax 3 i - v  ax 34-v A*=~--Ac, A=---, F=B-AD,  B=-+--, 
4 203% 4 2aA 

43. B 
45.3 
51.5 
61.3 

253 
254 
259 
692 

=O 

360 
362 
365 
3 70 

2219 
2220 
2225 
6183 

12 ( 1 - v) f (74- v) + - (ox)* D= 48 ( 1  - v ) A  
C= 1 2 ( 1 - + -  (cyh)4’ 12(1 - v ) 2 - ( a ~ ) 4  

Eigenvalues from reference 2.42 are given in table 2.21 and figure 2.16. Results for b/a=O 
are also given in the section entitled “Completely Free Rates” (2.1.3). 

TABLE 2.21.-Vdues of k 2 = u a z ~ ~ f o r  a Chmped, Free Annulus; v =  1/3 

n 
P for values of bla of- 

0.3 0.4 0.5 

11.37 13.54 17.51 

Numerical problems make it difficult to evaluate the frequency determinant as bla-tl. 
Reference 2.43 gives an approximate value of X= 15 for b/a=0.9. Additional information appears 
in table 2.16. 

prehensive set of results is given in table 2.22 (see ref. 2.46). 

TABLE 2.22.-Frequency Parameters w ~ ~ J ~ I D  for a Clamped, Free Annular Plate 
I 1 

60.0 
83.4 
90.4 

oa2,ia for values of bla of- 

0.3 

11.4 
19.5 
32. 5 
49. 1 
51.7 
59.8 
79.0 

132.0 

0.5 

17.7 
22.0 
32.0 
45. 8 
93.8 
97. 3 

108.0 
255.0 

0.7 1 0.9 
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TABLE 2.23.-Va~ues of X2=wa2@ for a Simply Supported, Clamped Annulus; v=l/S 

2.2.4 Annular, Plates Simply Supported on Outside and Clamped on Inside 

supported on the outside and clamped on the inside are as follows: 
The frequency determinants for n=O, 1, and 2 taken from reference 2.6 for plates simply 

where 

reference 2.42 are given in table 2.23 and figure 2.17. Eigenvalues for 
mode of n=O, tak 

mation appears in table 2 
from reference 2.6, are also given in figure 2.17. Additional infor- 
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40.01 
_ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _  

9 

8 

7 

A 6  

5 

4 

3 

*O 01 0 2  03 0 4  0 5  0 6  0 7  0 8  09 I O  

62. 09 110. 67 
62.41 _________. .  
68.41 _ _ _ _ _ _ _ _ _ -  

!I 

FIGURE 2.16.-Values of X= (p~a/D)~’4a  for a clamped, 
free annulus; Y= 1/3. (After ref. 2.42) 

9 

8 

7 

x 
6 

5 

4 

3O 01 0.2 0.3 0.4 0 5  0 6  0 7  0.8 

FIGURE 2.17.-VaIues of X=(p3/D)1/‘a for a simply 
supported, clamped annulus; Y= 1/3. (After ref. 
2.42) 

A more comprehensive set of results is given in table 2.24 (see ref. 2.46). 

TABLE 2.24.-Frequency Parameters w a 2 J m  for a Simply Supported, Clamped Annular Plate 

I 

8 1 0.1 I 0.3 1 0.5 I 0.7 I 0.9 

17. 8 
19. 0 
26. 8 
40. 0 
60. 1 
62. 8 
74.7 
95. 3 

29. 9 
31. 4 
36. 2 
45. 4 

100 
102 
109 
120 

59. 8 
61. 0 
6 4  6 
71. 0 

198 
200 
205 
211 

168 
170 
172 
177 
552 
553 
557 
563 

1535 
1536 
1538 
1541 
4989 
4989 
4992 
4997 

9.9.5 
The case of annular plates simply supported on both edges is not discussed in reference 2.6. 

Eigenvalues from reference 2.42 are given in table 2.25 and figure 2.18. 

TABLE 2.25.-Values of X 2 = w a 2 m  for an Annular Plate Simply Supported on Both Edges; v = l / Q  

Annular Plates Simply Supported on Both Edges 

I P for values of b/a of- 

0.4 1 0.5 1 0.6 1 0.7 

28.25 
30.00 
36. 14 
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n 

,___ 

A more comprehensive set of results is given in table 2.26 (see ref. 2.46). 

ABLE 2.26.-Frequency Parameters w a 2 m  f o r  a Simply SupporteE, Simply Supported Annular 
Plate 

I I  uaZJplD for values of bla of- 
S 

0.1 1 0.3 

I-- 
40. 0 
41. 8 
47. 1 
56. 0 

159 
161 
167 
171 

14. 5 
16. 7 
25. 9 
40. 0 
51. 7 
56. 5 
71. 7 
94.7 

110 
112 
116 
122 
439 
441 
444 
453 

21. 1 
23. 3 
30. 2 
42. 0 
81. 8 
84. 6 

933 
108 

0.5 1 0.7 
I 

0.9 

988 
988 
993 
998 

3948 
3948 
3952 
3958 

Theoretical and experimental results for 
O S b f a ~ O . 5  are given for the first three mode 

shapes in reference 2.48. 
tion appears in table 2.16. 

A ~ d ~ t ~ o n a ~  informa- 

2.2.6 Annular Plates Simply Supported on Oufside and Free on Inside 

The frequency determinants for n=O, 1, and 2 taken from reference 2.45 are as follows: 

For n=O, 

1 J O O )  p o t  A> P O 0 4  KO@> ~ 

where 

= O  
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0.1 0.2 

4.933 4.726 
13.91 12. 60 
25. 43 24. 97 

where 

0.3 0.4 0.5 0.6 0.7 . 0.8 0.9 

4.654 4.752 5.040 5.664 6.864 9.431 17. 81 
_ _ _ _ _ _ _ _  11. 66 _ _ _ _ - _ - _  12. 27 _ _ _ _ _ _ _ _  17. 05 _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _  23. 09 _ _ _ _ _ _ _ _  22. 20 _ _ _ _ _ _ _ _  29. 92 _ _ _ _ _ _ _ _  

~~~~~~~ 
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n 

-- 
0 
1 
2 
3 
0 
1 
2 
0 

5-V 2x G=--  4 3-v E=- F=- 12( 1 -v)1(7+v)+ (ffx)pI - (ffx)4 
12(1 -,,)z- ( 4 4  1-v 1-v  x 1-v  D= 

8 

0.1 

0 4.86 
0 13. 9 
0 25.4 
0 40.0 
I 29. 4 
1 48. 0 
1 69. 2 
2 74. 8 

Eigenvalues from reference 2.42 are given in table 2.27 and figure 2.19. Values for b/a=O 
A more compre- are also given in section 2.1.3. 

hensive set of results is given in table 2.28 (from ref. 2.46). 
Additional information appears in table 2.16. 

TABLE 2.27.-VaEues of X2=ua2mD for a Simply Supported, Free Annulus; 

0.7 

6. 93 
13. 3 
24.3 
37. 2 

I75 
178 
185 
558 

n I 

0.9 

17. 7 
29. 7 
51. 2 
74. 5 

1550 
1553 
1558 
5004 

TABLE 2.28.-Frequenc.y Parameters u a 2 - J s  f o r  a Simply Supported, Free Annular Plate 

oaZ&@ for values of bla of- 

0.3 

4. 66 
12. 8 
24. 1 
38. 8 
37. 0 
45. 8 
65. 1 

107 

3 
FIGURE 2.18.--Values of k= (po2iD)W~ for a simply sup- 

ported, simply supported annulus; V= 1/3. (After 
ref. 2.42) 

0.5 

5. 07 
11. 6 
22. 3 
35. 7 
65. 8 
69. 9 
81. 1 

203 

7 

6 

1 5  

4 

3 

*0 01 0 2  0 3  0 4  0 5  06 07 O S  09 10 

i 
PEGTIRE 2.19.-Values of k= (pd/D)If4a for a simply 

supported, free annulus; V= 113. (After ref. 2.42) 
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2.2.7 Annular Plates Free on Outside and Clamped on Inside 

The frequency determinants for n=Q, 1, 2 taken from reference 2.6 are as follows: 

0.6 0.7 

20.63 36. 60 
20.93 _ _ _ _ _ _ _ _ _ _  
21. 63 _ _ _ _ _ _ _ _ _ _  

For n=1, 

where 

For 1x=2~ 

0.8 

81.45 
45. 09 
67. 65 

=Q 

A=--- 3+v B= 12(1-v) 12(1 -v)(7+v+x2)-x4 =-$--A6 x 3fv 
4 2x C= 4 2x 12( 1 - v2) 4 4  12( i - vz) -A* 

igenvalues from reference 2.42 are given in table 2.29 and figure 2.20. Accurate values for 
b/a=Q are given in the section entitled ((Plates Clamped a t  Center With Various Conditions 
on Contour” (2.1.6). 

TABLE 2.29.-Values of X2=~~ZJplD f o r  a Free, Clamped Annulus; v=1/3 

I X2 for values of bla of- 
I n 
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A more comprehensive set of results is given in table 2.30 (see ref. 2.46). 

TABLE 2.3O.-Frequency Parameters wa2Jp/D f o r  a Free, Clamped Annular Plate 

o a a m  for values of bla of- 

I I I 
n 

0.1 

3. 14 
4. 23 
5. 62 

12. 4 
25. 3 
27. 3 
37. 0 
53. 2 

0.3 

6. 33 
6. 66 
7. 96 

13. 27 
42. 6 
44. 6 
50. 9 
62. 1 

0.5 

13. 3 
13. 0 
14. 7 
18. 5 
85. 1 
86. 7 
91. 7 

100 

37. 5 
37. 0 
39. 3 
42. 6 

239 
241 
246 
253 

345 

347 
352 
970 

2189 
2194 
2200 

51. 5 

Additional data for this case are available from the work of Southwelf (ref. 2.371, who saved 
considerable effort in computation of the Bessel functions by assuming arguments of X and then 
finding the b/a ratios to which these correspond. These additional data are presented in table 2.31 
tor v = 0 . 3 .  Results appear also in table 2.16. This problem was also discussed in reference 2.15. 

TABLE 2.31.-Additional Values of X 2 = o a 2 m  for  a Free, CZQrrqped Annulus; v=O.S 

n = O  n=l n=2 n=3 
1 

bla 1 ?? -- 

The ease of annular plates free on the outside and simply supported on the inside is not discussed 
in reference 2.6. Eigenvalues from reference 2.42 are given in table 2.32 and figure 2.21. Additional 
information appears in table 2.16. 

TABLE 2.32.-Values of X 2 = w a 2 m  for  a Free, Simply Supported Annulus; v = I / S  
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0 
0 
0 
0 
I 
1 
1 
1 

FIGURE 2.21.-Values of A= (pd/D)l”a for a free, simply 
supported annulus; v= 113. (After ref. 2.42) 

8 -  

0.1 
-- 

2.30 
3.45 
5.42 

12.4 
20.8 
24.1 
35.8 
53.0 

FIGURE 2.20.-Values of A= (p02/D)~l4a for a free, 
clamped annulus; v= 1/3. (After ref. 2.42) 

A more comprehensive set of results is given in table 2.33 (see ref. 2.46). 

TABLE 2.33.-Frequency Parameters @a2 JS for 
a Free, Simply Supported Annular Pkte 

0.3 

3.32 
3.42 
6.08 

12.6 
31.6 
34.5 
43.0 
56.7 

- 

n 

0.5 
-- 

4.86 
4. 11 
7.98 

14.0 
61. 0 
63.3 
69.7 
80. 3 

1 
0 
2 
3 
0 
1 
2 
3 
- 

1 0 a 2 m  for values of bla of- 

0.7 

8.34 
6.18 

13.4 
20.5 

170 
172 
177 
185 

0.9 

25.9 
17.2 
42.6 
61.4 

1535 
1536 
1541 
1548 

nnular Plater Free on Both Edges 

The frequency determinants for n=O, 1. an 2 taken from reference 2.6 for annular plates free 

where 



where 

A=’-(&) x 3+u C 

CIRCULAR PLATES 

48 (1 -v)X Q= 
12 ( 1 - 2 )  --x 

31 

=O 

Eigenvalues from reference 2.42 are given in 
table 2.34 €or the lowest root of n=2.  The 
lowest roots of n=O and n= l  are rigid body 
translation and rotation modes, respectively. 

ther eigenvalues are plotted in figure 2.22 as 
taken from reference 2.6. Labels near the 
ordinate identify roots for b/a=O given in the 
section entitled “Completely Free Plates’’ 
(2.1.3). 

b - 
a 

FIGURE 2.22.-VaIues of h= ( p ~ 2 / D ) ~ f h a  for a free, free 
annulus; Y= 113. (After ref. 2.6) 
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~ ~~~ 

% 

2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _  

TABLE 2.34.-Values of X 2 = w a 2 m  for an Annular Plate Free on Both Edges; v = I / S  

A2 for values of b/a of- 

0. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
~ _ _ _ - _ _ _  ~- 

5.203 5. 053 4. 822 4. 567 4.203 3. 865 3. 519 3.200 2. 890 

% 

2 
3 
0 
1 
2 
3 
0 
1 

TABLE 2.35.-Frepuency Parameters wa2-JplD 
for a Free, Free Annular Plate 

$ -  

0.1 
-_-__ 

0 5.30 
0 12.4 
1 8.77 
1 20.5 
1 34.9 
1 53.0 
2 38.2 
2 59.0 

0.3 

4.91 
12.26 
8.36 

18. 3 
33.0 
51. 0 
50.4 
58.8 

0.5 
- - ~  

4.28 

9. 32 
11.4 

17. 2 
31. 1 
47.4 
92. 3 
96. 3 

0.7 
___- 

3.57 
9.86 

13.2 
22.0 
37.8 
55.7 

251 
253 

0.9 

2.94 
8. 14 

34.9 
55.7 
93.8 

135 
2238 
2240 

A more comprehensive set of results is given in 
table 2.35 (see ref. 2.46). 

8.8.10 Annular Ptates Clamped on Outside With 
Rigid Mass on Inside 

Considering only axisymmetric vibrations 
&he boundary conditions for annular plates 
clamped on the outside with a rigid mass on the 
inside (fig. 2.23) are 

FIGURE 2.23.--Annular plate damped on outside, rigid 
mass on inside. 

where M is the total mass of the rigid insert. In 
the general case the condition of zero slope a t  
the junction with the rigid mass would be 
replaced by an equation of motion relating the 
integral of the components of torque along the 
edge r=b about a diametral axis to the product 
of the mass moment of inertia and the rotational 
acceleration about the axis. 

Letting n=Q in equation (1.18) and substi- 
tuting into equation (2.37) result in a fourth- 
order frequency determinant. Expanding this 
by making use of the recursion formulas for 
derivatives of Bessel functions yields a char- 
acteristic equation which was given by 
Handelman and Cohen (ref. 2.49): 

where 

and 
X = ( w2p/D) /*a (2.39) 

where p' is the mass pea unit area of the rigid, 
inner mass. 

mental root X for two values of a and r=2 and 
Equation (2-38) as solved for %he faan 
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10. These results are shown as small circles 
in figure 2.24. Because of the complexity of 
equation (2.38) its numerical evaluation was 
limited in reference 2.49 and, in its place, a 
minimal principle was used to obtain approxi- 
mate eigenvalues which are upper bounds. 
These results appear as curves in figure 2.24. 

In  figure 2.24 it  is seen that for high mass- 
density ratio y there exists a ratio of radii a 
for which the frequency is identical to that for 
the clamped solid circular plate without central 
mass. The critical values of y for which &his 
occurs are shown in figure 2.25 as a function 
of a (see ref. 2.49). 
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Chapter 3 
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2.00- - - - - - - - - - - - - - - - 
3.00------------_--- 

es 

0.600 13. P 
.866 27.5 
.943 56.9 

The elliptical boundary will be taken to be 
one of the confocal ellipses of an elliptical co- 
ordinate system. The semimajor and semi- 
minor axes of the ellipse wil l  be taken as a and 
b, respectively (see fig. 3.1). The eccentricity 
c of the ellipse is related to a and b by 

For a mode shape having symmetry with 
respect to both axes of the ellipse ( m  even) or 
with respect to the minor axis (m odd), equation 
(1.27) reduces to 

~ = 2  i c m c e m ( t ,  a > c e m ( t l ,  a) 
m=O 

-% c2Cem(f, -Q)Cem(?l ,  - !2)1 (3.2) 

For mode shapes which are antisymmetric 
about both axes (m even) or with respect to  the 
major axis of  the ellipse (m odd), equation 
(1.27) reduces to 

w=2 I s m s e m ( t ,  a ) s e m ( t l ,  (7) 
m=P + s ~ s e m ( s , - a > s e m ( 7 1 , - a > ~  (3.3) 

3.1 CLAMPED PLATES 
When equation (3.2) is used and the condi- 

tions of zero deflection and slope around the 
boundary are applied, a characteristic de- 
terminant of unbounded order is obtained. 
Shibaoka (ref. 3.1) solved the problem of 
clamped elliptical plates by beginning with the 
element in the upper left-hand corner and tak- 
ing a series of finite determinants containing 
that element. As successive determinants were 
taken, convergence to a lowest root was es- 
tablished. Table 3.1 shows the fundamental 
roots obtained for three values of a/b and 
corresponding eccentricities. The convergence 
is slower for large values of a/b.  Only third- 
order determinants were required to establish 
the convergence to the number of figures given 
for a/b=1.25 and 2.00, but a fourth-order 
determinant was required for a/b=3.00. 

TABLE 3.1.-Values of x2=wa2-JpJD for a 
Clumped EUipticaE Plate 
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bla 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 
- - ~ ~ _ _ _ ~ - ~ ~  

)\2 ._____________ 10. 216 11. 443 13. 229 15. 928 20. 195 27. 328 40. 649 69. 163 
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0.2 0. 1 

149. 89 583. 10 

(3.5) 

was chosen t o  satisfy the boundary conditions 
exactly. The Rayleigh quotient gives the 
approximate frequency formula 

The Galerkin method and a two-term de- 
flection function 

were also used to  solve the problem (ref. 3.2) .  
By use of equation (3 .7) ,  the eigenvalues are 
found to be 

A:= pwfa4/D=39.21 8 

and 
X i  = pwga4/D= 129.18 

Values of X2 from equation (3.8) for various 
ratios of a/b are given in table 3.2. 

TABLE 3.2.-Approximate Values of x2= @a2 JplD 
for a Clumped Elliptical Plate 

PO. 217 
11.314 
12. 566 
17. 025 
27. 746 
58. 693 

158. 85 

Comparing equations (3.8) and (3.6) with table 
3.1, it is seen that equation (3.8) gives results 
only slightly more accurate than those of equa- 
tion (3.6) and the ratio of frequencies obtained 
from equations (3.6) and (3.8) does not vary 
with a/b. 

In reference 3.3 the differential equation 
(eq. (1 .4) )  expressed i~ terms of elliptical co- 
ordinates (eq. (1.20)) is transformed into a 
form yielding a solution in “epicycloidal tran- 
scendental functions.” The characteristic de- 
terminant for the clamped case is presented, 
but not evaluated. 

In reference 3.4 a minimal energy method is 
used with a deflection function of the form 

W(r, e) = ( 1 - p2)*[A1 4- A, p 2  + A2 p4  + (A3 P*+ A4p4) 
COS 28+A,p4 COS 481 (3.10) 

where p and e are related to rectangular co- 
ordinates by the parametric equations 

x = ~  COS e 
b .  

y=- p SlPP B a 
(3.11) 

to obtain fundamental frequency parameters. 
Results are given in table 3.3. 

The problem was also formdated in terms of 
Mathieu functions and discussed in reference 
3.5. It is also discussed in reference 3.6. 

3.9 FREE PLATES 
Experimental results for free elliptical brass 

plates having alb ratios of 2 and 1.25 were ob- 
tained by Waller (ref. 3.7).  Table 3.4 gives 
ratios of frequencies for a/b=1.98 relative to 
the fundamental. frequency. The fundamental 
frequency upon which the table is based is 
given in reference 3.7 as 438 cycles per second 

TABLE 3.3.-Approximate ~ r e ~ u e n c ~  Parameters X2= w a 2 m  for a Clamped Elliptical Plate 
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TABLE 3.4.-Experimentally Delemined Rela- 
tive Frequencies for a Free Elliptical Brass 
Plate; a/b = I .98 

TABLE 3.5.-Experimentully Determined Rela- 
tive Frequencies f o r  a Free Elliptical Brass 
Plate; a/b = 1 3 4  

Frequency for value of n of- 
S 

3 

2. 58 
5. 68 

12. 6 
_____.  

2 _ _ _ _  4.25 6.57 9.43 
3 _ _ _ _  10.6 14 ___-_. 
4 _ _ _ _  17 22 

4 

4 7  
8.29 

_____.  

for a brass plate with a major axis of 4.99 
inches, a minor axis of 2.52 inches, and a thick- 
ness of 0.0638 inch. The mode indicators s 
and n indicate the number of nodal lines run- 
ning approximately in the directions of the 
major and minor axes, respectively. This is 
illustrated in figure 3.2, where node patterns 
corresponding to some of the frequencies in 
table 3.4 are shown. 

Frequency ratios for a/b=1.24 are given in 
table 3.5. The fundamental frequency for a 
brass plate having a major axis of 4.96 inches, 
a minor axis of 4.00 inches, and a thickness of 
0.0638 inch was found (ref. 3.7) to be 414 cps. 

This problem is also discussed in reference 
3.8. 

I 
3 a 

FIGURE 3.2.-Nodal Iines for a free elliptical brass 
plate with a/b= 1.98. (After ref. 3.7) 

I Frequency for value of n of- 
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Chapter 4 

es 

Altogether there are 21 combinations of 
simple boundary conditions (i.e., either clamped 
(C), simply supported (SS), or free (F)) for 
rectangular plates. Frequency parameters are 
expressed in terms of wa2JplD, where a is a 
length dimension, and do not depend upon 
Poisson’s ratio unless at least one of the edges 
of the plate is free. However, because D 
contains V ,  the frequencies themselves depend 
upon v for 811 cases. 

Warburton (ref. 4.1) presented the first com- 
prehensive collection of solutions for rectangular 
plates. He used the Rayleigh method with 
deflection functions as the product of beam 
functions; that is, 

WS, Y> =X(4 Y(Y1 (4.1) 

where X(x> and Y ( y >  are chosen as the funda- 
mental mode shapes of beams having the 
boundary conditions of the plate. This choice 
of functions then exactly satisfies all boundary 
conditions for the plate, except in the case of 
the free edge, where the shear condition is 
approximately satisfied. The six possible dis- 
tinct sets of boundary conditions along the 
edges z=O and x=a are satisfied by the 
following mode shapes: 

(a) Simply Supported at x=O and x=u: 

X(x)=s;n ( m - 1 9 ~ ~  
a 

(b )  Clamped at x=0 an 

and 

(m=3,5,7, ...) (4.5) 

where the values of y2 are obtained as roots of 

tan (y2/2) - tanh (r2/2) = 0 (4.6) 

(c) Free at x=O and z=a: 

X(z)=1 (m=O) (4-7) 

X ( Z ) = I - ~  Q (m=1> (4.8) 

(m=2,4 ,6 , .  ..> (4.9) 
and 

(m=3,5,7, .  . .> (4.10) 

and y z  as defined in equatio~s (4.4) with 
and (4.6). 

Clamped at  x=Q and Free at x=a: 

(m=1,2,3, .  . .) (4.11) 

COS 7 3  Gosh ~ a = - - 1  (4.12) 
where 

(e) Clamped at x=O and Simply Supporte 
&t 2=5: 

where the values of 71 are obtained as roots of 

(m=2,3,4, a )  (4.13) 
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with y2 as defined in equation (4.6). 

at x=@: 
cf, Free at  x=O and Simply Supported 

(4.14) 
X X(x)=l-- (m=1) a 

sinhyz($--i) (m=2,3 ,4 ,  . a >  (4.15) 

with y2 as defined in equation (4.6). 
The functions Y(y> are similarly chosen by 

the conditions at y=O and y=a  by replacing 
x by y, a by b,  and m by n in equations (4.2) to 
(4.15). The indicators n and m are seen to be 
the number of nodal lines lying in the x- and 
y-directions, respectively, including the bound- 

aries as nodal lines, except when the boundary 
is free. 

The frequency w is given by reference 4.1 as 

where G,, H,, and J, are functions determined 
from table 4.1 according to the conditions at 
z=O and x=a. 

The qunntities Gu, H,, and Jv are obtained 
from table 4.1 by replacing x by y and m by n. 

An0 ther comprehensive set of s o h  tions was 
later given by Janich (ref. 4.2). Fundamental 
frequencies were obtained for 18 combinations 
of boundary conditions. He, too, used the 

TABLE 4.1.-Frequency Coefiients in Equation (4.16) 

m 

2, 3, 4, . , . 
2 

3, 4, 5, . . . 

0 
1 
2 

3, 4, 5, . . ~ 

2, 3, 4, . . I 

1 

2, 3, 4, . ~ . 

1 
2 

3, 4, 5, * ~ . 

G ,  

m-1 
1.506 

1 
m-2 

0 
0 

1.506 

1 
m-5 

3 
m-z  

0 

3 m-z 
0.599 
1.494 

I 
-2 

HZ 

(rn - 112 

1. 248 

0 
0 

1. 248 

0 

-0.0870 
1.347 

J Z  

(rn - 112 
1.248 

0 

5.017 
121s 

3 J.2 

0.471 
3. 284 

1 
2 m- - 

'2= 0. 
bx=a. 



RECTANGULAR PLATES 43 

Rayleigh method, but used simple trigono- 
metric functions which satisfied only the geo- 
metric boundary conditions. The mode shapes 
used in reference 4.2 are given in table 4.2. 

The frequency o is given in reference 4.2 for 

7r4D K u*=- - 
dP N 

v=0.25 by 

(4.17) 

with K and N given in table 4.2. 
The results of references 4.1 and 4.2 are both 

obtained by the Rayleigh method and, hence, 
yield upper bounds on the frequency values. 
However, it must be pointed out that both sets 
of results have limitations in accuracy. The 
three cases not included in table 4.2 (F-F-F-F, 

SS-3'-F-F, and SS-SS-F-F) yield such poor 
results with mode shapes of the same type that 
they were not included in reference 4.2. The 
force-type boundary conditions as well as the 
geometric are satisfied in reference 4.1; this 
usually improves the accuracy of the solution, 
but occasionally makes it worse. The results 
determined from table 4.1 wil l  decrease in 
accuracy for higher mode shapes (increasing 
values of m and n) .  

A partial summary of vibration frequencies 
for rectangular plates was given in reference 4.3. 

4.1 ss-ss-ss-ss 
The problem of plates with all sides SS is the 

most simple to solve for the rectangular plate. 

TABLE 4.2.-F'requency Coe&ients for Equation (4.17) and Diferent Mode Shapes; v=0.25 

Boundary conditions Deflection function or mode shape 

(cos ~ - 1 ) ( c o s 2 ~ - - 1 )  

(cos --cm 3nx q j o s  

(I-cos  cos 2 w  7 -1 

2a 2a 

(608 - 1 )  sin 

(cof3""-1); a 

2nz cos -- 1 a 

2a 3z-c0s 2 2b 

1-cos "y 
3UX UZ cos --cos - 2a 2a 2b 

N 

2.25 

1.50 

.340 

.?5 

.50 

1-50 

1.00 

~ 227 

K 

12+8 (:>"+I2 (iy 

0.0468+0.340 (;s+1.814 (zy 

2 

2.67+0.304 

8 
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Boundary conditions Deflection function or mode shape 

( 1 - - c o s ~ ) ( l - - c o s  g) 

(cos 3rz ---cos '> sin 

(cos %-COB 3rx ") 

2a 2a 

2a b 

3rx *X 
2a 2a cos - -cos - 

(1-cos E) $ sin 

( 1 - c o s z ) ;  

*z I-coe - 2a 

TZ sin - sin 9 a b  

sin s> 
TX sin - a 

N 

0.0514 

50 

.333 

1.130 

.1134 

.0756 

.2268 

.25 

.I667 

.50 

K 
-~~ ~ 

0.0071+0.024 - CY 
+0.0071(0'  

( b ) a  

1.28+1.25 (:)a+0.50 (:y 
0.853+0.190 

2.56 

0.0156+0.0852 - (3' 
+0.1134 (is 

0.0104+0.0190 2 
( b y  

0.0313 

.50 

The boundary conditions are satisfies the boundary conditions, where A,, is 
an amplitude coefficient determined from the 

w=O, M,=O (for  x = ~ ,  a )  initid conditions of the problem and m and n 
w=O, Mv=O (for y=O, b )  are integers. Substituting equation (4.19) into 

(4.18) 

equation (1.4) gives the frequency 
When equations (1.29) are use 

(4.19) 
2 

w= + (4.28) 
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A plot of four frequency parameters as a func- 
tion of the b/u ratio was made by Vet (ref. 4.4) 
and is shown in figure 4.1. 

090 w a z m  

SS-SS-SS-SS rectangular plate. 
FIGURE 4.1 .-Frequency parameter 0.90obzm for 

(After ref. 4.4) 

The node lines for a general rectangle are 
simply straight lines parallel to the edges as 
shown in figure 4.2. 
ever, two mode s 
frequency and exis 
tive amplitudes dep 
ditions. Sequences of nodal patt 
able for a given frequency are sho 
cases from reference 4.5 in figure 4.3. The 
problem was also solved in reference 4.6 by 
replacing the plate by an assemblage of beams 
and concentrated masses. 

For square pI 

0 

b 

m=2 .n. 2 

FIGURE $.Z.--Nodal patterns for SS rectangular plate 
with a> b. 

4.4 TWO OPPOSITE SIDES SS 
There are six combinations of boundary con- 

ditions for which two opposite sides are SS. 
One of these (for the plate with all sides SS 
which has a simple, exact solution) has already 
been discussed. The remaining five cases also 
have exact (although more difficult) solutions. 
When the edges x = O  and x=a are SS, it is 
seen that the conditions at  these boundaries, 
as well as the differential equation of the prob- 

FIGURE 4.3.-Combined nodal patterns for a SS 
square plate. (After ref. 4.5) 

lem (e¶ .  (1.4)), are exactly satisfied by using 
the first half of equation (1.37) with ru=mr/a; 
that is, 

W(x, y)= 2 [ A , s i n J R y  
m = l  

+B, c o s - , l k ~ y + C m  sinhd-y 

+D, cosh&%& sin cu;l: (4.21) 

Applying the remaining four homogeneous 
boundary conditions results in a set of fourth- 
order characteristic determinants, one for each 
value of a. Each determinant has an infinity 
of solutions for the eigenvalues k. Any of the 
four edges being free is a necessary and SUE- 
cient condition for the frequency parameter to 
depend upon Poisson's ratio. 

The first straightforward, comprehensive 
solution of these five cases by the method out- 
lined above was given by Fletcher, Woodfield, 
and Larsen in reference 4.7 and in reference 4.8. 
In reference 4.7 an exc nt  analysis is made of 
the conditions which lead to k2<ru2 requiring 
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that sin J F 2 y  and cos J-2 be replaced 
in equation (1.36) by sinh J m y  and cosh 
&+Py, respectively. They formulated the 
characteristic determinants and solved for the 
eigenfunctions for all five cases and published 
the first six frequencies of a square plate in each 
case. 

Iguchi (ref. 4.9) solved the problems involving 
one edge C and the opposite either C or SS and 
presented extensive numerical results for them. 
Das (ref. 4.10) formulated characteristic equa- 
tions and eigenfunctions for the two cases of 
opposite edges either F or C. Pertinent dis- 
cussion can also be found in reference 4.11. 

It has been shown (e.g., refs. 4.9 and 4.12) 
that a useful analogy exists between the vibra- 
tion and buckling of rectangular plates having 
two opposite sides SS. The deflection of a 
rectangular plate loaded by compressive inplane 
forces is given by (see the appendix) 

where iVz=Nz(x,y) and Nu are compressive 
forces per unit length acting in the x- and y- 
directions, respectively, and N,, is the inplane 
shearing force per unit 1engt.h. Taking the case 
N,,=N,=O and assuming that w(x, y) = 

mnx C Y m ( y )  sin - (where m=1, 2,  . . .) satisfy 

the SS boundary conditions at  x=O and x=a 
and reduce equation (4.22) to the two homo- 
geneous equations 

m a 

(4.23) 
J%+cY2) Y,*=O 

where a=mn/a, as before. When equations 
(4.23) are compared with equations (1.34), it is 
seen that the soiution for buckling also solves 
the vibration problem if N&/D is replaced by 

FIGUBE 4.4.--sS-C-SS-C plate. 

p d / D  and the boundary conditions on the re- 
maining two edges are the same. Thus the 
critical buckling load N,  gives vibration fre- 
quencies according to 

N p -  Pw2 (4.24) 
a2 

4.2.1 ss-c-ss-c 
Recognizing that the solution for SS-C-SS-C 

plates (fig. 4.4) given by equation (1.37) must 
be valid for all independent values of x and sub- 
stituting into the bomdary cond~t~Qns 

bW (x,O)=W(x, b)=-(z ,  bW b)=O 
b7J 

(4.25) 
results in the four homogeneous equations 

Bm+D,=O 

AmXI+CmX2=0 

A, sin X1b+B, cos X,b$Cm sinh X2b 
+Dm  COS^ X&=8 

where 
X,= JIG.? 

(4.27) 

For a nontrivial solution the determinant of the coe eients of equations (4.26) must vanish; that is, 

(4.28) 



which, when expanded, yields the characteristic 
equation 

~ X ~ X ~ ( C O S  Alb cash A&- 1) 
+(X;-A;) sin Xlb sinh X&=O (4.29) 

I---- 
2_---  
3--_- 
4---- 
5 - - - _  
6 - _ - -  

Iguchi (ref. 4.9) solved this problem in essen- 
tially the same manner and obtained the first 
six frequency parameters for the case of the 
square. They are presented in table 4.3. 
For the frequency a,%, the subscript m identifies 
the number of half-sine waves in the 2-direction 
and the subscript n identifies the nth lowest root 
for a fixed value of m. The results of table 4.3 
are also verified in references 4.7 and 4.13. 

28.9 69.2 
54.8 94.6 

102.2 140.2 
170. 3 206. 6 
258. 5 293. 8 
366.8 400. 9 

TABLE 4.4.-16 Higher Frequency Parameters 
(not a Complete Set) f o r  SS- A = a a 2 ( m >  

6-8s-C Square Plate 

11.359 
22. 985 

I n  addition, reference 4.9 gives 12 more roots 
as listed in table 4.4. It must be emphasized 
that other frequencies exist (e.g., W41, a&, and 

9.869 
22.373 

os,) which would separate some 
table 4.4 if a complete, sequ 
available. These can be obt 
work of Odman (ref. 4.13) who 
(4.29) with less accuracy than did 
extracted the first six roots for 
The corresponding frequency parameters are 
listed in table 4.5. 

Nishimura (ref. 4.14) achieved accurate results 
for the square using relatively coarse finite dif- 
ference grids. He obtained oa24m=28 .974  
for the fundamental mode by solving only third- 
order finite-difference determinants. 

For nonsquare plates, fundamental frequen- 
cies are available for various aspect ratios. 
These are listed in table 4.6 (see also ref. 4.9).  
Aamada (ref. 4.15) used a variational approach 
and Kanazawa and Kawai (ref. 4.16) used an 

TABLE 4.5.-Frequency Parameters ua2JplD for 
SS-C-SS-C Square Plate ' 

129. 1 
154.8 
199.9 
265.2 
351. 1 
457.4 

208.6 
234. 5 
279. 5 
344.6 
429.8 
535. 1 

307. 4 
333.9 
379.1 
443.8 
529.0 
633. 7 

426. I 
452.9 
498.4 
563. 5 
647.9 
752. 2 

TABLE 4.6.-Fundamental Frequency Parameters for a SS-C-SS-C Rectangular Plate 

I X for values of bla and A* for values of a/b of- 
Parameter i 1 1 1 1 . 5 1  I 2 1 2 . 5 1  3 1 
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Boundary conditions 

b 

TABLE 4,7.-Frequency Parameter ubZ(wD> for the Second Antisymmetric Mode of a SS-C-SS-C 
Rectangular Plate 

&(&m for value of alb of- 

> I 
1 1.5 2 2.5 

68. 181 65. 118 63.641 62.967 62.602 61. 178 

m 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

integral formulation to  obtain confirming results 
or several alb ratios. I n  reference 4.16, results 

are also obtained for the mode antisymmetric 
about p=O, for alb 2 1 .  Unfortunately, this is 
the second antisymmetric ' mode shape of the 
plate. These frequency parameters are given 
in table 4.7. 

The first six roots of equation (4.29) for 
m = l ,  2, . . ., 6 and for a/b=0.5,  1.5, and 2.0 
were found in reference 4.13. The correspond- 
ing frequency parameters are listed in table 
4.8. 

By using equation (4.24)) one can apply 
stddity results to this problem. Fundamental 
frequencies are listed in table 4.9 for various 
a/b ratios as given on page 367 of reference 4.17. 

1 2 3 

54. 8 94. 6 154.8 
170. 3 206. 6 265. 2 
366. 8 400.9 457.4 
642. 8 675.9 730. 5 
997.7 1030 1084 

1432 1464 1517 

25. 0 64. 9 124. 5 
35. 1 75. 6 135. 7 
54. 8 94. 6 154. 8 
84. 1 122.3 182. 6 

122. 6 160.0 219. 3 
170. 3 206.6 265. 2 

Eliminating three of the constants (e.g., 
B,, C,,, and 0,) in equations (4.26) in favor of 
a fourth (e.g., A,) leaves one equation giving 
the eigenfunctions, or mode shapes, for this 
case. From reference 4.7 it is known to be: 

11 23. 8 
2 28. 9 
3 39. 0 
4 54. 8 
5 75. 9 
6 102.2 

W ( X ,  y) = [(Gosh Azb-cos Arb) (AI sinh XZY 
-Az sin Xy) 

63. 4 123. 0 
69. 2 129. 1 
79. 5 139.7 
94. 6 154. 8 

114.7 174. 6 
140.2 199.9 

- ( A l  sinh AI sin Alb) (cosh by-cos X,y)j sin az 

(4.30) 

333.9 
443. 8 
633. 7 
904. 2 

1257 
1686 -- 
302. 4 
314 I 
333.9 
362: 0 
398.5 
443.8 

Substitution of AI and Az determined from 
equations (4.27) into equation (4.30), using the 
frequencies from the tables of this section, 
completely determines the mode shapes. Mode 

TABLE 4.8.-Frequency Parameters cob2 JpID for SS-C-SS-C Rectangukr Plate 

a 
b 
- 

0.5 

1.5 

2.0 

I 5 I 6  4 

234. 5 
344.6 
535.1 
806. 9 

1159 
1592 

203.7 
215. 1 
234. 5 
262. 5 
298. 9 
344. 6 

452.9 
563. 5 
752. 2 

1021 
1375 
1802 

420.9 
432. 8 
452. 9 
481. 1 
518. 0 
563. 5 

202. 1 
208. 6 
219. 3 
234. 5 
254. 7 
279. 5 

300. 7 
307.4 
318. 2 
333.9 
354. 1 
379. 1 

419. 0 
426. 1 
437. I 
452. 9 
473. 3 
498. 4 
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0.7 0.8 1 0.9 

18. 258 20. 824 24.080 
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0 5  
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9 . P  - 0  
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X Y  5 0 
" b  - 

-0 5 

-1 0 

- I  5 

3 

I 5  15 

10 10 

0 5  0 5  

0 s E l  E.2 5 0 - ,- 
a b  g o  " b  = - 0" 

-0 5 -0 5 0" 

-I 0 - I  0 

-I 5 -I 5 

I5 I 5  

10 10 

05 0 5  

m l  
- E 0  a b  

- .- 
g-05 

-t 0 -1 0 

-1  5 -1.5 

ne6 (f) 
(4 nl=3 

??IanRE 4.5.--Mode shapes w,,(Z, @)=X,($) Yn(@) for 36 modes of a SS-C-SS-C square plate. m, n=1, 2, . . . 6. 
(After ref. 4.13) 
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-1.5 

FIGURE 4.6.-Variation in Y,(p) with alb for the mode 
m=6, n = 5  for a SS-C-SS-C rectangular plate. 
(After ref. 4.13) 

shapes were computed and plotted in reference 
4.13 for the first six roots of equation (4.29) 
for m=1, 2, . . ., 6. Plots were made for 
a/b=0.5, 1.0, 1.5, and. 2.0. These are repro- 
duced in figure 4.5 for a/b=1.0 alone. The 
mode shapes are represented as the products 
Wm,(Z,jj) =X,Cl>Y,(~). Each of the six parts 
of figure 4.5 corresponds to one value of M. 
The first six modes having that value of m 
are then determined from the separate curves 
Y,(e). The curves for Y,@) do not change mark- 
edly for variation of alb in the range 0.5<a/b 
<2.0. Themaximumvariationsfor the36 modes 
shown in reference 4.13 are illustrated by 
figure 4.6, which is for the mode m=6, n=5.  

When k2$a2>>1, then cosh -,/-db+ 
sinh J m b  and equation (4.29) reduces to 
the following asymptotic formula (ref. 4.7) : 

(m,nintegers) (4.31) 

Other approximate formulas are given pre- 
viously in equations (4.16) and (4.17). Fre- 
quency parameters obtained from equation 
(4.16) are given in reference 4.4 and are re- 
produced as figure 4.7. 

The problem was also studied in references 
4.18 to 4.21. 

4 0  

20 

0 . 
0 10 

0 8  

0 6  

0 4  

0 2  
10 20 40 60 80 100 xx) 400 6 0 0 8 0 0 1 ~  

090 w b 2 m  

FIGURE 4.?.-Frequency parameter 0.90wZPm for a 
SS-C-SS-C rectangular plate. (After ref. 4.4) 

4.2.2 SS-C-SS-SS 
The boundary conditions for SS-C-SS-SS 

rectangular plates (fig. 4.8) at y=O, b are 

aw 
aY W(Z, O)=M,(Z, ~ ) = W ( S ,  b)=- (2, b)=O 

(4.32) 

Substituting equation (1.37) into equation 
(4.32) as in the previous section yields the 
characteristic equation (ref. 4.7) 

14.33) hz cosh Xzb sin hlb=X1 sinh h2b cos Alb 

1 
B 

I 
I 
I 

6b 

- x  

FIGURE 4.8.-SS-GSS-SS plate. 

ABLE 4.10-First 6 Frequeny Parameters X =wa2JplD for SS-C-SS-SS Square ?la& 
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X _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  133. 784 140. 840 

Mode _ _ _ _ _ _ _ _ _ _ _ _  oa2 a 2 3  

where XI and X p  are defined in equations (4 .27) .  
Iguchi (ref. 4.9) also obtained equation (4.33) 

and presented the first six frequencies. for the 
case of the square. They are given in table 
4.10. These results are verified in reference 
4.7. Three additional frequencies listed in 
reference 4.9 are given in table 4.11. Explana- 
tion of the significance of these roots appears 
in the preceding section (4.2.1).  

188. 102 

03s 

TABLE 4.1 1 . 4  High-Frequency Parameters 
X= wa2JplD for SS-C-SS-SS Square Plate 

X= @a2 (d,/o) _ _  - - - - - - - - - - - - 23. 646 
X*=obz(dD) _ _ _ _ _ _ _ _ - _ _ _ _  23. 646 

15.573 12.918 11. 754 11. 142 9.869 
18.899 17.330 16. 629 16. 254 15. 425 

Ungar (ref. 4.22) presented an interesting 
table which shows the ratio of the frequencies 
of the SS-CSS-SS plate to those of the 

I _. 

SS-SS-SSSS plate when a=b. This is given 
here as table 4.12, where m denotes the number 
of half-sine waves in the z-direction (fig. 4.8) 
and n denotes the mode number for a given 
value of m. 

TABLE 4.12.-Ratw of Frequencies of a SS-C- 
SS-SS Plate to Those of SS-SS-SS-SS 
Plate When a=b 

1 Frequency ratio for value of n- 

1. 06 
1. 09 
1. 09 
1. 09 
1. 08 
1. 07 

1. 02 
1. 05 
1. 06 
1. 06 
1. 06 
1. 06 

1. 01 
1. 02 
1. 03 
1. 04 
1. 05 
1. 05 

1. 00 
1. 02 
1. 02 
1. 03 
1. 03 
1. 04 

1. 00 
1. 01 
1. 02 
1. 02 
1. 02 
1: 02 

The mode shapes are (ref. 4.7) 

(z, y) = (sin X,b sinh X2y-sinh X,b sin XI y> sin cyz 

(4.34) 

When k2+Cu2>>1, equation (4.33) reduces 
to (ref. 4.7) 

( m ,  n integers) (4.35) 

&her approximate formulas are given in 
Frequency param- equations (4.16) and (4.17).  

eters obtained from equation (4.16) are given 
in figure 4.9 (ref. 4.4) .  The problem was also 
discussed in references 4.23 and 4.24. 

4.9.3 SS-C-SS-F 
The boundary conditions for SS-C-SS-F 

rectangular plates (fig. 4.10) a t  y=O, b are 

dW 
(2, o>=- (2, o>= d?J (2, b)=Vw(z, b)=O 

(4.36) 

section are from results reported in 
reference 4.7. 
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sin Xlb sinh h2b=0 (4.37) 

where XI and X2 are defined in equations (4.27). 
The first six frequencies for the case of the 

square and v=0.3 are listed in table 4.14, 
with umn as described in the section covering 
SS-C-SSC plates (sec. 4.2.1). The mode 
shapes are 

090 w b ' m  

FIGURE 4.9.-Frequency parameter 0.90wb2.\11;7Is for a 
SS-C-SS-SS rectangular plate. (After ref. 4.4) 

Y 

FJGURE 4.10.-SS-GSS-F plate. 

Substituting equation (1.37) into equation 
(4.36) yields the characteristic equation 

(X, sin Xly-hl sinh h2y) 

When k2=d>>l, equation (4.37) reduces to frequencies given in reference 4.17 (p. 364) 
and reference 4.25 (p. 298) are listed in table 
4.15 for various a/b ratios for v=0.25. 

4.2.4 ss-ss-ss-F ~ ~ , ~ i ~ t e ~ e r s ~  (4.39) - 

The boundary conditions for s&s%S%F 
h A h e r  a F P r Q ~ a t e  form 
equation (4.17). 

stability results to this problem. Fundamental (4.40) 

rectangular plates (fig. 4.13) at y=o, 6 are 

By using equation (4.24), one can apply >=MV(z,  b)=V,(z, b ) = O  
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1.0 _ _ _ _ _ _ _ _ _ _  
1.1 _ _ _ _ _ _ _ _ _ _  
1.2 _ _ _ _ _ _ _ _ _ _  
1.3 _ _ _ _ _ _ _ _ _ _  
1.4 _ _ _ _ _ _ _ _ _ _  
1.5 _ _ _ _ _ _ _ _ _ _  

53 

12. 859 
13.520 
14. 310 
15. 198 
16. 086 
17. 172 

Y 

FIQTJRE 4.11.-SS-SS-SS-F plate. 

TABLE 4.15.-Fundamentu.l Frequency Param- 
eters for SS-0-8s-F Rectangular Plate; Y = 0.66 

18. 258 
19. 343 
20.527 
21.910 
23. 192 
26. 153 

All results reported in this section are from 
reference 4.7. 

Substituting equation (1 -37) into equation 
(4.40) yields the characteristic equation 

2 

A2 

sinh Xzb COS k,b (4.41) 

where XI and X2 are defined in equations (4.27). 
The first six frequencies for the case of the 

square and v=0.3 are listed in table 4.16, with 
w,, as described in the section covering 
SS-C-SS-C plates (sec. 4.2.1). 

The mode shapes are 

sinh k2b sin X y  sin ax } 
(4.42) 

When k2+(u2>>1, equation (4.41) reduces to 

(m, n integers) (4.43) 

Other approximate formulas are given by 
equations (4.16) and (4.17). 

By using equation (4.24), one can apply 
stability results to this problem. Fundamental 
frequencies given in reference 4.17 (p. 362) and 
reference 4.25 (p. 297) are listed in table 4.17 
for various alb ratios for v=0.25. 

4.2.5 SS-F-SS-F 
The boundary conditions for SS-F-SS-F 

rectangular plates (fig. 4.12) at y=O, b are 

MV(x, O)=V,(X, O)=M,(Z, b)=Vv(x, b)=O 
(4.44) 

Substituting equation (1.37) into equations 
(4.44) yields the characteristic equation 

X sin X,b sinh X2b=2X1X2 

where XI and h2 are defined in equation (4.27). 
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1.8 _ _ _ _ _ _ _ _ _ _ _  
2.0 _ _ _ _ _ _ _ _ _ _  
2.5 _ _ _ _ _ _ _ _ _ _  
3.0 _ _ _ _ _ _ _ _ _ _  
4.0 _ _ _ _ _ _ _ _ _ _  
5.0 _ _ _ _ _ _ _ _ _ _  

- 
Y Y 

15. 396 
16.481 
19. 244 
22.205 
28. 324 
35. 133 

FIGURE 4.12.-SS-F-SS-F plate. 

TABLE 4.17.-Fundamental Frequency Param- 
eters for  SS-SS-SS-F Rectangular Plate; v =  
0 2 5  

0.50 _ _ _ _ _ _ _ _ _  10.362 
0.60 _ _ _ _ _ _ _ _ _  11. 349 
.80 _ _ - - - - _ _ _  11.547 
1.0 _ _ _ _ _ _ _ _ _ _  1 11.843 
1.2 _ _ _ _ _ _ _ _ _ _  12.632 
1.4 _ _ _ _ _ _ _ _ _ _  13. 520 
1.6 _ _ _ _ _ _ _ _ _ _  14. 409 

The first exact solution to this problem was 
achieved by Voigt (ref. 4.26) in 1893. The first, 
six frequencies for the case of the square and 
v=0.3 are taken from reference 4.7 and listed 
in table 4.18, with a,% as described in the sec- 
tion covering S%C-SS-C plates (sec. 4.2.1) .  
The frequencies wi: and wZ1 are the only fre- 
quencies among the first six frequencies for each 
of the six cases of plates having two opposite 
edges simply supported for which k2<a2. 

For non-square plates, a complete set of lowest 
frequencies form’s2<wa2JplD< 160 has been cal- 
culated by Jankovic (ref. 4.27) for various 
aspect ratios and for v=0.3 and ~=0.16. These 

are given in tables 4.19 and 4.20. In these tables 
the notation a,, is the same as before; that is, 
m gives the number of half-sine waves in the 
x-direction, and n is the nth lowest frequency 
for a given value of m. Odman (ref. 4.13) also 
obtained frequency parameters for v =  116 and 
a/b=0.5,  1.0, 1.5, and 2.0. He gave 36 values, 
but he assumed that for n= 1 the plate behaves 
exactly like a beam. His results, where appli- 
cable, are essentially verified in table 4.19. 
Roots obtained from reference 4.13 which sup- 
plement those of reference 4.27 are also shown 
in the column for a/b=l.O in table 4.19. It 
must be remembered that the frequencies wml are 
omitted in these portions of the table. 

When the results of table 4.20, when a/b = 1, 
are compared with those of table 4.18, it can 
be seen that disagreement exists for values of 
all and wzi. The problem appears to  be the 
assumption in reference 4.27 that k2>a2 for 
all roots. In  reference 4.7 it  is shown that 
k2< a2 if 

This gives critical constants for various values 
of Poisson’s ratio as listed in table 4.21. Thus, 
for a square plate, if ~ = 0 . 3 ,  negative vdues 
of k 2 - d  exist for m<15. Even though the 
roots for which k‘<a2 are not handled correctly 
in reference 4.27, the frequencies arising from 
these roots should not differ markedly from 
those given in tables 4.19 and 4.20. 

Zeissig in an early piece of work (ref. 4.28, 
pnblished in 1898) also set up the frequency 
determinant for an exact solution and achieved 
a comprehensive set of solutions which are 
shown in figure 4.13. In  this figure, solid 
curves identify symmetric modes in y and 
broken curves identify antisymmetric modes 
in y .  The 10 numbered points indicate in- 
teresting intersections or “transition points” 
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Y 0 

a3 

TABLE 4.21.--c11-itiCal Gonstank Detemining When k 2 < 2  for SS-F-SS-F Plate 

0.1 0.2 0.3 0.4 0.5 

162. 507 36.463 14.455 7.202 4.051 

0 5 io 15 20 25 30 35 
""2m 

1 2  

- symmetric modes in y ____ ontisymmetric modes in y 

FIGURE 4.IX-Freque for 
SS-F-SS-F plate. 
where two modes 

various alb ratios of 
Numbered points ar 
can exist simultaneo 

where two modes can exist simultaneously. 
For example, a t  point 1 the fifth root for 
m = l  (called 114 mode) and the third root for 
m=3 (3/2 mode) can exist simultaneously for 
a plate having an a/b ratio of approximately 
0.9. Figures 4.14(a) and 4.14(b) (reprinted 
from ref. 4.28) show the nodal patterns for 
these two modes. The areas denoted by plus 
signs can be takerr as positive (upward) dis- 
placements and the others, as negative. If 
the initial conditions are chosen so as to excite 
each mode with the same amplitude, the 

308-3137 0-70-5 

(b') t c ' )  

FIGURE 4.14.-Superposition of two modes having the 
same frequency. (a) Nodal pattern for 3/2 mode. 
(6) Nodal pattern for 1/4 mode. (c) Nodal pattern 
€or (a) superimposed on ( b ) .  (bl)  Nodal pattern 
when initial amplitude of 114 mode is 180' out of 
phase. (c1) Nodal pattern for (a) superimposed 
on (b l ) .  (After ref. 4.28) 

resulting nodal pattern of the superimposed 
modes is shown in figure 4.14(e). If the initial 
amplitude of the 114 mode is taken 180' out of 
phase as in figure 4.14(b'>! the superimposed 
motion is as in figure 4.14(c'). Stepwise 
superposition of varying ratios of the modes 
312 and l/4 yields nodal patterns as shown 
in figure 4.15 (from ref. 4.13). 

FIGURE 4.15.-Stepdse superposition of two modes 
having the same frequency. (After ref. 4.28) 
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The detailed mode shapes are (ref. 4.7): 

(4.47) 

Mode shapes were computed and plotted in 
reference 4.13 for the six roots of equation 
(4.45) for m=1, 2, . . ., 6 and v=1/6. Unfor- 
tunately, i t  was assumed that for the lowest root 
(symmetry about y=O) for each value of m, the 
plate behaves exactly like a beam and, conse- 
quently, these cases were omitted in the results. 
Thus, the plotted mode shapes begin with those 
antisymmetrical about T=O. Plots are given 
in reference 4.13 for a/b=0.5, 1.0, 1.5, and 2.0 
and those for a/b= 1.0 reproduced in figure 4.16. 
The mode shapes are represented as the products 
Wrne(Z, =Xrn(Z)Yn(g, where Z and ij are 
measured with the point at the center of 
the plate taken as origin (see fig. 4.12). 
Each of the six parts of figure 4.16 corre- 
sponds to one value of m. The f i s t  six modes 

g that value of m are then determined 
from the separate curves Y,(jj). The curves 
for Y,(5) do not change markedly €or 
variations in alb in the range 0.5<a/b<2.0. 
The maximum variations for the 36 modes 
shown are illustrated in figure 4.17, which cor- 
responds to m=5 and n=5.  

When k2/a2> > 1,  equation (4.45) reduces to 
(ref. 4.7) 

(m, n integers) (4.48) 

Other approximate formulas are given in equa- 
tions (4.16) and (4.17). 

Zeissig (ref. 4.28) reported many experimen- 
tal results which essentially substantiated his 
analytical calculations. The problem was also 
formulated in references 4.10 and 4.24. 

4.3 OTHER SIMPLE EDGE CONDITIONS 

4.3.1 All Sides Clamped (C-C-C-C) 
The problem of C-C-C-C rectangular plates 

(fig. 4.18) has received a voluminous treatment 
in the literature, especially for the case of the 
square plate. The first reasonably accurate 
results for the square plate were given in 1931 by 
Sezawa (ref. 4.21), who used the series method. 
He used functions which exactly satisfied the 
differential equation (eq. (1.1)) and the bound- 
ary condition of zero deflection along all edges 
and required the slope to be zero only at  the 
midpoints of the edges. This initial work has 
been followed by a host of Japanese publica- 
tions on the problem; for example, see references 
4.9, 4.15,4.16,4.20, and 4.29 to 4.33. 

Some variation of the series method was used 
in references 4.9,4.20, 4.21,4.29,4.30,4.32, and 
4.34 to 4.40. Particularly notable is Tomotika’s 
work (refs. 4.30 and 4.41); he determined 
the fundamental frequency for the square plate 
with extreme accuracy. Like Sezawa, he chose 
functions which satisfied the deflection condi- 
tions exactly and set up an infinite characteris- 
tic determinant for the slope conditions. 
Convergence of results from a sequence of deter- 
minants obtained by truncating the infinite case 
was used to get extreme accuracy. Me also 
used the Rayleigh and Weinstein methods to ob- 
tain the frequency bounds 35.9855< ( u a 2 d a )  
<36.09 for a square of dimension a x a. 

Finite difference techniques were used in 
references 4.14, 4.38, 4.42, and 4.43; the Galer- 
kin technique, in references 4.13, 4.33, 4.44, 
4.45, and 4.46; the Rayleigh or Rayleigh-Ritz 
method, in references 4.1, 4.2, 4.47, and 4.48; 
Weinstein’s method, in reference 4.49; integral 
equations, in reference 4.16; and a variational 
approach, in reference 4.15. Other publica- 
tions include references 4.18, 4.31, and 4.58 t o  
4.56. A notable lack of experimental results 
exists. 
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FIGURE 4.16.--Mode shapes Wm,,(z, 8) =X,(Z) Y,(g) for 36 modes of a SS-F-SS-F square plate. n=2, 3, . . . 7. 
(After ref. 4.13) 

Table 4.22 summarizes the fist six sets of 
frequencies, nodal lines, and amplitude co 
cients for a square plate having side length a. 
Iguchi (ref. 4.9) did not find the fourth mode in 
his work. young (ref. 4.47) used the products 
of beam functions (i.e.! eigenfunctions for 6-6 
beams) and the Bayleigh-Ritz method to ob- 
tain accurate upper bounds. The resulting 
mode shapes are of the form 

where the values of A,, are given in table 4. 
those of a and E are given in table 4.23, a 
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am, a n  

0. 98250222 
1. 00077731 
0. 99996645 
1. 00000145 
0.99999994 
1.00000000 

P ! ‘6 

em, en 

4. 7300408 
7. 8532046 

10.9956078 
14. 1371655 
17. 2787596 
20.4203522 

FIGURE 4.17.-Variation in Y,,(g) with a/b for the 
mode m=5, n=5 for a SS-F-SS-F rectangular plate. 
(After ref. 4.13) 

waz&---- 

the origin of the xy-coordinate system is taken 
at one corner of the plate as shown in figure 
4.18. 

Further results were obtained by Bolotin 
(ref. 4-57)? who used a variation of the series 
method to obtain approximate results for the 
square. These are summarized in table 4.24. 
In table 4.24 odd values of m yield modes sym- 
metric about the y-axis, even values of m yield 
modes antisymmetric about the 5-axis, and simi- 
lady for n with respect to the Z-axis. It is 

a 35.9866 ] b 35. 99 

Y P 

Ampli- 
tude eo- 
efficient b 

FIQURE 4.18.-GGC-C rectangutsr plate. 

All= 1.0000 
A13=0.0142 
A16=0.0020 
A31=0.0142 
A33= -0.0031 

TABLE 4.23 .-Eigenfunction Parameters for a 
G-C Beam 

TABLE 4.22.--First 6 Sets of Frequency Parameters, Nodal Lines, and Amplitude Coe$cients for 
a C-C-C-C Square Plate 

Mode 1 1 2 

73.40 
73.41 

Am= 1.OOOO 
Al4=0.0101 
A16=0.0020 
A~z=0.0406 
Aa*= -0.0022 
A36= -0.0007 
A.q=0.0070 
A54= -0.0011 
Am= - 0.0005 

3 

108.22 
b 108.27 

Azz= 1.0000 
Azr=0.0326 
Aza=0.0073 
A42=0.0326 
A44= -0.0019 
Ala= -0.0010 
Aaz=0.0073 
A@= -0.0010 
Am= -0.0006 

4 

131.64 

Ai3= 1.0000 
Ai5=0.0085 
A31= - 1.OOOO 
Aa5= -0.0141 
&I= -0.0085 
A63=0.0141 

- 

5 

132.18 
b 132.25 

Ail= -0.0280 
A13= 1.0000 
A is= 0.0055 
Aa1= 1.0000 
A.qs=0.1267 
A35= 0.0118 
A51= 0.0055 
A53=0.0118 
A55= -0.0018 

6 

164.99 
165.15 

Alz= - 0.0406 
Air= -0.0105 
Ala= -0.0017 
Aa= 1.0000 
A34= 0.0560 
A3~,=0.0141 
A52= 0.0238 
A#= -0.0011 
Aae= -0.0009 

* Work of Tomotika (ref. 4.30). 
Work of Young (ref. 4.47). 
Work of Iguchi (ref. 4.9). 
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n 

I 
1 
2 
1 
2 
I 
3 

TABLP. 

wal 

35. 10 
72.90 

107.47 
131. 63 
164. 39 
210.35 
219.32 

m 
-- 

1 
2 
2 
3 
3 
4 
3 
4 
4 
4 

noted that only one root is given in this table 
in the vicinity of 132. The general formula 
for frequency for a square when m=n is (ref. 
4.57) 

omn=2 ( mS- 3 ‘>l’d; - a2 (4.50) 

Bazley, Fox, and Stadter (ref. 4.58) used a 
method developed in reference 4.59 to compute 
Iower bounds for the fist 15 frequencies of the 
following symmetry class of a square: With an 
?@-coordinate system having its origin at  the 
plate center and axes parallel t o  the edges, the 
modes are symmetric with respect to both Z 
and 5 and are unaltered by interchange of Z 
and 7 (fourfold symmetry). (Thus, the first 
and fifth modes of table 4.22 would be the only 
modes shown which would fall into this sym- 
metry class.) They also obtained extremely 
accurate upper bounds by the Rayleigh-Ritz 
method by taking the first 50 admissible prod- 
ucts of C-C beam functions. Double-precision 
arithmetic (16 signifcant figures) was used in 
the computations where necessary. Results 
are listed in table 4.25. In  this table results 
from the Rayleigh-Ritz method are given using 
both 25 and 50 admissible functions to show 
the rate of convergence. 

Another significant contribution was made 
by Aronszajn (ref. 4.49), who used Weinstein’s 
method to  obtain accurate lower bounds for 
the first 10 frequencies of a square plate. The 
Rayleigh-Ritz method was used to obtain 
upper bounds. These results are summarized 
in table 4.26. 

TABLE 4.25.-Bounds on Frequency Parameters 
o a 2 d m  f o r  Fourfold Smmetric  Mo&s of a 
Q - G G G  Square Plate 

Mode 
Lower 
bound 

35.982 
132.18 
219.73 
309.08 
393.00 
558.58 
565. 39 
646.62 
806. 51 
900.70 
979.55 

wCZa4plO 

Upper bound 

25 terms 

35.986 
132.21 
220.06 
309. 17 
393.98 
562.38 
565.56 
648. 58 
814. 84 
901.00 

_ _ _ _ _ - _ _ - - -  
I 

50 terms 

35.986 
132.21 
220. 04 
309. 17 
393.92 
562. 18 
565.54 
648.46 
814. 48 
900.97 
982.93 

1062.5 
1147. 1 
1315. 4 
1393.4 

C)dman (ref. 4.13) used a variation of the 
Galerkin method and mode shapes of the form 
W(Z, J)=X(Z)YY(jji), where 

X(Z>=A, cosh p1Z+A2 sinh filf 
+A, cosh &+AI sinh p2Z 

+B3 coshpL4jj+B4sinh p477 

(4.51) 
Y(jj)=BI coshp31H-B2sinh p3jj 

and where pr, . . ., p4 are determined by applying 
the Galerkin formula to the differential equation 
of motion for the plate. The 36 frequencies 
w,,(m, n= 1, , . ~, 6) computed by this method 
in reference 4.13 are upper bounds and are 
given in table 4.27. It is interesting to note 
that, in spite of apparent numerical precision, 
&man did not detect two separate frequencies 
for w13, as did Young (table 4.22). 

For computing fundamental frequencies of 
clamped rectangular plates of arbitrary a/b ratio, 
there exists, in addition, Warburton’s (ref. 4.1) 
and Janich’s (ref. 4.2) formulas, equations (4.16) 
and (4.17). Frequencies obtained from War- 
burton’s formula were plotted in reference 4.4. 
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TABLE 4.26.-F'requency Parameters for  a C-C-C-C SpwtTe Phte 

~~ 

Lower bound Upper bound Mean value 
Mode symmetry 

Maximum 
error, percent 

Symmetric about both and g - - -  - _ _ _ _  __. 

Antisymmetric about both Z and B- __________. 

35. 9693 
131. 55 
131. 8 
218 

73.354 
164. 39 
210 
108. 119 
241.924 
242. 071 

36. 1074 
133.20 
134. P 
23 1 

74. 226 
171.39 
216 
109. 936 
246. 118 
251. 033 

36.0384 
132.38 
132.9 
224. 5 

73.790 
167. 89 
213 
109. 027 
244.021 
246. 552 

0. 19 
. 63 
. 87 

2. 98 

. 59 
2. 13 
1. 43 
. 84 
. 87 

1. 85 

TABLE 4.27.-Frequency Parameters wa2mD for  a C-C-C-C Square Plate 
[Values in parentheses were obtained by interpolation; table is symmetric] 

m 

I 1  2 

M J Z ~ D  for values of n of- 

3 l 4  
131. 902 210. 526 
165. 023 242. 66 
220. 06 296.35 

. _____________  371.38 

5 1 6  

309. 038 
340. 59 
393.36 
467. 29 
562. 18 

- - - - - - - - - - - - . 

(428) 
458.27 
509.9 
583. 83 

792. 5 
(676) 

A simple formula derived by Galin (ref. 4.45) 
for this case is 

w=12 4; (4.52) 

For a square this reduces to wa2&@=36, which 
compares favorably with the accurate value of 
35.9866 from table 4.22. 

A summary of the literature for frequencies 
of nonsquare C-C-C-C rectangular plates is 
presented in table 4.28. Neither Iguchi (ref. 
4.9) nor Kanazawa and Kawai (ref. 4.16) recog- 
nized the existence of the other mode having 
one symmetry axis and one antisymmetry axis 
which is not shown in the table. 

Sixteen frequency parameters for a/b=0.25 
and 0.50 are computed in reference 4.60. These 
are given in table 4.29, with m and n as ex- 

plained previously. More extensive results are 
obtained in reference 4.13 and are also listed in 
table 4.29. 

Mode shapes in the form W,,(&, 1J>= 
X,(Z)Y,(F) corresponding to w,, were found in 
reference 4.13. The components X,(Z)& and 
Yn(jj)-,h are shown in figure 4.19 for a/b=1.0.  
Variation in these curves with alb is very small 
for the range 0.5 Salb 5 2.0. The magnitude of 
this variation is shown by figure 4.20 for the 
components X4(Z)& and Y,(jj)G. Figure 
4.21, taken from reference 4.60, shows the 

x frequency parameter -= w a 2 ( w D ) / a 2  plotted 2 
as a function of alb and bla. For a/b=Q, the 
frequencies are given by reference 4.60:  



Source 
~~ 

2 

24. 56 Iguchi (ref. 4.9) 

2.5 
_ _ _ ~  

23. 76 

Kanazawa and Kawai 
(ref. 4.16). 
e 

65. 41 

Kanazawa and Kawai 
(ref. 4.16). 

64.49 

RECTANGULAR PUTES 

TABLE 4.28.--wb2%1m for C-6-6-6 Rectangular Plates 

72. 66 

63 

68. 89 

Mode (a>b) 

a 

b 

b 

b 

FIGURE 4.19.-Mode shape components X,(Z)& or 
Yn(@)& for a C-GC-C rectangular plate. (After ref. 
4.13) 

FXGURE 4.20.-Variation in mode shape components 
X4(Z)& and with a/b for a C-C-C-C 
rectangular plate. (After ref. 4.13) 

1.5 

27.00 

67. 58 

81. 57 

wb2dm for values of a/b of- 

3 

23. 19 

64. 02 

66.96 

m 

22.37 

61. 78 

61. 78 

I 

0 
I I 

0 5  I 0 5  0 
0- ,!! 
b D 

FIGURE 4.2l.--X/nz= w a 2 / G ( d a )  for a C-C-C-C rec- 
tangular plate. 

Claassen and Thorne (refs. 4.35 and 4.36) 
used 8 most straightforward application of the 
series method which represented the deflection 
form as a double Fourier sine series; that is, 

ornogeneous boundary conditions 
are written for all edges, they result in an in- 
finite determinant, the zeros of which are the 
desired eigenvalues. Numerical convergence 
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TABLE 4.29.--Frequen y Parameters wa2mD 
j o r  a C-C-C-C Rectangular Plate 

[Values in parentheses are interpolatedl, 
- 

m 

6 

n 

___ 

1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
I 
2 
3 
4 
5 
6 

WaZGD for value of alb of- 

Ref. 
4.60 

24. 09 
31.40 
44.35 
63. 00 

. - - - - - - . 
- - - - - - - . 

63. 93 
70. 90 
82. 90 

100. !F: 
- - - - - - - - 
. - - - - - - . 
123. 07 
130. 13 
142. 12 
156.47 

202.02 
209. 18 
231. 02 
238.01 

0.50 

Ref. 
4.13 

24. 58 
31. 83 
44. 78 
63. 34 
87. 26 

(64. 1) 
71.08 

(83. 2) 
100.80 

( 124. 2) 
151. 91 

130. 35 
142.38 
159. 49 
181.79 

(209. 6) 
(204) 
(210) 
(221) 

(261) 

(302) 

(320) 

(117) 

( 124) 

238.35 

287.54 

308. 12 

337.08 
358. 0 

(382) 
(421) 
(427) 
(439) 
(456) 
(478) 
504 3 

0.667 
(ref. 
4.13) 

27. 01 
41. 72 
66. 53 

100.81 
144 21 

(65. 5) 
79.81 

136. 10 

230. 04 

138. 64 
161. 23 
193.24 
234. 65 

(285.4) 
(206) 
(218) 

( 195) 

(103) 

(178) 

(126) 

(241) 
271, 17 

361. 90 

316. 11 

369.34 

(312) 

( 303 

(339) 

(4091 
(456) 

(436) 
(457) 
(488) 
(529) 

(422) 

576. 6 

is established by successive truncation of the 
infinite determinant. The method is also dis- 
cussed in reference 4.39. 

The frequency as a function of the a/b ratio 
for the 10 lowest modes is plotted in reference 
4.35. These curves are reproduced as figures 
4.22 to 4.25. In table 4.30 the accurate values 

Y 

b 

o/b 

FIGURE 4.22.-Frequency parameters A/$= w a 2 / 9 ( . \ l D )  
for modes symmetric about both 2- and g- axes for 
R G C - C - C  rectangular plate. (After ref. 4.35) 

Y 

b x 

a 

FIGURE 4.23.--Frequency parameter A/$"= ua2/r2( . \ la )  
for modes symmetric about 2=0 and antisymmetric 
about g=O for a GG-C-C rectangular plate. (After 
ref. 4.35) 

- 
Y 

b - 
X 

a 

0 0 2  0 5  06 0 8  10 
a/ b 

FIGURE 4.24.--Frequeney parameters A/*= waa/irZ(.\lpjD) 
for modes antisymmetric about 2=0 and symmetric 
about g = O  for a 6-C-6-C rectangular plate. (After 
ref. 4.35) 

of frequency used in the preceding plots are 
displayed for a/b increments of 0.02 in the 
range 1.00 ?a/b 2 0  (ref. 4.36). 

When one looks, for example, at  figare 4.23, 
it appears that the curves for the second and 
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- 
Y 

b f 

a 

o l b  

FIGURE 4.25.-Frequency parameters x / ~ z =  oa2/rz(dplo) 
for modes antisymmetric about both 3- and g-axes 
for a C-C-G-C rectangular plate. (After ref. 4.35) 

third symmetric-antisymmetric frequencies 
cross in the vicinity of a/b=0.84. Such an 
intersection point is termed a “transition 
point.” I t  is the contention of Claassen and 
Thorne that these curves do not actually cross 
at transition points but only approach each 
other closely before [‘v g away” or being 
“repelled.” Very small ements of alb are 
taken in reference 4.36 in the vicinity of th 
transition points and corresponding values 
frequency parameter X are computed which 
appear to  substantiate this. The details of 
this phenomenon can be seen in table 4.31. 
From the table it is seen that the two curves 
approach each other most closely a t  a/b=0.834. 
I t  is the opinion of the writer that, although 
extremely precise work was performed in refer- 
ence 4.36, certain questions of convergence of 
the series approach used need to be answered 
before the transition-point phenomena de- 
scribed above can be accepted. 

In figure 4.26 are shown nodal lines for one 
quadrant of the plate for various a/b ratios in 
the vicinity of transition points (ref. 4.36). 
In these figures the center of the plate is at  
(0,O) and the C and 7 coordinates have been 
nondimensionalized to Z/a and Gib, respectively. 
The rapid change from one mode form to 
another with smdl variation in alb is interest- 
ing. Precise node-line coordinates used for 
figure 4.26 and other nodal patterns are gven 
in reference 4.36. 

Accurate upper and lower bounds for the 
doubly symmetric modes of a rectangle (see 
discussion earlier in this section) are reported 

in reference 4.58. These results are given in 
table 4.32. Upper bounds were computed 
using 50 admissible beam modes. It is note- 
worthy that the second and third doubly sym- 
metric modes for the square are for distinct 
frequencies, as reported earlier in references 
4.36 and 4.47. 

4.3.2 C-C-C-SS 
Three sources of numerical data are available 

for the problem of the C-C-C-SS plate (fig. 
4.27). Results are listed in table 4.33 for the 
case of the square. 

Some higher frequencies for the square were 
obtained by Kaul and Cadambe (ref. 4.61) as a 
special case of the parallelogram plate by using 
the Rayleigh-Ritz method and beam functions 
(see sec. 5.1.1). Frequencies for four higher 
modes are presented in table 4.34. 

For a general rectangle, a spectrum of funda- 
mental frequency parameters is given in 
table 4.35. 

Frequencies for the first antisymmetric mode 
with respect to z=a/2 are given in table 4.36 
(ref. 4.16). However, it is obvious that this 
is at  least the third mode of all mode shapes of 
a plate for a/b$1. No detailed mode shapes 
are available in the literature, but for a/bS 1 
the second mode clearly must have a nodal line 
essentially parallel to  the x-axis and located 
above ‘y= b /2 .  

Approximate formulas for frequencies are 
given previously in equations (4.16) and (4.17). 
Frequency parameters obtained from equation 
(4.6) are plotted in figure 4.28 (from ref. 4.4). 

For more information on this problem, see 
the discussion of the antisymmetric modes of a 
6-C-C-C rectangular plate in the preceding 
section (see. 4.3.1). Straighb nodal lines of anti- 
symmetry duplicate SS boundary conditions. 

4.3.3 C-C-C-F 
The only known results for the problem of the 

6-C-C-F plate (fig. 4.29) are the approximate 
formulas, equations (4.16) and (4.17). 

4.3.4 C-C-ss-ss 
Four sources of numerical data are available 

for fundamental frequencies of 6-C-SSSS rec- 
tangular plates (fig. 4.30). The results are 
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, 
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Second ______....____ ~~ _ _ _ _ _  150. 2685 150. 1544 150. 0184 149. 8461 149. 6269 149. 3663 
Third . . . . . . . . . . . . . . . . . . . . . .  151. 2909 150. 9951 150. 7217 150.4853 150. 2963 150. 1492 

149. 0791 
150. 0029 

0.5 

. 7033 1 . 6392 1 . 6694 I . 7829 ~ . 9238 

05 

04 

03 

- 
Y 
b 
- 

02 

01 

0 
0 02 03 04 0 5  

Id) i / G  
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summarized in table 4.37. Kanazaiva and 
Kawai (ref. 4.16) used an integral equation 
formulation. Hamada (ref. 4.15) used a varia- 
tional approach. Hwato (ref. 4.62) used the 

itz method and mode shapes of the 
form 

(4.553 3nry 
2b 

-cos __ (COS 3- COS ~ 

FIGURE 4.26.-Nodal patterns for various a/b ratios 
in the vicinity of transition points. (a)  Second 
symmetric-symmetric mode; a/b= 0.9 t o  0.9999. 
( b )  Third symmetric-symmetric mode; a/b= 0.9 to 
1.0. (e )  Third symmetric-symmetric mode; a/b= 
0.6 to 0.7. ( d )  Second symmetric-antisymmetric 
mode; a/b=0.8 to 0.9. (e )  Third syrnmetric- 
antisymmetric mode; a/b=0.8 t o  0.9. ( I )  Third 
symmetric-antisymmetric mode; a / b =  0.5 to 0.6. 
(g) Second antisymmetric-antisymmetric mode; a/b= 
0.9 t o  0.9999. 

and retained C,,, C,,, Gal, and CZ3. Nishimura 
(ref. 4.14) used finite difference equations. Ap- 
proximate formulas, equations (4.16) and (4.171, 
may also be used. Frequency parameters ob- 
tained from equation (4.16) are plotted in figure 
4.31 (from ref. 4.4) for four modes. 

For more information on this problem, see 
the discussion of the doubly antisymmetric 
modes of a 6 - 6 6 6  rectangular plate (sec. 
4.3.11. Straight node lines of antisymmetry 
duplicate simply supported boundary conditions. 
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Source 

Dill and Pister 
(ref. 4.24) _ _ _ _ _  

Kanasawa and 
Kawai (ref. 
4.16)--__------31.88 

Hamada (ref. 
4.15)----------  

TABLE 4.33.-Frequency Parameters wa2JplD for 
a C-C-C-SS Square Plate 

TABLE 4.34.-Frequency Parameters for Higher 
Mode Shapes of a C-C-C-SS Square Plate 

wa2mD for mode- Mode 6 7 8 9 
~-~ 

I 
1 2 3 4 w a z & p  _ _ _ _ _ _ _  130.84 152. 75 160. 00 209.97 ----- 

31. 83 63. 33 71. 08 100. 8 116. 4 

4.3.5 C-C-SS-F 
- - - - - -71 .26  _ _ _ _ _ _ - _ _ _ _ _  The only known results €or the problem of 

the G G S S F  plate (fig* 4.32) are the approxi- 
mate formulas, equations (4.16) and (4.17). 

31. 83 . . . . . . . . . . . . . . . . . . . . . . . .  

I I I I I 

Source 

Dill and Pister (ref. 4.24) _ _ _ _ _ _ _ _ _ _  
Kanasawa and Kawai (ref. 4.16) _ _ _ _  
Hsmada (ref. 4.15) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

w a % m  for values of ajb of- 
- 

0.333 0.4 i 0.5 1 0.667 1 1 1 1.5 2 
~ _ _ _ ~ ~  O I  

_ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  24.49 _ _ _ _ _ _ _ _  31. 83 _ _ _ _ _ _ _ _  73. 07 
22.39 23.40 23.76 24  48 26.23 31.87 _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  25. 85 31. 83 48. I _ _ _ _ _ _ _ _  

TABLE 4.35.-Fun&mental Frequency Parameters w a 2 m  f o r  a C-C-C-SS Rectangular Plate 

0 0.333 

61.781 63. 947 

Q 

0.4 0.5 0.667 i 

64 366 65. 161 66. 971 71. 259 

TABLE 4.36.--FundamentaE Frequency Parameters wa2J- for  the First Antisymmetric Mot& of a 
C-C-C-SS Rectangular Phte 

TABLE 4.37.-Fund~mental Frequency Parameters wa2&@ for a C-C-SS-SS Rectangular Plate 
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V Y 

X - x  

FIGURE 4.27.--6-C-C-SS plate. FIQURE 4.3O.-C-GSS-SS plate. 

0.90 w b 2 m  
0.90 w b ' m  

FIGURE 4.3l.-Frequency parameters 0.90wb2dplD for 
a C-6-SS-SS rectangular plate. (After ref. 4.4) 

FIGURE 4.28.-Frequency parameter 0.90wb2&JB for 
a 6-C-C-SS rectangular plate. (After ref. 4.4) 

Y v 

X 

FIGURE 4.32.-6-C-SS-F plate. FIGURE 4.29.-C-GC-F plate. 

.3.6 c-c-F-F in the ease of the square plate for v=0.3. 
These results are summarized in table 4.38. 

plate (fng. 4.33) was investigated by Young The resulting mode shapes are of the form of 
(ref. 4.41), who used the products of am equation (4.49) where the v 
functions and the Rayleigh-Ritz meth to given in table 4.38 and a a 
obtain accurate upper bounds for frequencies 

The problem of the C-C-F-F rectangular 

table 4.39 (from ref. 4.47). 
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Y 

- X  

FIGURE 4.33.-GGF-F plate. 

A fundamental frequency of large error is 
also computed in reference 4.48 by use of the 
R ayleigh-Ri tz method. 

Results from using the Galerkin method are 
given in reference 4.46; these results also appear 
to have considerable error, particularly for the 
fundamental mode. Approximate formulas, 
equations (4.16) and (4.17), may also be used. 

4.3.7 c-ss-c-F 
The approximate formulas, equations (4.16) 

and (4.171, may be used for the problem of a 
6-SSC-F rectangular plate (fig. 4.34). Addi- 
tional information can be obtained from an 
antisymmetric mode of the case ob the C-F- 
6-F plate (sec. 4.3.10). Straight node lines of 

antisymmetry duplicate SS boundary con- 
ditions. 

TABLE 4.39.-Eigenfunetion Parameters for a 
C-F Beam 

Y 

1. 8751041 
4. 6940911 
7. 8547574 

10.9955407 
14. 1371684 
(2r- l ) r / 2  

FIGURE 4.34.-GSS-GF plate. 

TABLE 4.38.--First Five Sets of Frequency Parameters, Nodal Lines, and Amplitude Coe@cients for 
a 6-6-F-F Square Plate; v=O.S 

Amplitude coeffi- 
cients. 

An= 1.0000 
Aiz= 0.0604 
Ala= - 0.0030 
Azr= 0.0604 
A22= -0.0101 
AB= - 0.0003 
A ~ I =  - 0.0030 
Aaz= -0.0003 
Aaa= -0.0017 

2 

24.80 

3 

26.80 

Ail= -0.1172 
A I Z =  1.0000 
 AI^= 0.0553 
Az1= 1.0000 
A z ~ =  0.3223 
A23= 0.0111 
A31= 0.0553 
A32= 0.Olln' 
A33= 0.0022 

4 

48.05 

AI,= 0.0286 
Alz= --0.1566 
Ala= - O.0825 
A,,= -0.1566 
A22= 1.0000 
A23= --.I458 
A31= -0.0825 
A32= 0.1458 
A33= -0.0019 

5 

63.14 

308-337 0-7- 
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4.3.8 C-SS-SS-F 
The only known results for the problem of 

the C - S S S S F  rectangular plate (fig. 4.35) 
are the approximate formulas, equations (4.16) 
and (4.17). Additional information can be 
obtained from the doubly antisymmetric modes 
of the C-F-C-F plate (sec. 4.3.10). Straight 
node lines of antisymmetry duplicate SS 
boundary conditions. 

4.3.9 C-SS-F-F 
The only known results for the problem oE 

the C-SS-F-F rectangular plate (fig. 4.36) are 
the approximate formulas, equations (4.16) 
and (4.17). Additional results can be obtained 
from the antisymmetric modes of the C-F- 
F-F plate (sec. 4.3.12). Straight node lines 
of antisymmetry duplicate SS boundary 
conditions. 

4.3.10 C-F-C-F 
Claassen and Thorne (ref. 4.36) used the 

series method described in the section for 

FIGURE 4.35.--C-SS-SS-F plate. 

Y 

FIQURE 4.36.-GSS-F-F plate. 

the 6-C-6-C rectangular plate (sec. 4.3.1) 
to  obtain frequencies for 11 modes and varying 
a/b ratios for the C-F-C-F rectangular plate 
(fig. 4.37). These modes will be classified 
as symmetric-symmetric, symmetric-antisym- 
metric, antisymmetric-symmetric, and anti- 
symmetric-antisymmetric, according to the 
symmetry or antisymmetry exhibited about 
the axes :=O and y=O, respectively, as shown 
in figure 4.37. The first mode of each class is 
illustrated in figure 4.38. Frequency results are 
summarized in tables 4.40 to  4.43. Poisson’s 
ratio is not known, but is assumed to be 0.3 
as in reference 4.63. 

A question arises about the foregoing results 
in one of the limiting cases. It would appear 

Y 

FIGURE 4.37.--C-F-C-F plate. 

(c  ) (4 

FIGURE 4.38.--Lowest nodal patterns in the four 
classes of symmetry for a GF-C-F plate. (a) First 
symmetric-symmetric mode. (b)  First symmetric- 
antisymmetric mode. (c)  First antisymmetric-sym- 
metric mode. ( d )  First antisymmetric-antisym- 
metric mode. 
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TABLE 4.41.-Frequency Parameters A= ua2JpID 
and X*= ub2JTD for the Symmetric-Antisym- 
metric Modes of a C-F-C-F Rectangular Plate 

from table 4.40 that the doubly symmetric 
frequencies all vanish as b/a+O. However, as 
b is held fixed and a becomes infinite, it is 
obvious that the boundary conditions at  x = O  
and x= m are no longer significant, and the 
fundamental frequency becomes that of an 
infinite strip having two node lines parallel to 
the x-axis. Additional frequency parameters in 
the vicinity of “transition points” (see see. 
4.3.1) and detailed coordinates of nodal lines 
are given in reference 4.36. 

Approximate values of frequency parameters 
are given by equations (4.16) and (4.17). 

I Mode 

a/b  for A, 
bla for X*  

26.40 
22  10 
18. 22 
14.75 
11.68 
8. 99 
6. 65 
4. 63 
2. 88 
1. 36 
. 0  

79. 8 
68. 4 
58. 2 
49. 3 
41. 8 
35. 5 
30. 6 
26. 8 
2 4  2 
22. 7 
22. 4 

79. 8 
76. 1 
72. 9 
65. 2 
49. 5 
36. 2 
25. 1 
16. 3 
9. 4 
4.1 

. o  

TABLE 4.4Q.-Frequency Parameters X= 
W a 2 m  and k*=ub2,1plD f o r  the Doubly 
Symmetric Modes of a C-F-6-F Rectangular 
Plate 

I Mode 

TABLE 4.42.-Frequency Parameters X= ua2&F 
and X *= u b 2 m D  for the Antisymmetric-Sym- 
metric Modes 04 a C-F-C-F Rectangular Plah x 

j Mode 43. 6 
39. 5 
35. 8 
32. 6 
29. 8 
27. 5 
25. 6 
24. I 
23. 1 
22. 5 
22. 4 

120.1 
114. 2 
94. 1 
76. 3 
61. 1 
48. 6 
38. 5 
31. 0 
26. 0 
23. 1 
22. 4 

136.9 
120. 1 
120.2 
120.3 
120. 4 
90. 3 
64. 3 
44. 6 
31. 4 
24. 3 
22. 4 

149. 3 
143.9 
139. 1 
134. 8 
122. 5 
120.4 
103. 6 
65. 9 
40. 0 
26. 1 
22. 4 

- 
I 2 

alb for A, 
bla for X* 

x* 
-- 

87. 5 
75. 7 
64. 9 
55. 4 
47. 0 
39. 8 
31. 6 
17. 7 
7. 8 
2. 0 
. o  

61. 2 
49. 5 
39. 1 
29. 9 
21. 9 
15. 2 
9. 7 
5. 4 
2. 3 
. 6  
. 0  

87. 5 
82. 8 
78. 4 
74. 5 
71. 1 
68. 2 
65. 7 
63. 9 
62. 6 
61. 8 
61. 7 

X” 

I I I I I 
43. 6 
39. 5 
35. 7 
32. 5 
29. 7 
27. 3 
19. 0 
10. 7 
4. 7 
I. 2 
. 0  

120. 1 
97. 2 
76. 8 
58. 7 
43. 1 
29. 9 
25. 5 
24. 1 
II. 7 
2. 9 
. 0  

I 

136. 9 
126. 1 
105. 5 
87. 0 
70. 9 
56. 9 
45. 3 
26. 5 
21. 9 
5. 4 
. o  

149. 3 
133.6 
130.8 
128.3 
106. 7 
74. 0 
47. 3 
35. 7 
23. B 
8. 7 

I I 1 

4.3.1 i C-F-SS-F 
The f i s t  %our frequencies for the 6-F-SS-’E’ 

rectangular plate (fig. 4.39) in the case of the 
square for v=0.3 are given in table 4.44 (refs. 
4.24 and 4.64). Additional results for this 
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124. 5 
112. 6 
102. 0 
92. 5 
84. 3 
77. 4 
71. 7 
67. 2 
64. 1 
62. 1 
61. 7 

VIBRATION OF PLATES 

_______ 

124. 5 
112. 6 
102. 0 
92. 6 
78. 3 
56. 3 
38. 2 
24. 0 
13. 3 
5. 6 
. 0  

TABLE 4.43.-Frequeney Parameters k= w a 2 m  
and x * = ~ b ~ ~ l p l D  f o r  the Doubly Antisym- 
metric Modes of a 6-F-G-F Rectangular Plate 

problem are given by the approximate formulas, 
equations (4.16) and (4.17). 

Further information on this problem can be 
obtained by considering antisymmetric modes 
of the C-F-C-F plate (see preceding section). 
Straight node lines of antisymmetry duplicate 
SS boundary conditions. 

4.3.1 2 C-F-F-F (Cantilever) 
Young (ref. 4.47) in his investigation of 

rectangular C-F-F-F plates (fig. 4.40) used the 
products of beam functions and the Rayleigh- 
Ritz method to obtain accurate upper bounds 
for frequencies in the case of the square eanti- 

Mode 

1 2 alb for A, 
bla for A*  

x* x 

67. 2 
55. 5 
45. 0 
35. 7 
27. 5 
20. 5 
14. 7 
9. 87 
5. 90 
2. 80 
. o  

67. 2 
66. 1 
65. 1 
64. 3 
63. 5 
62. 9 
62. 4 
62. 0 
61. 2 

- - - - - - . 
I 

Y 

TABLE 4.44.-Frequency Parameters for  a C-F- 
SS-F Square Plate; v = 0 . 3  

Mode 

w a Z m  _ _ _ _ _ _ _  1 15. 16 20. 50 1 50. 21 56. 38 
FIGURE 4.39.-&F-SS-F plate. 

TABLE 4.45.-First Five Sets of Frequency Parameters, Nodal Lines, and Amplitude Coe$cients for 
a Square Cantilever Plate; v=O.S 

1 
2 1 3  4 5 

3.494 8.547 ~ ~ 21.44 31.17 27.46 

Nodal lines 

-I 
Amplitude coeffi- 

cients. 
Ail= 1.0000 
A13= -0.0087 
A15= -0.0008 
Azi= - 0.0026 
A23= - 0.0050 
AZ5=-0. 0011 
A31= 0.0001 
A33= - 0.0014 
A35= - 0.0006 

Aiz= 1.0000 
Ai*= - 0.0134 
Ale= -0.0011 
Az2= 0.1212 
A**= 0.0044 
Aze= 0.0006 
A32= -0.0020 
Aa,=-O. 0011 
Am= - 0.0006 

Ai*= - 0.1201 
Air= 0.0627 
Ala= 0.0080 
Az,= 1.0000 
Azc= - 0.0388 
A28= -0.0013 
A32= 0.0776 
Asd= 0.0086 
Ata= 0.0024 

Ail= 0.0054 
A13= 0.2731 
Ass= 0.0092 
Azi= 1.0000 
Az3= 0.0713 
Azs= 0.0079 
A31= - 0.0118 
A33= 0.0050 
A35= - 0.0003 
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TABLE 4.46.-Eigenfunction Parameters for G F  and F-F Beams 

_ _ - _ _ _ _ _ - _ _ _ - _ _ _ _  
_ _ - _ _ _ _ - - _ _ - - _ _ _ _  

0. 98250222 
1. 00077731 
. 99996645 

1. 00000145 

1.8751041 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
4. 6940911 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
7. a547574 4.7300408 

10.9955407 7. 8532046 
14. 1371684 10. 9956078 
(2m- 1)1r/2 14. 1371655 

lever for ~ = 0 . 3 .  
in table 4.45. 

These results are summarized 
The mode shapes are given by 

e n Y  enY cosh - + cos - b b 

-a, (sinh ?+sin 59 b 

- c o s ~ - a ,  sinhL--sin*) e x  
e x  a ( a a 

where the values of A,, are given in table 
4.45 and those of a and e are given in table 
4.46. 

In references 4.65 t o  4.68, Reissner's varia- 
tional principle (ref. 4.69) is modified and 
applied to the square plate. As in the RayIeigh- 
Ritz method, generalized force boundary COIF 

ditions may or not be satisfied here. In reference 
4.66, moment boundary conditions were satis- 
fied at  discrete points and four degrees of 
satisfaction of sh conditions were 
considered ; the be 
the transverse shear conditi 
edges were ignored. Theore 
for the first three modes, a1 
mental data from reference 4.66, are presented 
in table 4.47. Mode shapes corresponding to 
these frequencies are shown in figure 4.41. 

Electrical analogies were developed in ref- 
erence 4.70 for soIution of the problem on a 
passive element analog computer. Five sets of 
frequencies and mode shapes for a square are 
given. In reference 4.71, simple difference and 
higher order difference equations were written 
and solved by means of electronic. analog 
computer for the first six frequencies of a 

TABLE 4.47 .-Frequency Parameters oa2 U D  
for a Spume Cantilever Plate 

oa2qD for m o d e  
Type of data 

I I I 

0 

FIGURE 4.40.--C-F-F-F plate. 

square. The problem is also discussed in 
references 4.48 and 4.72. 

Barton (refs. 4.73 and 4.74) extended the 
Rayleigh-Ritz analysis of reference 4.47 to  
obtain results for the nonsquare cantilever. 
Five sets of mode shapes and frequencies for 
a/b=%, 2, and 5 are reproduced as table 4.48. 
The amplitude coefficients A,, refer to equation 
(4.56). These frequencies are approximately 
plotted as solid lines in figure 4.42. 

Bazley, Fox, and Stadter (ref. 4.75) used a. 
method developed in reference 4.61 to compute 
frequency lower bounds for the f i s t  PO symmet- 
ric modes. They also obtained accurate upper 
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-__ 

Ai2 _ _ _ _ _ _ _  
Aid _ _ _ _ _ _ _  
Ale _ _ _ _ _ _ _  
A22 _ _ _ _ _ _ _  
A 2 4  _ _ _ _ _ _ _  
Aze _._____ 

A32 _._____ 

A34 _ _ _ _ _ _ _  
A36 _._____ 

TABLE 4.48.--Frequency Parameters, Mode Shapes and Amplitude Coe#cients of Rectangular 
Cantilever Plates; v = 0.3 

-0 0529 -0 2053 
-. 1989 . 0128 

,0448 .0017 
1.0000 1.0000 

-.  1069 -.0168 
.OOOO -. 0005 
.0261 .2222 
,0001 .0048 
. 0040 . 0012 

First mode Fourth mode 

2 2 5 .i I 112 

3.508 

1.0000 
-. 0151 
-. 0028 
-. 0011 
-. 0040 
-. 0023 

,0001 
-. 0005 
-. 0008 

Mode 
shape shape 

563.9 3.472 3.450 94.49 

0. 0034 
1.0000 

-. 0031 
-. 0389 

. 2359 

. 0009 

. 1025 

. 0351 
-. 0003 

1.0000 
-. 0004 

. 0000 
- ,0048 
-. 0008 
-. 0001 
-. 0010 
-. 0005 
-. 0001 

0.0006 
1.0000 

-. 0004 
-. 0065 

. 2469 

. 0001 

. 0104 

. 0381 
0002 

1.0000 
-. 0027 
-_ 0002 
-. 0040 
-. 0032 
-. 0004 
-. 0003 
-. 0015 
-. 0003 

0 

b 

Fifth mode Second mode 

2 5 
5 

Mode 
shape Mode 

shape 105.9 
34.73 14.93 

1.0000 
-. 0027 
-. 0001 

. 2040 
,0011 
.0002 
. 0059 

-. 0005 
-. 0002 

1.0000 
-. 0004 

. 0000 

. 2555 

.0001 

. 0000 

. 0215 
-. 0001 

. 0000 

-0.2639 
. 0016 
.0002 

1.0000 
- ,0028 
-. 0001 

.3893 

.0004 

.0002 
I I 

Third mode 
bounds by the Rayleigh-Ritz method by taking 
the first 50 admiscible products of beam func- 
tions. Double-precision arithmetic (16 signifi- 
cant figures) was used in the computations 
where necessary. Results are listed in table 
4.49 for seven a/b ratios. Sigillito (ref. 4.76) 
showed that even more precise upper bounds 
can be obtained with the Rayleigh-Ritz pro- 
cedure by using deflection functions which are 
products of beam functions and Legendre 
functions. Results obtained using 30 admis- 
sible functions constructed in this manner are 
also listed in table 4.49. All values in table 
4.49 are for v = 0 . 3 .  

Gontkevich (ref. 4.55) used Southwell’s 
method to get lower bounds of frequency param- 

2 3 
Mode 
shape 

21.61 21.52 

0.0008 
-. 0465 

. 0725 
1.0000 
. 0271 
. OB96 

-. 0011 
. 0001 
. 0024 

0. 0042 
. 0346 
.0027 

1. 0000 
. 0206 
. 0024 

-. 0058 
. 0010 

-_ 0003 

0. 0048 
. 0054 
. 0004 

1.0000 
. 0050 
.0005 

-. 0068 
-. 0007 
-. 0001 
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4: 

4C 

35 

3c 

25 

N 
0 

3 m  

IS 

IO 

5 

0 

A Experimental 
0 Theoretical 

fTh,,.74 lcps fThe0=178 ocps fThs2 454.ocps 

f Exp =717cps f Exp =176.Ocps f Exp = 43o.ocps 

MODE 3 MODE I MODE 2 

FIGURE 4.41.-Theoretical and experimental mode shapes for a square cantilever plate. 

I 

o/b 

FIGURE 4.42.--Frequency parameter oazJpin for a 
rectangular cantilever plate; ~ = 0 . 3 .  (After ref. 4.73) 

eters for the first five modes. These are sum- 
marized in table 4.50 for v = 0 . 3 .  The mode 
numbers agree with those of table 4.48. 

Claassen and Thorne (refs. 4.63 and 4.77) 
used the series method described in the discus- 
sion of the C-C-C-C plate (sec. 4.3.1) t o  obtain 
precise frequencies for small variations in alb 
ratio. Figure 4.43 gives the lowest five sym- 
metric frequencies and the lowest four antisym- 
metric frequencies as functions of alb, with 
a<b. Figure 4.44 shows the variation with b/a 
for a>b. Poisson’s ratio v=0.3 was used. 

Detailed tabular data for the above curves 
are given in tables 4.51 and 4.52. Additional 
frequencies in the vicinity of transition points” 
(see discussion of the C-6-C-C plate, sec. 
4.3.1) and the detailed coordinates of nodal lines 
are given in reference 4.63. 

Martin (ref. 4.78) devised a variational pro- 
cedure similar to  the Rayleigh-Rits method and 
used it to compute the frequencies of a mild 
steel plate of dimensions a ~ 5 . 1 2  inches, 
b=2.76 inches, and h=0.053 inch. These are 
compared with experimental data found by 
Grinsted (ref. 4.79) in table 4.53. The upper 
values are taken from reference 4.78 and the 
lower, from reference 4.79, and the percent dif- 
ference is given. The indicators m and n cor- 
respond to the number of nodal lines running 
“parallel” to the y- and x-axes, respectively ; 
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TABLE 4.49.-Bounds on Frequency Parameter w a 2 d n  for Symmetric Modes of a Rectangular 
Cantilever Plate; v =  0.3 

I 
Mode 

Lower 
bounds 

Upper bounds 

Ref. 4.75 Ref. 4.76 
bounds 

Upper bounds 

Ref. 4.75 Ref. 4.76 

a/b=0.125 alb= 0.250 

3. 5134 
4. 0448 
5. 6095 
8. 2204 

11.995 
17. 008 
21.977 
22. 618 
23.431 
24. 909 

3. 5113 
4. 0406 
5.6076 
8. 2204 

11. 996 
17. 018 
21.955 
22. 606 
23. 599 
24. 901 

3.4926 
3.9425 
5. 3402 
7. 6439 

11.050 
15. 576 
20.827 
21.869 
22. 381 
24. 067 

3. 4835 
5. 2559 

10. 583 
20. 106 
21.900 
24. 040 
30. 755 
35. 142 
41. 738 
53. 987 

3. 5094 
5.5171 

11. 313 
21. 465 
22. 309 
24. 857 
32. 500 
37. 669 
44. 481 
58. 218 

alb= 1.000 

3. 5059 
5. 5141 

11. 318 
21.455 
22. 308 
24. 816 
32. 489 
37. 890 
44. 520 
60. 738 

alb= 0.500 

3.4608 
9.7605 

21. 529 
29. 927 
32. 906 
55. 061 
60.256 
68. 292 
74.355 
93.740 

3. 5001 
10.210 
21. 891 
31. 522 
34. 160 
58. 195 
61.560 
71. 346 
77.717 
99. 722 

3.4944 
10.208 
21.848 
31. 491 
34. 180 
58. 184 
61.440 
71.217 
78.936 
99.925 

3. 4305 
20. 874 
26. 501 
51. 502 
60.249 
92. 143 

115.68 
121.11 
143.98 
149.47 

3.4823 
21. 367 
27. 278 
54. 301 
61. 450 
97. 321 

119.51 
124. 63 
150.24 
158. 25 

3.4729 
21. 304 
27. 291 
54.262 
61. 276 
97. 208 

119. 24 
125. 14 
156.67 
161. 13 

a/ b= 4.000 a/b=2.000 

3.4575 
21.550 
60. 477 
93. 390 

119. 00 
127. 22 
179. 29 
198.94 
294. 00 
297. 09 

alb= 8.000 

3. 3856 
21.062 
58. 946 
91. 165 

115.77 
122.53 
170. 71 
193. 19 
234. 60 
287. 76 

3. 4415 
21.447 
60. 191 
94. 245 

118. 67 
128.44 
181.56 
198. 20 
252. 59 
296. 00 

3. 3306 
20.822 
58. 356 

114. 57 
189. 63 
283. 02 
354. 30 
384. 46 
401. 04 
443. 26 

3. 4332 
21.475 
60. 292 

118. 59 
196. 62 
293. 96 
361. 12 
394.02 
415. 19 
459. 58 

3.4131 
21. 340 
59.937 

117. 98 
195. 80 
293. 03 
364. 43 
400. 44 
416. 66 
520. 04 

3.4297 
21.481 
60.208 

118. 20 
195. 83 
293. 22 
410. 42 
547.45 
704. 29 
880. 88 

3. 3885 
21.220 
59.472 

116. 79 
193.60 
290. 08 
406. 38 
542. 54 
698. 58 
874.46 

3. 3025 
20. 683 
57. 940 

113. 67 
188.20 
281. 60 
393.91 
525. 11 
675. 15 
842. 90 
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3. 35407 3. 35407 
4. 6490 7. 2595 

21. 0195 21. 0195 
9. 0096 25. 151 

23. 110 28. 546 

TABLE 4.5O.-Lower Bounds of wa2JplD for 
Rectangular Cantilever Plates; v=O.S 

3. 35407 3. 35407 
13. 3064 32. 3660 
21. 0195 21. 0195 
86. 402 534. 55 
43. 977 98. 836 

Lower bounds Of coaz&@ for values of 
alb of- 

- 0 0.2 0.4 0.6 0.8 I .O 
a /b 

thus, n must be even for symmetric modes and 
odd for antisymmetric modes. 

Forsyth and Warburton (ref. 4.80) used the 
Rayleigh-Ritz method with a deflection func- 
tion having two terms involving the products of 
beam functions to obtain the frequencies of a 
rectangular steel plate having a= 16 inches, 
b=7.5 inches, and h=0.282 inch and compared 
them with experimental results. These results 
are listed in table 4.54. 

Much experimental information is available 
on this problem. Dalley and Ripperger (refs. 
4.81 and 4.82) gave results determined from 

FIGURE 4.43.-Frequency parameter X/a2=wa2dm ( ~ 2 )  for a rectangular cantilever plate; v= 0.3. 
(After ref. 4.77) 

0.2 0.4 0.6 0.8 1.0 
b Io  b l o  

FIGURE 4.44.-Frequency parameter X'/G=U@&B(=~) for 8 rectangular cantilever plate; Y =  0.3. 
(After ref. 4.77) 
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alb 

1. 00 _ _ _ _ _ _ _  
0.95 - _ _ _ _ _ -  
0. 90 _ _ _ _ _ _ _  
0. 85 _ _ _ _ _ _ _  
0.80 _ _ _ _ _ _ -  
0. 75 _ _ _ _ _ _ _  
0. 70 _ _ _ _ _ _ _  
0. 65 _ _ _ _ _ _ _  
0. 60 _ _ _ _ _ _ _  
0. 55 _ _ _ _ _ _ _  
0. 50 _ _ _ _ _ _ _  
0.45 _ _ _ _ _ _ _  
0.40 _ _ _ _ _ _ _  
0. 35 _ _ _ _ _ _ _  
0.30 _ _ _ _ _ _ _  
0.25 _ _ _ _ _ _ _  
0. 20 _ _ _ _ _ _ _  
0.15 _ _ _ _ _ _ _  

0. 05 _ _ _ _ _ _ _  
0. 00 _ _ _ _ _ _ -  

bla 

1. 00 _ _ _ _ _ _ _  
0. 95 _ _ _ _ _ _ _  
0.90 - _ _ _ _ _ -  
0. 85 _ _ _ _ _ _ _  
0. 80 _ _ _ _ _ _ _  
0. 75 _ _ _ _ _ _ _  
0~ 70 _ _ _ _ _ _ _  
0. 65 _ _ _ _ _ _ _  
0. 60 _ _ _ _ _ _ _  
0. 55 _ _ _ _ _ _ _  
0. 50 _ _ _ - _ _ _  
0.45 _ _ _ _ _ _ _  
0.40 _ _ _ _ _ _ _  
0.35 - _ _ _ _ _ -  
0. 30 _ _ _ _ _ _ _  
0. 25 _ _ _ _ _ _ _  
0.20 _ _ _ _ _ _ _  
0. 15 
0. 10 _ _ _ _ _ _ _  
0. 05 _ _ _ _ _ _ _  
0. 00 _ _ _ _ _ _ _  

TABLE 4.51.-FrequencyParameters A =  Wa2JpID 
and X * = o b 2 m  for Symmetric Modes of a 
Rectangular Cantilever Plate; v =  0.3 

3.472 
3.474 
3.476 
3.477 
3.479 
3. 481 
3.484 
3.486 
3.488 
3.491 
3. 493 
3.496 
3.498 
3. 501 
3. 503 
3.506 
3. 508 
3.511 

_ _ _ _ _ _ _ _  
3. 5160 

3. 472 
3. 132 
2.809 
2. 504 
2.217 
1. 946 
1. 694 
1. 459 
1.242 
1. 042 
. 861 
. 696 
. 549 
~ 419 
. 307 
. 213 
. 135 
. 076 
.034 
.008 
. 000 

TABLE 4.52.-Frequency Parameters = "a2 J p m  
and X * = ub2mD for Antisymmetric Modes of 
a Rectangular Cantilever Plate; v = 0.3 

I 
l X and X* for mode- 

Aspect 

ratio 1 1  / 2 ! 3 1 4 1 5  

21. 29 
21. 13 
20.74 
19. 85 
18.49 
16.98 
15.48 
14. 06 
12. 68 
11.41 
10.22 
9. 13 
8. 11 
7. 18 
6. 32 
5. 57 
4. 85 
4. 28 

- - _ _ _  

21.29 
19. 30 
17.36 
15. 51 
13.75 
12.09 
IO. 53 
9. 08 
7. 73 
6. 49 
5. 37 
4 3 4  
3. 42 
2. 63 
1. 92 
1. 33 
. 85 
.47  
. 2 1  
. 0 5  
. 00 

x 

27. 2 
25. 3 
23. 7 
22. 7 
22. 2 
22. 1 
22. 0 
21. 9 
21. 9 
21. 9 
21. 9 
21. 8 
21. 5 
18. 3 
14. 52 
11.31 
8. 65 
6. 5 

_ _ _ _ _ _  
_ _ _ - _ _  
_____. 

x* 

27. 2 
26. 6 
26. 1 
25. 6 
25. 2 
24. 7 
2 4  2 
23. 5 
21. 4 
18. 2 
15. 03 
12.18 
9. 61 
7. 35 
5. 39 
3. 73 
2. 39 
1. 34 
.59  
. 15 
. 00 

54. 3 
51. 8 
49. 2 
46. 9 
44. 5 
42. 1 
40. 0 
37. 9 
35. 7 
33. 7 
31. 5 
27. 6 
22. 0 
21. 9 
21. 4 
15. 3 

- -___. 
_-___.  

54. 3 
51. 5 
48. 3 
43. 8 
39. 0 
34. 3 
30. 0 
26. 3 
24  3 
23. 7 
23. 3 
22. 7 
18. 9 
14.47 
10. 63 
7. 36 
4. 70 
2. 64 
1. 16 
.29 
. 00 

1 A and A* for mode- 

l Aspect ratio 

1 1 1 2 1 3 ! 4  
x 

61. 3 
61. 2 
61. 2 
61. 1 
61. 1 
61. 0 
60. 3 
54. 0 
46. 7 
40. 1 
34. 1 
30. 7 
28. 8 
27. 2 
25. 8 
- _ _ _ _  
_ _ _ _ _  
- _ _ _ _  
_ _ _ _ _  
_ _ _ _ _  
_ _ _ _ _  

61. 3 
55. 5 
50. 4 
47. 0 
44.3 
41. 8 
39. 6 
37. 3 
35. 2 
33. 2 
29. 6 
24. 5 
23. 0 
22. 5 
17. 6 
12.20 
7. 79 
4. 36 
1. 92 

~ 47 
. 00 

8. 55 
8. 01 
7. 49 
6. 98 
6. 47 
5. 99 
5. 51 
5. 04 
4. 59 
4. 15 
3. 71 
3. 29 
2. 87 
2. 48 
2. 09 
1. 72 
1. 35 
.997 

. 6 6  

. 3 3  

. 00 

31. 1 
30. 3 
29. 5 
28. 7 
28. 0 
27. 2 
26. 5 
25. 7 
24. 4 
22. 0 
19. 0 
16. 4 
13. 8 
11. 5 
9. 62 
7. 91 
6. 42 
5. 20 

x* 

31. 1 
28. 8 
26. 6 
24  6 
22. 5 
20. 6 
18. 8 
17. 0 
15. 3 
13. 7 
12. 1 
10. 7 
9. 21 
7. 86 
6. 56 
5. 34 
4. 16 
3. 06 
1. 99 
.98  
. 00 

64. 2 
58. 6 
53. 2 
48. 0 
43. 0 
38. 5 
34. 1 
30. 3 
27. 2 
25. 6 
24. 8 
2 4  1 
23. 6 
23. 1 
21. 0 
15. 8 
11. 58 

64. 2 
62. 3 
57. 9 
52. 8 
47. 9 
43. 0 
38. 6 
34. 3 
30. 4 
26. 6 
23. 2 
19. 9 
17. 0 
14 2 
11. 7 
9. 36 
7. 19 
5. 20 
3. 36 
1. 64 
. 00 

_- 
71. 1 
69. 8 
68. 7 
67. 7 
66. 6 
64. 1 
59. 8 
55. 4 
51. 1 
47. 1 
43. 2 
39. 6 
34. 6 
27. 7 
23. 2 

71. 1 
66. 6 
64. 8 
64. 2 
63. 7 
63. 2 
62. 5 
58. 7 
51. 7 
44. 7 
38. 3 
32. 5 
27. 0 
22. 3 
18. 0 
14. 05 
10. 60 
7. 52 
4. 78 
2. 30 
. 00 
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TABLE 4.53.-Theoretical and Experimental Frequencies (cps) f o r  a Mild Steel Cantilever Plate; 
a=5.12 inches, b=2.Y6 inches, and h=0.053 inch 

Frequency, cps, for values of m of- 
n - 

I 
4 1 5  1 0 

0 

1 

2 

3 

4 

__ 

1,220 2,390 
1, 120 2,233 

8. 9 7. 0 
1,743 2,970 
I, 676 2,804 

4. 0 5. 9 
3,280 4, 660 
3, 160 4,428 

3. 8 5. 3 
5,950 7,450 
5,739 7,069 

3. 7 5. 4 

4,810 
4,773 

0. 8 
8,870 
8,685 

2. 1 

Frcc 
VB 

1 

37. 7 
35. 6 

236. 3 
219 
662.3 
618 

1298 
1216 

2 3 

169. 8 
I62 
542. 9 
529 

1030. 5 
996 

. - - - - - . 

1166 
1115 
1563 
1451 
2149 
1996 Plunkett and Wilson (refs. 4.84 and 4.85) 

measured the frequencies of steel plates with 
a=5.00 inches, h=0.100 inch, and a/b=2.00, 
2.50, 3.33, and 5.00. Results are listed in 
table 4.56. The significance of m and n is the 
same as it is in table 4.53. 

Craig, Plass, and Caughfield (ref. 4.86) ex- 
perimentally obtained the first four frequencies 
and mode shapes of a 6061-T6 aluminum 
cantilever plate 7.5 inches by 7.5 inches by 
0.125 inch. Frequencies and corresponding 
frequency parameters are listed in table 4.57. 
Mode shapes are also given in reference 4.86 
but me inaccurate, apparently because of the 
influence of the shaker position. Neverthe- 

aluminum plates as listed in table 4.55. The 
foregoing results are also shown as circles in 
figure 4.42. Photographs showing nodal lines 
formed by the soap powder used in the experi- 
ment are shown for a square plate in figure 
4.45. 

Heiba (ref. 4.83) tested a series of fi-inch- 
thick mild steel plates of width b=10 inches 
and a/b=l.O, 0.8, 0.8, and 0.4, and obtained the 
frequencies and nodal patterns shown in 
figure 4.46. 
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39.8 cps 104.5cps 249.5 cps 324 cps 367 cps 646 cps 
MODES 1(0/0) 2( I/O) 3(0/1) 4(2/0) 5(1/1) 6(2/1) 

__---- 

40.6 cps 
MODES 1(0/0) 

40.2 cps 
MODES 1(0/01 

40.4 cps 
ODES 8(0/01 

95 cps 229.5 cps 254.5 cps 336 cps 
2(1/0) 3(2/0) 4(0/1) 5(J/I) 

(b) 

7lcps 147cps 245.6cps 293cps 
211/0) 3( 2 10) 4(0/1) 5(  I/! -3/0) 

(C) 

60.5cps 
2(1/OB 

_e----- 

105.4 cps 
32 /01  

5 \85  CPS 
6(3/0) 

314 cps 
6(3/0+1/1) 

274.5cps 
6(1/1) 

FrGnRE 4.46.-Experimentally determined cyclic frequencies and nodal patterns for rectangular cantilever plates. 
(a) a/b=l.O. (b)  a/b=0.8. ( e )  ~ / b = 0 . 6 .  (d) a/b=0.4. 
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Mode I 1 

Frequency, cps-_ 71. 9 
wa24p/D- _ _ _ _ _ _  1 3. 34 
- 

TABLE 4.56-Experimental VaEues of wa2 JTD 
for a Rectangular Cantilever Steel Plate 

~ _ _ _ ~  

175 552 
8. 23 I "xi. 56 1 25. 97 

waaJrD for values of a/b of- 

3. 50 
21. 6 
60. 4 

117. 5 
_ _ _ _ _ _ _  

2.00 

3. 50 
21. 5 
59. 8 

116. 5 
195. 0 

- - - _ _ _ _ _ _ _ _ _ _ _ .  

3. 50 
21. 7 
60. 5 

118.7 
196.0 
292. 0 

17. 3 
54. 8 

101. 5 
______. 

14. 5 
48. 1 
92. 3 

154. 0 
228. 0 
319-324 

22. 5 
69. 6 

125.0 
187.0 

92. 8 
125. 1 
176. 0 
244.0 

Mode 1 I ~ 2 1  3 1 4  - _ - _ _ _ ~ - ~  

246. 0 
274. 0 
319-324 

5 

2.50 I 3.33 1 5.00 

3. 45 
21. 1 
59. 3 

115. 2 
190.0 
281. 0 

32. 0 
98. 0 

169. 0 
248. 0 

less, figure 4.47 showing the nodal lines is 
reproduced, partly as an estimate of accuracy 
for further results on parallelogram and tri- 
angular plates. 

Gustafson, Stokey, and Zorowski (ref. 4.87) 
experimentally determined the first five fre- 
quencies of a square steel plate having dimen- 
sions BO inches by 10 inches by 0.0627 inch 
and the foIlowing material properties: 

odulus of elasticity in x-direction: 29.3 X 
I O 6  psi 

Modulus of elasticity in y-direction: 31.5X 
106 psi 

Weight density: 0.282 16/i11.~ 
Poisson's ratio (assumed) : 0.29 

Frequency parameters wa2JplD are listed in 

oduIi given above was u 
xural rigidity D. 
Grinsted (ref. 4.79) obtained considerable ex- 

perimental data. Frequencies and nodal patterns 

table 4.58. The arithmetic 

TABLE 4.57.-Experimentally Determined Fre- 
quency Parameters and Cyclic Frequencies f o r  
a 6-F-F-F Square Plate 

TABLE 4.58.-ExperimentaEly Determined Fre- 
quency Parameters for  a Square Cantilever 
Plate 

for a mild steel plate having a/b= 1.86 are shown 
in figure 4.48. 

Walton (ref. 4.88) used the method developed 
by Houbolt (ref. 4.89) to determine the first 
five frequencies for the cantilevered square. 
This method is a numerical development of 
the Rayleigh-Ritz method in which deriva- 
tives are replaced by finite differences and 
area integrals are replaced by double summa- 
tions. In table 4.59 are given the first five 
cyclic frequencies for an aluminum-alloy plate 
as determined: (1) Experimentally, (2) by the 
method of reference 4.89, using 30 internal 
grid points in the finite-difference mesh, and 
(3 )  by using Warburton's formula (eq. (4.16)). 
No plate dimensions are given in reference 4.88. 

TABLE 4.59.--Theoretical and E x p e r i m e n ~ ~ ~  
Cyclk Frequencies for  a Square Aluminurn- 
Alloy Cantilever Plate; v=Q.28 

Frequency, cps 
- 

Mode 

i i 
23 
48 

I18 
162 
173 

21 
50 

121 
163 
177 

21 
56 

132 
171 
190 
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For a comparison of frequencies of a rectan- 
gular cantilever plate in air, water, or vacuum, 
see the chapter entitled “Other Considerations” 
(ch. 12). 

The problem was also discussed in references 
4.90 to 4.94. 

4.3.1 3 SS-SS-F-F 
The only specific result directly available for 

the problem of the SS-SS-F-F plate (fig. 4.49) 
is the approximate formula, equation (4.16). 
For more information on this problem, see the 
discussion of the doubly antisymmetric modes 
of a completely free rectangular plate (sec. 
4.3.15). Straight node lines of antisymmetry 
duplicate SS boundary conditions. 

4.3.1 4 SS-F-F-F 
The only specific result directly available for 

the problem of the SS-F-F-F plate (fig. 4.50) 
is the approximate formula, equation (4.16). 

4.3.1 5 F-F-F-F 
The problem of the completely free plate (fig. 

4.51) has a rich history. The first significant 
work examining nodal patterns on rectangular 
plates of any kind was produced by Chladni 
in 1787 (ref. 4.95) for completely free bound- 
aries and extended in references 4.96 to 4.98. 
Other early experimental work on this problem 
was performed by Strehlke (refs. 4.99 to 
4.103), Konig (ref. 4.1041, and Tanaka (ref. 
4.105). Wheatstone (ref. 4.106) in 1833 made 
an attempt to  explain the Chladni patterns 
in terms of the anodes of F-F beams, and these 
geometrid studies were extended by Rayleigh 
(ref. 4.107). 

Ritz (ref. 4.108) in 1909 used the problem 
to demonstrate his famous method for ex- 
tending the Rayleigh principle €or obtaining 
upper bounds on vibration frequencies. This 
innovation resulted in several following papers 
(e.g., refs. 4.109 to 4.112) which used the 
method to solve the problem in great 

Lemke (ref. 4.1 10) computed frequencies 
and mode shapes for the six modes of a square. 
Functions of the type 

were used, where A?,(?) and Ym(ij) are the F-F 
beam functions expressed in terms of a nor- 
malized (i.e., z=x/a, where a=l )  xy coordi- 
nate system having the origin at  the plate 
center (fig. 4.51) ; that is, 

cosh km cos kmf+cos k, cosh k,E 
dcosh2 km+ cosa k,,, 

X,(E)= 

( m even) 

sinh k, sin k,Z+sin k, sinh k,Z 
Jsinh2 k,- sin2 k, 

X,(Z)= 

(m odd) 
(4.58) 

The function Y,(ij> is obtained from equations 
(4.58) by replacing 2 by ?/ and m by n. The 
values k, are the roots of the equations 

) (4.59) 
tan k,+tanh k,=O (m even) 
tan km-tanh k,=0 (m odd) 

and are listed in table 4.60. 
Results were obtained in mference 4.110 by 

using six or more terms of equation (4.57) 
and four Merent  values of Poisson’s ratio. 
These data are given in table 4.61. 

Ritz (ref. 4.108) himself computed many 
more frequencies for the square. Table 4.62 
lists frequency parameters, nodal patterns, 
and the approximate mode shapes used, again 
in terms of equations (4.57) and (4.5%). All the 
nodal patterns in table 4.62 are either doubly 
symmetric or doubly antisymmetric about the 
bisectors of the square Z=O, i j =O.  

Frequencies and mode shapes am computed 
for v=0.225, using the number of terms listed 

( E ,  5). Small variations in v from the 

TABLE 4.60.-Eigenvdues of a F-F Beam 
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value of 0.225 can be taken into account by 
the terms 6v, where given. It must -be re- 
membered that these are upper bounds on the 
exact frequencies and that the higher frequen- 
cies and mode shapes may be quite inaccurate. 
In reference 4.108 frequencies and mode shapes 
are also listed for modes symmetric about one 
axis and antisymmetric about the other. Some 
interesting superpositions of these modes are 
also presented. These are given in table 4.63. 

Odman (ref. 4.13) used a variation of the 
Galerkin method to obtain extensive results 
for this problem. Unfortunately, his results 
for the cases when nodal lines lie in only one 

(0) 

Wl 

c-3 
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+O8O1 

? 
i 

I 

F I G U R E  4.4?.-Exp 
terns for the first 
plate; material, 
(a) ExperimentaJ 
(6) Mode I ;  fi=7 
(d)  Mode 3; f3=437 cps. 

Mode 2;  /,=I75 cps. 
(e) Mode 4; f4=552 eps. 

direction are those of a F-F beam and do 
not consider anticlastic bending effects. The 
numerical error inn these frequencies is not large, 
however. Results for umn (m, n=o, 1, . . ., 
6) are given in table 4.64, where m and n 
denote the number of nodal lines approxi- 
mately parallel to the y- and x-directions, 
respectively. The cases when m=O or n=O are 
then the beam modes just described. Values in 
parentheses were obtained by interpolation. 
Poisson’s ratio is 116. 

Iguchi (ref. 4.113) used the series method to  
solve the problem. He formulated the problem 
for the general rectangle with solutions to 
equation (1.4) in the form 

- 
in terms of figure 4.51, where i=:/u, q = Y / b ,  and 

with 

c (4.61) 

The boundary conditions are 

onT=ia )  ( 4 . 6 3 ( ~ ) )  2 

308-3137 0-70----7 
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om 
64 

WI 012 
405 1,120 

260 1,676 2,804 4,335 6,145 

2;O .2/l 2/2 213 214 215 
1,606 3,160 4,428 6,009 7,859 

. .  . -  

310 3/i 312 313 3/4 
4,235 4,773 3,739 7,069 

4/0 4/1 4/2 
8,238 8,685 9,651 

2,233 3,736 3,573 7,750 

fundamental 64 cps 
Number of Nodal Lines$ 

FIGURE 4.48.--Experimental frequencies and nodal patterns for a rectangular cantilever 
plate; a/b= 1.86. (After ref. 4.79) 

FIGURE 4.49.-SS-SS-F-F plate. FIGURE 4.51).-SS-F-F-F plate. 
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The last of these is identically satisfied by 
equation (4.60).  Applying equations (4.63 (6)) 
and (4.63(d)) gives 

1 cosh TA,,( 

sinh - A,, 2 

uan( F) = - (Zn- V d ? L Z >  
T x u ,  

(4.64) 

where a,, a:, b,, and b z  are un 
constants. 

Applying equations (4.63(a)) and (4.63( 
results in an infinite characteristic determinant 

b 

FIGURE 4.51.-F-F-F-F plate. 

€or the frequencies. When the determinant is 
truncated to a finite order of terms, the eigen- 
values are found to converge rapidly with in- 
creasing order of determinant. Frequencies, 
nodal patterns, and numerical constants for 
mode shapes are given in table 4.65 (from ref. 
4.113) for the case of the square having v=0.3. 
For modes having symmetry about both co- 
ordinate axes and both diagonals, the mode 
shapes are 
WG, R =aoIvo(E) + Qd77)l 

+U,(S> cos nTf.1 (4.65) 
For mode shapes symmetric about the co- 
ordinate axes and antisymmetric about the 
diagonals : 
WG, ?I =ao[%0(f) -Uo0(9)1 

--Q.~(?) COS n ~ f ]  (4.66) 
For mode shapes antisymmetric about the 
coordinate axes and symmetric about the 
diagonals : 

n--l 

For mode shapes antisymmetric about the 
coordinate axes and the diagonals : 

"- 1 - 
@,31= c 4- 1) * I%(U sin m-77 

n=1,3, .  . . 
-v,(q> sin ~ T S ]  (4.68) 

where u, and v, are given in equation (4.64) 
and a,, A,, A:, and so forth are given in 
table 4.65. 
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TABLE 4.61.-6 Frequency Parameters and Mode Shapes for  a Completely Free Square Plate 

+ A15 (XI YS+X5 YI) + A3 (X3 YE + Xs Y3) + '456x6 Y5 + . . . 

0.343 

6 

13.10 

15 
_____ 

13.086 

1.0000 
.0325 

-. 0050 
-. 00257 

.00121 
-. 000365 

.000413 

.000148 
-. 000431 

-. 0000703 
-. 0000767 

. 000196 

. 0000720 

. 0000382 
-. 000023 

0.360 
__ 

6 1 15 

12.94 1 12.927 

1.0000 
.0318 

-. 00514 
-. 00246 

. 001235 

.000382 

. 000149 

-. 000366 

-. 000440 

-. 0000701 
-. 0000638 

.000201 
-. 0000727 

. 0000382 
-. 0000230 

0.390 

15 

12.64 

1.0000 
. 0306 

-. 00537 
-. 002285 

. 001276 

.000328 

. 000150 

-. 000370 

-. 000456 

-. 000070 
-. 0000413 

. 0002086 

.0000733 

. 00003805 
-. 0000228 
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TABLE 4 . 6 1 . 4  Frequency Parameters and Mode Shapesfor a Completely Free Square Plate-Con. 

11 

19. 231 

I. 0000 
-. 02042 
-. 006105 

. 00518 

. 00207 

.000098 
-. 002042 
-. 000929 
-. 0000613 

.0000080 

.001008 

0.360 

4 

19. 129 

11 

19. 045 

1.0000 
-. 02146 
-. 00642 

.00545 

.00217 

.0001006 
-. 00215 
-. 000975 
-. 0000631 

. 0000083 

. 00106 

0.390 

11 

18.707 

1.0000 
-. 023312 
-. 006976 

.005927 

.00235 

. 000105 
-. 002337 
-. 001054 
-. 0000658 

. 0000087 

. 001154 
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6 

24.73 

TABLE 4 6 1 . 4  Frequency Parameters and Mode Shapes fo r  a Completely Free Square Plate-Con. 

15 

24.66 
I I 

15 

24.58 

1. oooa 
-. 0449 

.0202 

.00363 

.00252 
-. 00505 

.00199 
-. 000822 

.000987 

.000293 

.000355 

.000069 

-. oaiw 

-. 000976 

-. 000138 

1.0000 
-. 0488 

. 0213 

. 00385 

.00271 
-. 00531 
-. 00206 

. 00209 

.00105 

.000316 

. 000382 

,000073 

-. 000884 

-. 00103 

-. 000146 

0.390 

15 

24.80 

1.0000 
-. 0563 

. 02324 

. 00426 

.00306 
-. 00580 
-. 00229 

.00228 

. 001166 

.000353 

.0004303 

.QOOO81 

-. 000994 

-. 001121 

-. 000163 

____ 
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TABLE 4.61 .-6 Frequency Parameters and Mode Shapes for a Completely Free Square Plate-Con. 

I I 

I I - 
I 

I I I l5 No. terms _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
I I I 

0.0118 0.02266 
1.0000 1.0000 

-. 020 -. 0288 
. 0876 .0730 

-. 0047 -. 00951 
, - - - - - - - - . 00529 

0.0228 
1.0000 

-. 0275 
.0690 

. 00540 

.00314 
-. 00148 
-. 00211 

. 00204 
-. 00153 

.00076 

. 001006 

-. 00674 

-. 00971 

-. 000435 

0.360 

6 

62.664 

15 

62.196 

0.0248 
1.0000 

-. 02875 
.06704 

. 00568 

. 00330 
-. 00151 
-. 00222 

.00183 
-. 00160 

. 000778 

. 00106 

-. 007355 

-. 00921 

-. 000441 

0.390 

15 

61.329 

0.02864 
I. 0000 

-. 0310 
. 06350 

.00619 

.003574 

-. 00841 

-. 00830 

-. 00158 
-. 002425 

.00147 

. 000808 

. 00116 

-. 00172 

-. 000452 
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TABLE 4.61 .-6 Frequency Parameters andJMode Shapes fo r  a Completely Free Square P la teaon .  

(e)  Fifth mode: W(Z, y') =A13(X1Y3- X3Y1)  +AI5(X1Y5- XsY , )  

I-- 
0.343 0.360 I 

3 10 1 3 

-I 
10 

67.804 
- 

1.0000 
-. 01634 
-. 00623 

. 00709 

. 00470 

. 000315 
-. 00367 
-. 002934 
-. 000236 

. 0000421 

0.390 

10 

66.820 
- 

1.0000 
-. 02008 
-. 008235 

~ 00826 
. 005495 
. 000322 

-. 00419 
-. 00333 
-. 000241 

. 000043 
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77.380 
- 

-0.0641 
I. 0000 
. 1252 
. 0489 

~ 00645 
-. 00347 

-. 01286 
-.001936 
-. 00290 

.00139 

.00515 

.00184 

.00150 

. 000448 
-.000766 

TABLE 4.61 .-6 Frequency Parameters and Mode Shapes for a Completely Free Square Plate-Con. 

(f) Sixth mode: W(Z, F) = A l l X l Y l ~ f A 1 3 ( X 1 Y 3 + X 3 Y 1 )  

77.683 
I 

-0. 0631 
I. 0000 

~ 1227 
. 0518 

. 00856 
-. 00419 

__-________. 

_ _ - _ _ _ _ _ _ _ _ _  
_ - - _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _  

+ A33X3 Y3+ A15(X1 Y5fX5 Y,)  + A35(X3 Y5+ xa y3) + . . . 

-0.0746 
1.0000 
. 171 
. 0431 

-. 0084 
. 00546 

- - - - _ _ _ _ _ _ _  

0.343 I 0.360 

77.730 

15 1 6 15 

77.309 

-0. 0627 
1.0000 
. 1184 
. 0500 

. 00684 
-. 00285 

-. 01321 
-. 00229 
-. 003052 

. 00146 

. 00531 

. 002046 

. 00158 

~ 000466 
-. 000798 

0.390 

15 

77.162 

-0. 06035 
1.0000 

~ 10562 
. 05194 

.00755 
-. 00172 

-. 01384 
-. 00295 
-. 00334 

. 001575 

.00560 

.00242 

.001724 

. 000497 
-. 000858 
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TABLE 4.62.-Doubly Symmebic and Doubly Antisymmetric Frequencies and Mode Shapes for a 
Completely Free Square Plate; v=0.226 

Nodal pattern I w2a4p/16D 1 W(Z, Y, 
Doubly antisymmetric modes 

12. 43- 18. 0 8v 

316. 1-270 8v 

378- 57 6 v  

1554 

2713 

2945 

5570 

6303 

13 674 

XlYl+O.O394(X1Y3+ X3Yd -0.0040XaYs- 0. 0034(X1Yb+ X5Y1) 
+0.0011(X3Y5*X5Y~) - O.O019X5Y& 

o . o o 9 x l Y ~ -  0.075(x1Y3 4- XJYJ  + X3Y3- 0 .057(xIY6 + XSYJ 
+0.121(X3Y&+X~Y3) - 0.007X5Y6 
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TABLE 4.62.-Doubly Symmetric and Doubly' Antisymmetric Frequencies and Mode Shapes for a 
Completely Free Square Plate; ~=0.225--Continued 

Nodal pattern 1 &a'p/l6D I WG, 3 

26.40 

35. 73$20. 8 6v 

266.0-274 6v 

886 

941 

1702 

2020 

5480 

Doubly symmetric modes 

xo Y4 - x4 Yo 

XoY4 f X4YO 

XzY4*X*Y2 

x4 Y, 
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TABLE 4.62.-Doubly Symmetric and Doubly Antisymmetric Frequencies and Mode Shapes for a 
Completdy Free Square Plate; ~=0.225-Continued 

Nodal pattern ~ &adpp/16D W E ,  5) I 
Doubly symmetric modes-Continued 

5500 

5640 

7310 

7840 

13 840 

15 120 

28 740 

XoYa+XaYo 

xz Ye- XSY, 
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TABLE 4.63.-~Yymmetrie-Antisymmetric Frequencies and Mode Shapes f o r  a Completely Free Square 
Plate; v = 0.225 

w2a4p 
16D 

~ 

Mode shape 

XiYz- 0.0682x,Yo+ 0.0760X3Yz 
+O.O26OX1Y4 + O . O O ~ ~ X ~ Y O -  0.0027X3Y4 
- 0.0112X5Y2 + 0.0030X5Ya 

O.O6?8X1Yz+ X3Yo-0.015OX3Yz 
SO.O355X,Y4+ O.OOOOX~Y~+O.OlOOX~I'~ 
- 0.0007XsYz + 0.0016X5Y4 

- 0 .0709X~Y~+O.O214X~Y~+ XaY, 
- 0 .1260XJ-  0.0038X5Y,+ 0. i234X3Y4 
-0.0095 XsY2-0.0100 X5Yd 

W(Z, y, - W(Y, 2, 
nodal pattern 

Nodal pattern 
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3 _____ 415 
61.673 120. 903 199. 860 
75.948 134. 107 214. 138 

110.599 169. 998 248. 064 
159. 324 222.700 302. 831 

290.427 373.952 
460. 964 

TABLE 4.63.-Symmetric-Antisymmetric Frequencies and Mode Shapes for a Completely Free Square 
Plate; v = 0.225-Contineud 

6 
- 

298. 556 
(292. 4) 
(309.06) 
345. 669 

(399.2) 

474.596 
(396. 8) 

(562. 6) 
(565. 5) 
670.958 

d a 4 p  
16D 
- 

Mode shape Nodal pattern 

TABLE 4 ~ ~ . - ~ r ~ q ~ $ ~ y  ~ a r a m e t e ~ ~  ma21jpmjor F-F-F-F Square Plate; v= 11s 
[Table is symmetric; values in parentheses are interpolated] 

22.373 
37.284 

67. 591 

For modes symmetric with respect to 5=8 
(fig. 4.51) and antisymmetric aboutT=O (asym- 
metric with respect to the diagonals) : 

The first four of these frequencies and the 
amplitude parameters are listed in table 4.66 
(ref. 4.113). 

The four nodal patterns corresponding to 
table 4.66 are shown in gure 4.52; also shown 
are interesting patterns which arise by taking 
the linear combinations : 

W(S, 5) - KW(7,Z) 
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ma2@ ~35.1564 oa24/p';7D= 105.4632 

103 

c 
0 
k 
I1 

Y 

wa2@= 61.093 I w a ' m  =131.4695 

e 

FIQIJRE 4.52.-Superposition of mode shapes for a completely free square plate; v=0.3. (After ref. 4.113) 
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TABLE 4.65.-Frequency Parameters and Mode Shapes for a Completely Free square plate; v = o . 3  
__ 

I x n  
Nodal pattern I w a z m  1 n 1 a n  

Modes symmetric about'coordinate axes, symmetric about diagonals 

24. 2702 

63. 6870 

122.4449 

168.4888 

299. 9325 

Detailed mode shapes showing contour lines 
for 16 of the modes described in the foregoing 
paragraphs are shown in figure 4.53 (ref. 4.113). 

Grauers (ref. 4.114) in an early work also 
attempted to  solve the problem using solutions 
to the differential equation but obtained in- 
accurate results. 

Upper and lower bounds for the fundamental 
frequency were obtained in references 4.11 5 
and 4.116 and were improved to extreme 
accuracy in reference 4.117. For v=0.225, 
these bounds are 

14.1Q28<wa2&@< 14.1165 

Bazley, Fox, and Stadter (ref. 4.118) used 
a method developed in reference 4.59 to com- 
pute lower bounds for the first 18 frequencies 
of the following symmetry class of B square: 

8. 51935 
a 1. 00000 

. 04225 

. 01173 

. 00494 

-. 11966 
1. 0000 
. 03422 
. 01065 
. 00473 

-8. 81714 
1.00000 

-1. 19356 
-. 08213 
-. 02402 

-. 07482 
1.00000 
.44885 
.03590 
. 01347 

- 8. 90424 
1.00000 

-. 59521 
- 1. 39192 
-. 13703 

_ _ _ _ _ _ _ _ - _ - -  
2.54147 
4.29641 
6.20154 
8. 15225 

_ _ _ _ _ _ _ _ _ _ - -  
3. 23309 
4.73844 
6.51558 
8. 39362 

- - - - - - - - - - - . 
4. 05046 
5. 32975 
6.95746 
8.74107 

_ _ _ _ _ _ - - - - - - _  
4.59037 
5. 75078 
7.28502 
9. 00397 

- _ _ - _ _ _ - - - - - -  
5. 86426 
6.81099 
8. 14998 
9. 71543 

- - - - - - - - - - - - - - 
1. 24133 
3. 67990 
5. 79145 
7.84480 

_ _ _ _ _ _ _ _ _ - _ - _ -  
81. 56615; 
3. 08985 
5.43573 
7. 58598 

_ _ _ _ _ _ _ _ _ - - - _ -  
2. 89935; 
1.89572 
4.85734 
7. 18288 

- - - - - - - - - - - - -  
3.61545; 
1. 03513.1: 
4.35069 
6. 85044 

. - - - - - - - - - - - - - 
5. 13707; 

2.36864 
5.79745 

3.79335; 

Taking a coordinate system as in figure 4.51, 
the modes are antisymmetric with respect to 
both Z and 5 and are unaltered by interchange 
of Z and i j  (symmetric about the diagonals). 
Five nodal patterns of this type are shown 
in the third part of table 4.65. They also 
obtained extremely accurate upper bounds by 
the Rayleigh-Ritz method, using the first 50 
admissible products of free-free beam functions. 
Double precision arithmetic was used in the 
computations where necessary. Results are 
listed in table 4.67 for v=0.225 and v = Q . 3 .  
Herein results from the Rayleigh-Ritz pro- 
cedure are given; both 25 and 50 admissi- 
ble functions are used to show the rate of 
convergence. 

Siguito (ref. 4.76) showed that more precise 
upper bounds can be obtained with the Ray- 
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TABLE 4.65.-Fraquency Parametersand Mode Shapes fora Completely Free Square Plate; v=0.3--Con. 

I 1 w a z m  1 i a n  
Nodal pattern 

- 

Modes symmetric about coordinate axes, antisymmetric about diagonals 

0 
2 

19.5961 4 
6 
8 

0 
2 

65.3680 4 
6 
8 

2 
117.1093 4 

6 
S 

leigh-Ritz procedure by using Legendre fune- 
tions rather than beam functions. Results 
from this approach are also listed in table 4.67. 

Waller (ref. 4.119) obtained experimental 
frequencies and mode shapes for square brass 
plates (v=%). Consider the mode shapes as 
being approximated by free membrane mode 
shapes ; for example, 

(4.70) 

in Germs of figure 4.51. Theratio of fre- 
quencies relative to the fundamental are given 
in table 4.68 for various m/n ratios. The pllus 
or minus signs after m/n in the table correspond 

308437 0-70-8 

- 19.46060 
1.00000 
.00264 

- .00487 
- .00290 

3.93698 
1.00000 

-. 09935 
-. 01507 
-. 00451 

3.84826 
1. 00000 

-. 48091 
- .02845 
- .00453 

-. 02833 
1.00000 
- .24428 
-. 01363 
-. 00297 

5.79354 
1.00000 
.66331 

-. 61699 
- .05732 

. - - - - - - - - - - - - 
2.44653 
4.24093 
6.16324 
8.12315 

_ _ _ _ - _ _ _ - - _ _  
3.25932 
4.75638 
6.52864 
8.40376 

_ _ _ - _ _ _ _ _ - _ -  
3.98317 
5.27879 
6.91850 
8.71009 

- - - - - - - - - - - - . 
4.51264 
5.68893 
7.23629 
8.96459 

- - - - - - - - - - - - - 
5.81033 
6.76461 
8.10925 
9.68297 

_ - - _ _ _ _ - - - - _ _ _  
1.41933 
3.74359 
5.83219 
7.87493 

- - - - - - - - - _ - - - - 
* 1.619263' 
3.06216 
5.42004 
7.57475 

2.804582' 
2.03331 
4.91267 
7.22041 

_ _ _ _ - _ _ _ _ _  
3.51623i 
.60322i 

4.43127 
6.90189 

5.075433' 
3.70944i 
2.49801 
5.85150 

to plus or minus signs in equation (4.70). 
Vahes given above the main diagonal of the 
array are for the minus sign, and values below 
the diagonal are for the plus sign. Numbers OR 

the diagonal of the table are then for m=n. 
I n  reference 4.79 are plotted the experimental 
frequency ratios of reference 4.119. This plot 
is reproduced as figure 4.54. Experimentally 
observed mode shapes corresponding to many 
of these frequencies are shown in figure 4.55 
(ref. 4.119). Other experimental results for 
the square are given in references 4.110, 
4.113, 4.120, and 4.121. 

Waller (ref. 4.122) observed the transition 
points in sudden nodal. pattern change in the 
fundamental mode as alb varies for the com- 
pletely free plate. This had been observed 
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TABLE 4.65.-Frequency Parameters and Mode Shapes .for a Completely Free Square Plate; v=0.3-- 
Concluded 

Modes antisymmetric about coordinate axes, symmetric about diagonals 

1.00000 
. 00766 
.00100 
. 00041 

1.00000 
. 23339 
. 00888 
.00178 

1.00000 
-4.56065 
-. 05491 
-. 01457 

1.00000 
-. 07613 

. 17938 
I01181 

H.00000 
-6. 10581 
-2. 80175 
-. 12231 

Modes antisymmetric about coordinate axes and diagonals 

8.00000 
-. 12827 
-. 00557 
-. OOPOP 

I 
1.00000 
2.68336 

-. 13566 
-. 02103 

204. 6527 

294. 9247 I 
B 
3 
5 
? 

8 
3 
5 
7 
- 

1.00000 
.I5411 

-. 13841 
-. 01080 

1.00000 
1275. 527 

-346. 402 
-20. 133 

1.53788 
3.21949 
5. 13469 
7. 09684 

2.97685 
4. 10632 
5.73251 
7.54066 

4.10247 
4.98299 
6.38986 
8. 05176 

4. 76468 
5. 54095 
6.83389 
8.40846 

5.61744 
6.28933 
7.45357 
8.91940 

2.83585 
4. 00525 
5. 66057 
7.48612 

4.31266 
5. 15742 
6.52679 
8. 16082 

4. 66215 
5.45304 
6.76282 
8. 35079 

5.55717 
6. 23555 
7.40825 
8.88156 

a 0.0604223 
2.76314 
4.86158 
6. 90181 

2. 619473 
1.06694 
4. 13985 
6.41392 

3.85101i 
2. 613482' 
3. 02815 
5. 75931 

4. 549965 
3. 564003' 
1.81600 
5.22474 

5.43651i 
4. 64281i 
2. 35705i 
4.29469 

a 2.45805i 
1. 39928 
4. 23769 
6. 47750 

4. 07419i 
2. 93241i 
2.72047 
5. 60366 

4. 4424% 
3. 42573; 
2. 06503 
5. 31642 

5. 37421.1' 
4. 569703 
2. 20955i 
4. 37240 
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w a 2 m = 6 5 . 3 6 7 8  ( K = O )  

wa2@= 77.5896 (K=QI 

w a 2 m  =161.5046 ( K = O )  

wa'fl.294.9242 ( K = O )  

wa2@= 299.9320 ( K = O )  

FIGURE 4.53.--Contour lines for 16 modes of a completely free square plate; v=0.3. (After ref. 4.113) 



W a = m  i n  1 A: m Bm 
--- _ _ _ _ ~ ~ - - - _ _ _ _ - -  

34.8011- _ _ _ _ _ _ _ _ _ . _ _ I  1 1 -1. 00000 2.12746 1.589373' 0 -0,18568 
,01182 3.53922 2.33964 ' 1  2 .29218 2.74337 

~ I .00430 5.34098 4.63399 , 4 .01218 4.41884 
' 7  ,00183 7.24749 ' 6.74343 1 6  . 00321 6.28698 

1 8  .00133 8.21743 
61.0932 _ _ _ _ _ _ _ _ _ _ _ _ _ _  1 1.00000 2.68145 2.27819 1 0 -7. 62932 _ _ _ _ - _ - - - -  I 3 -.86028 3.89746 1.67626 2 -. 56588 3.19221 

1 5 -. 04348 5.58482 4.33703 , 4 -. 01392 4.71065 
7 -. 00974 7.42901 6. 54292 6 -. 01076 6.49540 

8 -. 00595 8.37796 
105.4634- - - - - - - - - - 1 1.00000 3.41843 3.1121% 0 .14106 . . . . . . . . . . . . . . . . . . . .  

3 -1.43311 4.43685 1.298342 2 -3. 03882 3.83219 
5 -. 07788 5.97375 3.78343 4 -. 01973 5.16582 
7 -. 02391 7.72565 6.18986 6 -.02166 6.83269 

8 -.01136 8.64209 
131.4697 _ _ _ _ _ _ _ _ _ _ _ _ _  1 1.00000 3.78427 3.510083' 0 -.07630 _ _ _ _ _ _ _ _ _ _  

3 .09333 3.72448 2.078633' 2 -.07815 4.16181 
5 .00250 6.19037 3.41750 4 . 17972 5.41486 

.01323 7.02287 

.00382 8.79322 
7 .00245 7.89434 5.97322 

theoretically for other boundary conditions 
(see secs. 4.3.1 and 4.3.12).  In figures 4.56(a) 
and 4.56(b) are shown the nodal patterns of 
two brass plates having the same width, but 
the length in figure 4.56(a)  is slightly greater. 
The a/b ratio is approximately 1.93. The cyclic 
frequencies in figures 4.56(a) and 4.56(b) were 
548.8 and 558 cps, respectively. It was found 
that by gradually filing down the longer side 
the nodal patterns in figures 4.56(c),  4.56(d),  
and 4.56(e) could be produced. It is esti- 
mated that the transition between figures 
4.56(b) and 4 .56u)  occurs at  a/b=3.9.  

Pavlik (refs. 4.111 and 4.112) extended Ritz' 
work to  nonsquare rectangular plates. Fre- 
quencies and mode shapes for three aspect 
ratios are presented in tables 4.69 to 4.71 for 
v=0.25. The functions X, and Y, are as 
defined previously in equation (4.58).  

I n  reference 4.13, extensive results are 
obtained for a/b=W and 35 and Y=%. These 
are listed in table 4.72. Values in parentheses 
me interpolated. 

Mode shapes in the form Wmn(Z, y)=X,(Z) 
Y,@) corresponding to w,, were found in ref- 
erence 4.13. The shape of the components 

* 
Am 

_ _ _ _ _ _ _ _ _ _ - _ _ _ _ - - - - _  
0.68841 
3.53184 
5.69859 
7.77650 

- _ _ _ - _ - - - -  

1.47992i 
3.13207 
5.45984 
7.60328 

2.58567i 
2.30528 
5.03133 
7.30167 

- _ _ _ _ _ - _ _ _  
3.052983' 
1.63687i 
4.76227 
7.11894 

Xm@) and Yn@) are shown in figure 4.57 for 
a/b= 1 .O. The curves of figure 4.57 do change 
slightly between the different modes and with 
varying a/b ratio. Thirty-six precise sets of 
curves for Wmn(Zl Q) are plotted in reference 
4.13, but is is not felt that the variations are 
sufEcient to  justify their detailed repetition here. 
An estimate of this variation can be obtained by 
looking a t  the edges where the variation is 
usually the greatest. One of the mode compo- 
nents having relatively large change in shape 
due to change in the other component or 
a/b is Xz(I). Deflection values t o  be used a t  
x/a=O.5 in figure 4.57 for varying values of 
Y,@) are given in table 4.73 for a/b=l.O. 
Increasing n also increases the magnitude of 
the negative curvature in the range 
0.3 < x/a< 0.5.  

Variation in edge deflection of X2@) with 
a/b ratio is shown in table 4.74 for Yt($. 

Accurate upper and lower bounds for the 
doubly antisymmetric modes of a rectangle 
(see discussion earlier in this section) are re- 
ported in reference 4.118. These results are 
given in table 4.75 for v=O.3. Upper bounds 
from reference 4.78 for doubly antisymmetric 
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-0 I 2 3 4 5 6 7 8 9 IO I I  12-13 
Number of NodolLmes,n 

FIGURE 4.54.-Experimentally determined frequency 
ratios for a completely free square plate; v=%. 
(After ref. 4.79) 

modes for b/a=4.0 are given in tabIe 4.76 
for v=0.3. 

Waller (ref. 4.123) measured experimental 
frequencies and mode shapes for brass plates 
having several aspect ratios. Relative frequen- 
cies for three aspect ratios are given in table 
4.77. The letter m indicates the number of 
nodal lines approximately parallel to the y- 
axis (or width), and, similarly, n indicates 
those for the Z axis. 

TABLE 4.67.-Bounds on Frequency Parameters 
w a 2 J p P  for  Modes of a Completely Free 
Square Plate Which Are Antisymmetric About 
the Coordinate Axes and Symmetric About the 
Diagonals 

I I 
Mode I I Upper bounds 

Lower 
bounds 

25 terms erms 
(ref. 4.118) ( 4.76) 

I v=0.225 

i 1 I I 

1 _ _ _ _ _ _ _  13. 851 14. 119 
2 _ _ _ _ _ _ _  76. 245 77. 621 
3 _ _ _ _ _ _ _  151. 
4 _ _ _ _ _ - -  210. 

6 _ _ _ _ _ _ _  421.26 430. 94 
7 _ _ _ _ _ _ _  438.47 456. 82 

14.111 
. 154 
.26 
.29 
* 94 

430. 03 
456. 05 
518. 40 
682. 03 
725. 85 

I 
v= 0.300 

I,-*-_-.. 13.201 
2 ___-_ " _  75.735 
3 _ _ _ _ _ _ _  147.71 
4 _ _ _ _ _ _ _  209. 46 
5 _ _ _ _ _ _ -  288. 72 
6 _ _ _ _ _ _ _  416. 00 
7 _ _ _ _ _ _ _  432. 13 
8 _ _ _ _ _ _ _  498.77 
9 _ _ _ _ _ _ -  645. 60 
10 _ _ _ _ _ _  701.20 

13. 464 
76. 904 

152. 80 
213. 94 
298.51 
428.96 
450. 19 
515.01 
675. 27 
724. 92 

Nodal patterns (ref. 4.123) are shown in figure 
4.58 for a/b=4.0, 2.0, 1.5, and 1.09. Other ex- 
perimental results €or free rectangular plates 
are given in references 4.111 and 4.112. Other 
approximate analytical results for the problem 
are in references 4.109, 4.114, and 4.124 t o  
4.126. 
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4 5 8 9 
___--___I_____-__- 

9.14 15.8 23.0 32.5 43 55.2 
10.3 15.8 23.9 32. 2 43 55.8 
12.4 19.0 26.4 34 46.6 59 
16.6 22.6 30.0 39.5 50.5 63.4 
21.5 28.7 35.5 45.4 55.9 69.7 
28.7 35 43 52.1 64.5 75.9 
35.9 43 51 61.7 73 84 
45.4 53 61.7 70.3 84 93 
57.2 64.5 73 84 94.4 106 
69.7 76.2 84 93.2 106 120 

TABLE 4.68.-ExperimentalEy Determined Relative Frequencies for a Completely Free Square Brass 
Plate; w = %  

10 11 12 13 14 

70 84 101 119 141 
71 86.1 102 121 _ _ _  
73 89 105 124 _ _ _  
77.5 92.4 110 128 _ _ _  
82.9 99 116 132 _ _ _  
90 106 122 136 _ _ _  
99 115 130 _ _ _ _  _ _ _  

108 124 - _ _ _  _ _ _ _  _ _ _  
120 136 _ _ _ _  _ _ _ _  _._ 

133 _ _ _ _ _ _  _ _ _ _  _ _ _ _  _ _ _  

0 
_- 
__-__ .  
_____ .  

1.94 
5.10 
9. 9 

15. 8 
23. 8 
32. 5 
43. 0 
55. 2 
70.0 
84. 0 

19 
41 

01 

1 

____. 

1 
2.71 
6.0( 

10. 3 
16.6 
23. 9 
32.4 
43.0 
55.8 
71. 0 
86. 1 
02 
21 
_-__. 

2 

1. 52 
2. 71 
4. 81 
8. 52 

13. 2 
19. 0 
27. 1 
34.0 
46.6 
59 
73 
89 
05 
24 

- 
3 

5. 1( 
5. 3( 
8.52 

11. 8 
16. 6 
23. 3 
30. 0 
39. 8 
50. 5 
63.4 
77. 5 
92. 4 
10 
28 
- _ _ - -  

Relative frequency for values of m/n minus- 

FIGWRE 4.57.-Mode shape components .Xm(5)& or 
Y,(c)& for a F-F-F-F rectangular plate of dimen- 
sions a and b. (After ref. 4.13) 



112 VIBRATION O F  PLATES 

TABLE 4.69.-Frequencies and Mode Shapes for a Completely Free Rectangular Plate; a/b=P .O@; 

TABLE 4.7O.-Freguencies and de Shapes Jor a GompleteEy Free ~ e c ~ a n g u ~ a r  Plate; a/b= 1 .O73; 
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Edge deflection _ _ _ _ _ _ _ _ _  1. 81 

TABLE 4.71 .-Frequencies and Mode Shapes for a Completely Free Rectangular Plate; a/b=l.@9; 
V = %  

1. 72 1. 67 

TABLE 4.72.-Frequeney Parameters w a 2 m  for a F-F-F-.F Rectangular Plate; V =  M 
[Values in parentheses are interpolated] 

‘ 1  w a 2 G D  for values of of- 

I I 

3 
1 I I--- O I 1 l 2 1  ‘ 5.593 

(17.61) 
37. 585 

(65. 17) (75.05) 

15. 418 
27. 032 

(51. 70) 
91. 963 

(149. 57) 
(226. 41) 
(324. 72) 

N I 
0 

22.373 
61. 673 

4 120.903 
199.860 
298. 556 

9. 905 
(30. 36) 
(69. 56) 

(127.7) 

1 (302. 1) 
i (205. 

I 

9.944 
22. 245 
46. 654 
86. 028 

222. 088 
(145. 2) 

(320. 4) 

27. 410 
40. 339 

(68. 39) 
111. 510 

(160. 5) 
(250. 0) 
(347. 8) 

4 

30. 223 
(42. 25) 
70. 007 

(111. 58) 
170. 974 
248.876 

(345.96) 

53.735 
66.309 
97.822 

143. 532 
204. 804 
283. 715 

(382. 6) 

5 

49.965 
61. 628 

(91. 78) 
135. 794 

(196. 56) 
274. 639 

(372. 88) 

88. 826 
100. 928 

(133. 40) 
182. 204 

(245.9) 
326.580 

(425.6) 

6 

74. 639 
(85. 56) 

(117.29) 
(162. 56) 
(223. 50) 
(303. 18) 
402. 968 

132. 691 

177.606 
(226. 20) 
294. 258 

(374. 8) 
476.853 

(144. 5) 

I I I l l  1 
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TABLE 4.?5.-Bounds on Frequency Parameters wa2d/plD for  the Doubly Antisymmetric Modes ofa 
Completely Free Rectangular Plate; v=O.S 

10.479 
48. 352 
67.665 

117.68 
132. 77 
197. 36 
208.75 
249. 46 
264.27 
339.96 

Mode 

10.761 
50.487 
69.746 

124. 15 
138.41 
205. 77 
220.03 
262.66 
277.23 
358.87 

Lower bound Upper bouni 

b/a= 1.00 

1. 5330 
4.7291 
8.2953 

12.436 
17.323 
23.095 
29.845 
37.617 
46.410 
56.017 

13.474 
69.576 
77.411 

153. 12 
205. 17 
214. 81 
292.37 
299.27 
420. 99 
430. 66 

1.6158 
4.9941 
8.7915 

13.237 
18. 514 
24.766 
32.089 
40. 542 
50. 150 
60.602 

1 bla= 2.00 

3. 1463 
10. 284 
19. 809 
32. 952 
49. 920 
60.830 
67.133 
71.408 
78. 658 
94. 076 

6. 6464 
25.455 
59.051 
65.392 
89.263 

113.81 
131. 73 
186. 73 
190.04 
202.79 

3.2604 
10.728 
20.821 
34.783 
53. 194 
62.394 
69.099 
76.824 
82.051 
99.291 

Lower bound Upper bouni 

- 

Mode 

o a 2 W D  - - - - _ _ _ - -  

1 4 5 6 7 8 9 10 

3. 2597 10. 711 20. 749 34. 622 53. 092 64. 080 71. 048 77. 232 84. 532 102. 87 

-- ~ ~ _ _ _ _ _ _ ~ ~ ~ ~  2 1 3  
1 

Lower bound Upper bound 

bla=1.50 

8.6667 
36.651 
64.844 
94. 147 

103.32 
166. 83 
184.44 
198.62 
234.75 
261. 14 

8.9351 
38.294 
66.965 
98.648 

108.18 
176.56 
193.73 
205.35 
244.80 
275. 96 

4.4 ELASTIC, DISCONTINUOUS, AND POlNT tions along z = ~  and z=a. The remaining 
SUPPORTS boundary conditions are 

.4.1 Elastic Edge Supporis 
(z, O)=--K,d”(z,  8 )  Consider first the rectangular plate simply k?l 

bW * supported (SS) along the sides z=O and x=u 
and elastically restrained (ES) against both 
translation and rotation along the other sides 
as shown in figure 4.59. he solution q u a -  

Mv(z, h)=K*- (z,6) (4.71) 

V&) b)=--K4W(z, b )  tion (eq. (1.37)) satisfies the boundary condi- 
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TABLE 4.77.-ExperimentaEly Determined Frequency Ratios for Completely Free Rectangular Brass 
Plates 

Frequency ratio for values of m of- 

I alb = 1.09 

I I I 1 \ 

I I 1 I 
I 1 1 

a/b=2.0 

.Fundamental frequency of ft 3.94- by 3.62- by 0.720-in. plate was 423 cps. 

bFundamental frequency of a 9.81- by 6.38- by 0.934-in. plate was 134 cps. 
.Fundamental frequency of a 2.36- by 1.172- by 0.0807-in. plate was 1730 cps. 

For a 6.15- by 5.67- by 0.0906-in. 
plate, it was 220 cps. 

For a 5.55- by 2.78- by 0.1240-in. 
plate, it was 482 cps. 

FIGURE 4.59.-SS-ES-SS-ES plate. 
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where K,,Z,,, are the stiffness coefficients of 
distributed translational and rotational springs 
acting along the edges y=Q and y=b. For  
simplicity it will be assumed that these co- 
efficients do not vary with x. The constants 
K1 and K2 have mensions of moment/(unit 
length) and KX d K4 have dimensions of 
force/(unit length) 2. Substituting equation 
(1.37) into equations (4.71) results in a char- 
acteristic determinant, the zeros of which 
the vibration frequencies. 

Das (ref. 4.10) showed that the characteristic 
equation for the caSe K,=Kz=K, K3sK4=m 
becomes 

CosXIb CoshXzb-I -- Xt-X: - 
sin X1 b sinh Xzb 2X1Xz 

(4.72) 

ons (4.27) with Xi and X2 as defined in 
and that the mode shapes are by 

(cosh X2y-cos X,y)+ 

I n  reference 4.10 the characteristic equation €or K l = K Z = m ,  K3=K4=K is given as 

with g1,Z and hl, defined as 
91 = At1 x:+ (2 -v)aZI 

g2= X,[ A;- (2 - Y ) a 2 3  

hi =XI (X; + va2) 
hz=Xz(AZ-va2) 

and the mode shapes are 

(4.75) 

(KID)hz(hi+hz) sinh Xzb-ghlhdcosh X Z ~ - C O S  h ~ b )  
h,(glhZ~inhXzb-gzh, SinXlb 

sin + 
The buckling results obtained by Lundquist 

and Stowell (ref. 4.127) can be applied here by 
use of equation (4.24). For the case given by 
equation (4.71) when K,=K4=m and Kl and 
K2 are separate and distinct, the characteristic 
equation is given as It is apparent that for Kl==K2=K, equation 

(4.77) reduces to one of its sides set equal 
to zero. Furthermore, for Kl=K2=K, modes 
symmetric with respect to Z (fig. 4.59) give 

h2b (X i+  hz) + (KJD) (A2 tanh -z- + X1 tan -- 

rise to the characteristic equation 

A b  Xi b Xi+Xi+ (KID) (A2 tanh $+XI tan - 2 )=Q 
(4.78) 

and the antisymmetric modes 

hzb Xz coth---X1 cot 2 

(4.79) 
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FIGURE $.6O.--FFe~penCy parameters w2aWp/rn2&D for a SS-ES-SS-ES rectangular plate with symmetrical slope 
restraints. 

In reference 4.12’7 the problem is also solved 
A mode shape is by the Rayleigh method. 

chosen as 

where A and B are arbitrary amplitude co- 
efficients. The coefficients A and B are chosen 
SO that A=O represents the condition of 
simply supported edges at  ?= i bl2, and B=O 
represents the condition of clamped edges. 
The ratio AI23 is ther? a measure of edge re- 
straint and is determined from 

=K (4.81) 

which gives A= (?rKb/$D)B. Formulating the 
Rayleigh quotient yields the frequency pararn- 
eter 

esults obtained from equation (4.82) are 
given in table 4.78 in the columns denoted 
by (a). Realizing that these values must be 
upper bounds, correction factors were estab - 
lished based upon exact solutions of equation 
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(4.78) for fundamental roots at  selected points. 
Column (b)  lists the corrected values. Values 
marked by an asterisk identify the exact values 
obtained. The values of column ( b )  are 
plotted as figure 4.60. 

Figure 4.60 gives valuable design information 
if properly used. The fundamental frequency 
is obtained by letting m= 1. While frequencies 
higher than the fundamental can be obtained 
from it by increasing m, it must be 
that all higher mode shapes considered have 
nodal lines parallel to only the y-axis. Other 
mode shapes are not considered in figure 4.60. 
The dashed line locates the minima of the 
various curves. 

It is suggested in reference 4.127 that, when 
the two side moment restraints are unequal, 
a reasonably good approximation to 
frequency value can be obtained by a 
the results obtained from the separate sym- 
metric problems by conside 
magnitude of edge restraint and 
If the frequency parameter I' is defined by 

02a2b2p p=- 
m2r4D (4.83) 

then the average used may be either the arith- 
metic mean, (rl+r2)/2, or the geometric mean, 
drlrz. 

Carmichael (ref. 4.128) used the Rayleigh- 
Ritz method to compute frequencies for a 
rectangular plate having w=O and uniform 
slope restraint along pairs of opposite edges. 
Mode shapes of the type 

were used, where X,(x) and F,(y) are the 
characteristic functions of a vibrating beam 
having zero deflection and rotational restraint 
a t  its ends; that is, 

and simi"lar1y for Y,, by replacing m, 2, and a 
in equation (4.84) by n, y, and b, respectively. 

Values of e,, A,, and B, are given in table 4.79 
for varying spring constant parameters 5 ,  with 

and K defined as in equation 4.81. 
The strain energy of the system is (fig. 4.59) 

D V = z  

where the second term represents the energy 
stored in the rotational springs along the edges. 

Calculations were based upon a 36-term 
series for the deflection function taking m, 
n=I, 2, 3, 4, 5, 6. Because the diagonal 
terms of the resulting frequency determinant 
are much greater than the others, an approxi- 
mate solution for the (mn)th mode can be ob- 
tained by taking only the (mn)th term of 
W(z, y). The approximate frequency can then 
be written as 

where 

and similarly for 4n by repIacing m by n in 
equation (4.88). Values of 4,,% are given in 
table 4.79. 

Frequencies and approximate nodal patterns 
are shown in table 4.80 for ranges of b/a and 
Ea=lb=f. Values in parentheses are those 
found from equation (4.87). Other results 
for E=20 and 03 are obtained from the 36- 
term series. Values for t=@ found from equa- 
tion (4.20) are included for comparison. It is 
seen that the approximate solution in the table 
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TABLE 4.79.-Eigenjumtion Parameters for a Beam With 

el 

3. 1416 
3.2166 
3. 2836 
3. 3440 
3.3988 
3.4949 
3. 5768 
3. 6477 
3. 7097 
3. 7646 
3. 8135 
3.8974 
3.9666 
4. 0250 
4. 0748 
4. 1557 
4. 2185 
4. 2905 
4.3737 
4.4304 
4. 4714 
4.5467 
4. 5880 
4.6208 
4. 6413 
4. 6697 
4. 6843 
4. 6992 
4. 7114 
4. 7207 
4. 7300 

m, n=l 

A I  

I 

. 0375 

. 0711 

. 1015 

. 1293 

. 1785 

.2211 

. 2586 

. 2919 

. 3220 

. 3492 

. 3970 
~ 4376 
.4729 
. 5037 
,5555 
.5973 
. 6472 
. 7080 
. 7514 
. 7840 
. 8467 
.8828 
. 9124 
.9313 
. 9582 
. 9723 
. 9869 
.9990 
. 0083 
. 0178 

- Bi 

1 
. 0346 
. 0668 
. 0946 
. 1210 
. 1680 
. 2091 
. 2454 
. 2780 
. 3074 
. 3341 
. 3812 
. 4214 
. 4563 
.4869 
.5383 
. 5800 
. 6297 
. 6904 
.7337 
. 7663 
. 8289 
. 8650 
. 8946 
. 9135 
. 9404 
,9544 
.9691 
~ 9812 
. 9905 
~ 0000 

+l 

9.8697 
9. 8710 
9. 8750 
9. 8806 
9. 8880 
9. 9074 
9. 9320 
9. 9604 
9.9908 

10. 023 
10. 057 
10. 126 
10. 196 
10. 265 
10. 332 
10.459 
10.573 
10. 726 
10. 932 
11. 095 
11. 223 
11.487 
11. 648 
11. 785 
11.875 
12. 005 
12. 074 
12. 146 
12.207 
12.254 
12. 302 

e ?  

6. 2832 
6. 3220 
6. 3588 
6. 3939 
6.4273 
6.4896 
6. 5466 
6, 5989 
6,6472 
6, 6918 
6. 7332 
6. 8077 
6.8728 
6. 9303 
6.9814 
7. 0683 
7. 1394 
7. 2248 
7. 3293 
7.4040 
7. 4601 
7. 5673 
7.6286 
7. 6735 
7. 7103 
7.7550 
7. 7784 
7. 8025 
7. 8224 
7.8377 
7.8532 

m, n=2  

Aa 

1 
. 0194 
. 0378 
. 0554 
. 0722 
. 1036 
. 1325 
. 1592 
~ 1840 
.2072 
~ 2289 
. 2684 
. 3037 
. 3353 
. 3640 
.4140 
.4563 
a 5090 
~ 5766 
. 6275 
. 6673 
.7477 
. 7966 
. 8460 
.8657 
.9056 
.9271 
. 9498 
.9689 
.9838 
.9992 

- Ba 

1 

. 0195 

. 0380 

.0556 

. 0724 

. 1039 

. 1328 

. 1596 

. 1845 

. 2077 

. 2294 

. 2690 

. 3043 

. 3360 

. 3647 

.4147 

.4570 

. 5097 

.5774 

. 6283 

. 6681 

.7485 

. 7974 

. 8467 

.8665 

.9064 

.9279 

.9506 

.9697 

.9846 

. 0000 

42 

39.479 
39.482 
39.485 
39.495 
39. 505 
39.534 
39.572 
39.614 
39.652 
39. 718 
39.775 
39.900 
40. 028 
40. 162 
40.297 
40.564 
40.819 
41. 176 
41. 695 
42. 097 
42.486 
43.268 
43.775 
44. 185 
44.523 
44.970 
45. 214 
45.475 
45.696 
45.870 
46. 050 

nowhere differs from the series solution by more 
than 0.7 percent. I t  must be noted from equa- 
tions (4.81) and (4.85) that choosing equal 
values of and t b  does not give equal slope 
restraint along all edges except for the case 
of the square. 

The case of uniform slope. restraint and 
W=C along all edges was stu 
et a]. (ref. 4.60), who used a 

to  obtain frequencies for the 
s of a square having variable 

restraint. These results are shown in figure 
4.61. Results for this problem were also pre- 
sented ip1 reference 4.129 for the case of khe 

9. 4248 
9. 4909 
9.4762 
9. 5007 
9. 5245 
9. 5699 
9. 6127 
9. 6531 
9. 6913 
9. 7274 
9. 7617 
9.8250 
9. 8824 
9. 9345 
9. 9821 

10. 066 
10. 137 
10. 225 
10.339 
10.423 
10.489 
10. 618 
10. 695 
10. 760 
10.801 
10. 861 
10. 892 
10. 925 
10.953 
10.974 
10.996 

m, n = 3  

a 3 =  - -Ba 

0 
. 0131 
. 0257 
.0380 
. 0499 

0727 
. 0942 
. 1146 
. 1340 
. 1525 
. 1700 
.2028 
. 2329 
.2605 
. 2861 
. 3322 
. 3718 
.4231 
.4917 
.5453 
.5885 
. 6794 
. 7372 
.7880 
. 8224 
.8735 
.9184 
.9320 
. 9581 
.9785 

1.000 

+3 

88.827 
88.827 
88.830 
88. 833 
88.839 
88. 853 
88. 874 
88. 901 
88. 934 
88. 971 
89. 022 
89. 108 
89.218 
89.257 
89.466 
89.729 
90.021 
90.447 
91. 123 
91.735 
92. 358 
93.539 
94.418 
95.233 
95. 802 
96.671 
97.092 
97. 693 
98. 152 
98.515 
98.905 

square by using the same procedure as in refer- 
ence 4.128. These are shown in figure 4.62. 

In  reference 4.130, the problem is also solved 
by using the Rayleigh-Ritz method and alge- 
braic polynomials. 

In  reference 4.131, the typical electronic 
chassis which is formed by bending the edges 
of a plate down is treated as a plate with elastic 
edge supports. An eigenfunction is used to 
solve the problem which is an average of the 
eigenfunctions for plates with simply supported 
edges and those having clamped edges. The 
Rayleigh-Ritz method is employed. Theo- 
retical and experimental results are obtained 
for particular chassis. 
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Ends Elastically Restrained Against Rotation 

€4 

12. 566 
12. 566 
12.605 
12. 624 
12. 642 
12. 678 
12. 712 
12. 745 
12. 776 
12. 806 
12. 834 
12.889 
12.939 
12. 985 
13. 028 
13. 105 
13. 173 
13.260 
13.375 
13.464 
13. 534 
13. 679 
13.768 
13. 844 
13.894 
13.967 
14.007 
14. 048 
14. 082 
14. 109 
14. 137 

m, n=4 

Ad= - 3 4  

0 
. 0098 
. 0194 
. 0288 
.0380 
. 0558 
. 0729 
.0893 
. 1051 
. 1202 
. 1348 
. 1625 
. 1882 
. 2123 
. 2349 
. 2762 
. 3129 
. 3613 
.4278 
. 4814 
. 5257 
. 6219 
. 6854 
. 7428 
. 7825 
. 8430 
.8771 
. 9144 
. 9476 
. 9726 

1.0000 

$4 

157. 91 
157. 92 
157.92 
157. 92 
157. 92 
157. 93 
157.94 
157. 96 
157. 99 
158.01 
158. 04 
158. 12 
158. 21 
158.31 
158.42 
158.84 
158.94 
159. 38 
160. 12 
160. 84 
161.51 
163. 17 
164. 41 
165. 62 
166.48 
167. 85 
168.65 
169.53 
170.29 
170.92 
171. 59 

65 

15. 708 
15. 724 
15. 739 
15. 755 
15.769 
15.799 
15.827 
15. 854 
15. 880 
15. 906 
15. 930 
15.977 
16. 021 
16. 062 
16. 101 
16. 172 
16.235 
16. 318 
16. 431 
16. 521 
16. 595 
16. 749 
16.847 
16.933 
16.990 
17. 075 
17.121 
17.171 
17.212 
17. 254 
17. 279 

0 
. 0079 
. 0156 
. 0232 
. 0307 
. 0454 
. 0594 
. 0731 
. 0863 
.0991 
. 1115 
. 1353 
. 1577 
~ 1788 
. 1990 
. 2362 
. 2698 
. 3149 
. 3783 
. 4307 
.4748 
.5733 
. 6404 
. 7026 
. 7464 
.8145 
.8538 
. 8973 
.9356 
. 9667 

1.0000 

$5 

246. 74 
246.74 
246. 74 
246.74 
246. 74 
246. 75 
246. 76 
246.78 
246. 79 
246.82 
246.83 
246. 89 
246. 96 
247. 05 
247. 14 
247. 36 
247.61 
248. 02 
248. 77 
249. 54 
250.28 
252. 25 
253.80 
255. 38 
256.55 
258.47 
259.10 
260. 89 
262. 04 
262.98 
264. 00 

123 

rn, n=6 

18. 850 
18.863 
18. 876 
18. 889 
18. 901 
18.926 
18. 950 
18.973 
18.996 
19. 018 
19. 039 
19.080 
19.119 
19. 156 
19.191 
19. 256 
19. 315 
19.394 
19. 503 
19. 592 
19. 666 
19.827 
19.932 
20. 025 
20. 089 
20. 184 
20.237 
20.294 
20.342 
20.380 
20.240 

0 
. 0066 
. 0131 
.0195 
.0258 
.0381 
. 0501 
. 0618 
.0732 
.0842 
. 0951 
. 1158 
. 1356 
. 1545 
. 1724 
. 2061 
. 2370 
. 2789 
.3393 
. 3895 
.4327 
. 5316 
.6008 
. 6664 
. 7134 
. 7880 
.8317 
.8808 
.9248 
. 9608 

1.0000 

355. 31 
355. 31 
355. 31 
355. 31 
355. 31 
355. 32 
355. 32 
355.34 
355.34 
355. 36 
355. 38 
355. 42 
355.48 
355.55 
355.63 
355.81 
356. 04 
356. 41 
357. 15 
357.91 
358. 68 
360.86 
362.68 
364. 61 
366. 08 
368.55 
370. 07 
371. 84 
373.40 
374.71 
376. 15 

Hoppmann and Greenspon (ref. 4.132) pre- 
sented a method for experimentally simulating 
elastic edge supports by means of sharp V- 
grooves machined along the edges of a clamped 
plate, the degree of slope restraint being deter- 
mined by the depth of the grooves. A curve 
showing the frequency parameter for a clamped 
square plate as a function of the notch ratio R 
is shown in figure 4.63; R is the ratio of the 
depth of the notch to the thickness of the plate. 
Experimentally determined points are shown 
as circles. The curve was drawn through end- 
points determined by the theoretical results of 
Iguchi (ref. 4.9) and fitted t o  the four experf 
mental points. 

4.4.2 Discontinuous Edge Conditions 

Some interesting results are available for the 
case of a square plate which is simply supported 
but clamped along segments of its edges. 

Consider f i s t  the square which is clamped 
along four symmetrically located segments of 
length 11, and simply supported along the re- 
mainder of the boundary as in figure 4.64. Ota 
and Hamada (refs. 4.133 and 4.134) solved tho 
problem by assuming a deflection function 
which satisfies the simply supported boundary 
conditions everywhere (ea. (4.19)), and applying 
distributed edge moments of the type, for 
example, 
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TABLE 4.80.-Frequency Parameters wb2&@ and Approximate Nodal Patterns for a Rectangdar 
Plate Elastically Restrained Against Rotation Along All Edges 

[Values in parentheses are found from eq. (4.87)] 

98.70 
116.8 

(116. 9) 
132. 3 

(132. 4) 

1.0 

~ 

0.9 

- 
0.8 

- 
0.6 

128. 3 
147. 6 

(148.0) 
165.2 

1165. 4) 

.4 

0.2 

81. 82 
97.03 

(97.34) 
109.4 

(109.8) 

E 

0 
20 

03 

0 
20 

03 

0 
20 

03 

0 
20 

03 

111.4 
123.0 

(123.3) 
143. 5 

(144. 1) 

0 
20 

03 

0 
20 

m 

66.72 
79.24 

(79.50) 
89.29 

(89. 69) 

1 

19.74 
31.09 

(31. 16) 
35.99 

(36. 11) 

17.86 
28. 21 

(28. 28) 
32.67 

16. 19 
25.80 

(25. $6) 
29. 08 

(29. 18) 

13. 42 
22.30 

(22.34) 
25.90 

96. 33 
111.2 
(111. 5) 
124. 5 

(125. 0) 

11.45 
20. 30 

(20. 33) 
23.65 

(23. 70) 

10.26 
19.38 

22.64 
(22.66) 

(19.39) 

2 

49.35 
64. 31 

(64. 52) 
73.41 

(73.74) 

41. 85 
54.57 

(54. 77) 
62. 29 

35. 14 
46. 02 

(46.17) 
52. 52 

(52. 76) 

24.08 
32.58 

(32. 68) 
37.28 

16. 19 
24.15 

(24. 20) 
27.81 

(27.91) 

11.45 
20.15 

(20. 17) 
23.45 

(23.49) 

& G D  for mode- 

3 

78.96 
95. 85 

(96. 17) 
108. 3 

(108. 9) 

~~ 

47.47 
61. 97 

(62. 17) 
70. 76 

(71. 06) 

45.79 
59. 98 

(60. 16) 
68.52 

(68. 80) 

41.85 
50.48 

(50. 63) 
56.93 

(57.20) 

24.08 
31.20 

(31.26) 
35.45 

(35.56) 

13.42 
21. 52 

(21.54) 
24.89 

(24. 92) 

4 

98.70 
117. 3 

(117.8) 
131.6 

(131. 7) 

71.46 
86.85 

(87. 15) 
98. 14 

(98. 66) 

64. 74 
79. 06 

(79.32) 
89. 40 

(89.86) 

43.03 
56.97 

(57.11) 
65. 18 

(65.39) 

5 1 6  

53.69 
66.96 

(67. 17) 
75.94 

(76. 31) 
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30 

51 ? 

10 

0 0 5  I 0 5  0 

2nD kg 
2 s D  ice--.- c_- 

FIGURE 4.61.-Frequency parameters for a square 
plate having uniform slope restraint along all edges 
derived by Bolotin (ref. 4.60) 

€1’112 ktl 

FIGURE 4.62.-Frequency parameters for a square 
plate having uniform slope restraint along all edges 
derived by procedure of reference 4.128. (After ref. 
4.129) 

The coefficients K, are then chosen for each 
edge such that the normal moments are zero 
along the simply supported segments and the 
normal slopes are zero along the clamped 
segments. These conditions, along with the 
principle of stationary total energy, are used to 
formulate characteristic determinant for the 
problem, the roots of which yield the vibration 
frequencies. The accuracy of the results de- 

FIGURE 4.63.-Variation in frequency parameter with 
notch ratio for a square plate. (After ref. 4.132) 

I 

FIGURE 4.64.-SS-SS-SS-SS square plate clamped 
along four symmetrically located segments. 

pends upon the number of terms kept in the 
summations and, hence, the orders of the 
characteristic determinants used. The problem 
was solved at essentially the same time by 
Kurata and Okamura (ref. 4.135), who used a 
very similar method. 

Fundamental frequency parameters for 
several values of El are shown in figure 4.65 
(ref. 4.133) and tabulated in table 4.81. EX- 

ata shown in figure 4.65 were 
obtained on mild steel plates having edge 
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R e f .  4.133 _ _ _ _ _ _  19. 74 33. 9 
Ref. 4.135 _ _ _ _ _ _  19. 74 33. 97 

5 

4 

8" 
c -. 
N - 5 2  

I 

0 Experimental Data (h: 0.063") 

0 
0 $ ) ;  i I 

!?,/a 

FIGURE 4.65.--Frequency parameters for SS-SS-SS-SS 
square plate clamped along four symmetrically 
located segments. (After ref. 4.133) 

35. 5 1 35. 98 
_ _ _ _ _ _ _ _  35. 98 

lengths of 6.50 inches and thicknesses of 0.063 
and 0.091 inch. 

Experimental frequencies and nodal patterns 
for the first three modes for an aluminum 
plate 11.8 inches long, 0.012 inch thick, and 
having &/a=% were obtained in reference 4.135 
and are presented as table 4.82. 

The cases when only two opposite edges have 
symmetrically located clamped segments as 
shown in figure 4.66 were also studied in 
references 4.133 and 4.135. Fundamental fre- 
quency parameters for several values of I, are 
shown in figure 4.6'7 (ref. 4.133) and tabulated 

le 4.83. A ~ ~ ~ ~ ~ o n a l  experimental fre- 

TABLE 4.81 .-Fundamental Frequency Param- 
eters ua2vm for a Simply Supported Square 
Plate Clamped Along 4 Symmetrically Located 
Segments, v=0 .3  

OF PLATES 

quencies are given in table 4.84 (ref. 4.135) for 
&/a=%. Experimental results shown in figure 
4.6'7 and table 4.84 were obtained on the same 
plates described earlier in this section. 

The case when two unsymmetrically located 
segments of opposite edges are clamped is 
shown in figure 4.68 and was discussed in 
reference 4.133. Fundamental frequency pa- 
rameters for several values of l ,  are shown in 
figure 4.69 and tabulated in table 4.85. Ex- 

TABLE 4.82.-Experimental Cyclk Frequencies 
and Nodal Patterns for a Simply Supported 
Square Plate Clamped Along 4 ~ ~ ~ e t r ~ ~ l ~ ~  
Located Segments 

Nodal pattern 

1 

Frequency, cps-.. - - 280 1 535 72 5 

Y 

i-Q4 

FIGUBE 4.66.-SSSS-SS-SS square plate clamped 
along two symmetrically located segments of opposite 
edges. 
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Source 

- 

Ref. 4.133 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
Ref. 4.135 - - - _ _ - _ - - - _ - - - - - - _ _  

127 

w a z m ~  for values of tzla of- 

~ _ _ .  ~ - -  

19.74 27. 1 I 28. 3 1 28.8 1 28.95 
19. 74 27.38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Y 
I 

FIGURE 4.67.--Frequency parameters for SS-SS-SS-SS 
square plate clamped along two symmetrically 
located segments of opposite edges. (After ref. 4.133) 

perimental data shown in figure 4.69 were ob- 
tained on the plates described earlier in this 
section. 

The case when one symmetrically located 
segment of an edge is clamped is shown in  
figure 4.70. The numerical solution to this 

FIGURE 4.68.-SS-SS-SS-SS square plate clamped 
along two unsymmetrically located segments of 
opposite edges. 

problem was obtained in reference 4.133 and 
is given in figure 4.71 and table 4.86. Experi- 
mental frequencies and approximate nodal pat- 

TABLE 4.84.-Experimental Cyclic Frequencies and Nodal Pafierns f o r  a Simply Supported Square 
Plate Clamped Along 2 Symmetrically Located Segments of Opposite Edges 

Nodal pattern 

I 
Frequency, cps - - -__ - -_ - - -_ .  225 420 1 500 660 785 955 
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lala 0 

w a 2 J p m  _ _ _ _ _  ~ _ _  19.74 

5 

4 

s 3  c -. 
I 5 2  

I 

1 
34 34 x 1 

_ _ _ - ~ - -  

23. 0 23.4  23. 6 23. 65 
I 

I 2 3  3 4  I I 1  
0 

0 3 5  -2 

P .,/a 

FIGURE 4.69.-Frequency parameters for SS-SS-SS-SS 
square plate clamped along two unsymmetrically 
located segments of opposite edges. (After ref. 4.133) 

FIGURE 4.7O.-SS-SS-SS-SS square plate clamped 
along one symmetrically located segment of an edge. 

terns obtained in reference 4.135 are given in 
table 4.87 for &/a =?$. Experimental results 
shown in figure 4.71 and table 4.87 were ob- 

TABLE 4.85.-FundamentaE Frequency Param- 
eters for a Simply Supported Square Plate 
Clamped Along 2 Unsymmetrically Located 
Segments of Opposite Edges; v=0.3 

tained on the same plates as those described 
earlier in this section. 

The case when the plate is clamped along 
one segment a t  the end of one edge is shown in 
figure 4.72. Nowacki (refs. 4.136 and 4.137) 
expressed a unit moment acting at  a point 
along the clamped interval in terms of a trigo- 

E 

4 

3 

c 
\ 

- 3 '  

I 

C 

I 
I3 '$perimytal Dot; ( h  = Q.063") 

e o  (h=0.091"! 

i 3 3  I 1 . 1  0 a i s  
Q,/o 

FIGURE 4.7P.--Frequency parameters for SS-SS-SS-SS 
square plate clamped along one symmetrically 
located segment of an edge. (After ref. 4.133) 
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Y over discrete segments of the interval, which 
resulted in a system of equations, each term 
of which is an infinite series of transcendental 
functions containing the eigenvalues. Trun- 
cating the series and solving the resulting 
characteristic determinant yielded the vibration 
frequencies. 

Numerical resdts from reference 4.133 are 
given in figure 4.73. Data from references 
4.133 and 4.136 are also given in table 4.88. 
By looking at  the results of reference 4.136 
in table 4.88, it is seen that they are clearly 
inaccurate, the frequency parameter listed for 
the case when li/a=% being greater than the 
well-known result for the case when 15/a=1 
(see discussion on SS-C-SS-SS plate, sec. 4.2.2). 

The solution is also given in reference 4.136 
for the case when the interval O<x<l ,  is 
clamped along the edge y=O (fig. 4.72), the 
interval Z5<x<a is free, and the remaining 
edges are supported' It was found 
for Isla= % that wa2mD= 14.8. 

The case obtained when the simply sup- 

in figure 4-72 are replaced by clamped edge 
conditions and the remaining portion has zero 
slope and shear is included in reference 4.138. 

FIGURE 4.72.-SS-SS-SS-SS square plate clamped 
along one segment at the end of an edge. 

nometric series and formulated an integral Ported Portions Of the edges of the Plate shown 
equation involving a Green's function along 
the clamped interval. The integral equation 
was replaced by a finite summation carried out 

TABLE 4.87.-Experimental Cyclic Frequencies and Nodal Patterns for a Simply Supported Square 
Plate Clamped Along 1 Symmetrically Located Segment of an Edge 

Nodal pattern 

TABLE 4.88.--Frequency Parameters u a ' m  f o r  a Simply Supported S p a r e  Plate Clamped Along 
1 Segment at the End of an  Edge 
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lMe& width 

0 Experimental Data (h=0.063") 

0 

P,/a 

FIGURE 4.73.-Frequency parameters for SS-SS-SS-SS 
square plate clamped along one segment at the end 
of an edge. (After ref. 4.133) 

The necessary integral equations are completely 
formulated but no numerical results are 
obtained. 

roughout this section the term "point 
support" will be used to denote a constraint 
of zero deflection at a point. Unless otherwise 
stated, there d l  be no constraint on the 
slopes at such points. 

Consider first the problem of the rectangular 
plate free along all edges and supported a t  
the four corner points (fig. 4.74). Cox and 
Boxer (ref. 4.139) solved the problem by 
means of finite difference equations. Punda- 
mental frequencies for a/b=1, 1.5, 2 ,  and 3 
for ~ = 8 . 3  are listed in table 4.89 and plotted 
in 6guse 4.75. The mesh widths Aa and Ab 

oazdD for values of alb of- 
__ 

1 I 1.5 I 2 1 3  

OF PLATES 

Y 

FIGURE 4.74.--Free rectangular plate point supported 
at the four corners. 

are shown in figure 4.76. The extrapolated 
values of table 4.89 were obtained from the 
extrapolation formula 

(4.90) 

where X=wa2.drD and the subscripts 4 and 6 
identify the two meshes used. 

The mode shapes W(x,y) corresponding to 
the fundamental frequencies are given in 
table 4.90, where the grid locations me those 
shown in figure 4.76. 

Higher frequencies for the square supported 
a t  the corners were also given in reference 
4.139. These are listed in table 4.91 for two 
mesh widths. Extrapolated values using equa- 
tion (4.90) are also given. 

Mode shapes corresponding to these frequen- 
cies are shown in figure 4.77, and the amplitudes 
of W ( x ,  y) at  the grid locations shown in figure 
4.75 are listed in table 4.92 for v=Q.3. TWO 
independent mode shapes correspmding to the 
second frequency were found. They are iden- 
tised as 2a and 2b. As ean be seen from figure 

l I I 1 
a Extrapolated value from eq. (4.90). 
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o t b  

FIGURE 4.75.-Frequency parameters wa2m for a 
free rectangular plate point supported at the four 
corners; v=0.3.  (After ref. 4.139) 

4.77, the third mode shape and frequency are 
identical to those of the fundamental mode of a 
completely free square plate (sec. 4.3.15). 

Variation in the frequency parameter wa2JplD 
with Poisson’s ratio is shown in figure 4.79. 
However, it  must be remembered that D de- 
pends upon v. Substituting equation (1.2) 
for D into the frequency parameters permits the 

variation of the frequency itself with Poisson’s 
ratio to be seen. This is shown in figure 4.80. 

Nishimura (ref. 4.14) used the finite-differ- 
ence method and a relatively coarse grid (char- 
acteristic determinants of order no larger than 
six) to obtain the first 10 frequencies and nodal 
patterns of a free square plate point supported 
at the four corners. He also obtained experi- 
mental results on a steel plate 10.1 by 10.1 
inches by 0.087 inch. These results are shown 
in figure 4.81, with experimental values given 
in parentheses. It is noted that the third, 
sixth, and ninth mode shapes and frequencies 
also exist for the completely free square plate. 

Reed (ref. 4.140) obtained extensive analyti- 
cal and experimental results for the rectangular 
plate supported at  its four corners. Analyti- 
cal results were achieved by two methods- 
the Rayleigh-Ritz and series methods. The 
deflection function 

i t l l l l r l l l r r l i r l l r i l i l l l r l  
i l I S I  I !  I r r l l l r l r  I l  i i l I t  I l l  
i l r r l I I  l l l l I l i l l i l 1 1 1 ! 1 1 1 \  
I r l I I  i i  I 1  I l l l l i l l D  s i r i o  I 1 1  

2-7- 8 - 9 - 8 - 7 - 2 

3-6 -9-10 -9 - 6- 3 

20- 21 - 22-23 - 24- 25-26- 27- 28-29 - 28- 27-26-25-24 -23- 22- 21 -20 

30-31 -32-33-34-35 -36 -37-38 -39 -38 - 37-36-35-34 -33-32-31 -30 

2-7- 9- 9 -8 -7- 2 20-21-22-23-24-25-26-27-28-29-28-2?-26-25~24-23~22~2~~20 

1-4-5-6-5-4- 1 10-1 l ~ ~ 2 ~ l 3 - i 4 - i 5 ~ ~ 6 - l ? - l 8 - ~ 9 - ~ 8 - ~ ~ - i 6 - l 5 - l 4 - ~ 3 - 1 2 -  I 1-10 

I I I I 1  r i I 1 I i I s s l I  
-2-3-2-1 t-2-3-4-5- -7-8-9-8---?-6-5-4~3-2-I 

a/b=i a/b=3 

- 6  - 7- 8-9- 9-8-7- 6-5 

10-1 1--12-i3--14 -14- 13- 12- I1--10 

15- 1B- 17- 18- $9- L9 -18 --17-16--15 

-l!-12-l3- 14---14-~3--12--ii- 10 

I I I l i l l l I i  
l i l i l l r l i l  
l i l r l l l i l l  

I l l l l i l i l  
5-6-7-8-9-9--8- 7-6-5 

- 2- 3 - 4 ~ 4 -3 -2- I 

(a/b=1.5 a/b=2 

FIGURE 4.76.-Finite diflerence meshes. (After ref. 4.139) 
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TABLE 4.90.-Fundarnental Mode Shapes 
W(x, y )  f o r  Free Rectangular Plates Point 
Supported at the 4 Corners; u = O . 3  ’ 

Grid ~ 

W ( z ,  y) for values of alb of- 

location 
1 1 . 0  , 1. 5 

0. 35177 
. 65713 
. 88141 

. 11297 

. 41240 

. 67951 

. 87885 

. 98513 

. 19186 
,45973 
.YO293 
. 88653 
.98502 
. 21992 
. 47731 
.71244 
. 89066 
. 98649 

1. 0 

- - - - - - 

2. 0 

0. 26141 
. 50327 
. 70970 
. 86743 
. 96631 

. 04188 

. 28042 

. 50445 

. 69753 

. 84592 
,93928 
.97113 
~ 07094 
. 29562 
. 50849 
. 69315 
. 83569 
.92561 
. 95632 
. 08124 
. 30131 
. 51040 
. 69218 
. 83274 
. 92148 
. 95181 

1. 0 

- - - - - - - 

3.0 

0. 17474 
. 34364 
. 50168 
. 64423 
. 76711 
. 86668 
. 94000 
,98489 

. 01135 

. 17900 

. 34210 

.49540 

. 63408 

. 75387 

.85106 

. 92268 

.96655 

. 98132 
,01919 
. 18251 
.34197 
. 49228 
.62855 
.74642 
. 84216 
.91275 
~ 95600 
.97057 
.02196 
. 18384 
. 34205 
. 49135 
. 62681 
. 74403 
. 83927 
~ 90952 
.95257 
~ 96707 

1. 0 

was used with the Rayleigh-Ritz method. Pois- 
son’s ratio was taken to be 0.3. Frequency 
parameters, nodal patterns, and normalized 
mode shape coefficients are shown in table 
4.93 for the first seven modes of plates having 
alb ratios of 1.0, 1.5, 2.0, and 2.5.  

The second analytical method in reference 
4.140 used the series given in equation (4.21) 
as half of the solution, the other half being a 
similar series obtained by interchanging x and 
y. Frequency parameters obtained in keeping 
24 terms of the series are listed in parentheses 
in table4.93. In  table4.94 the theoretical cyclic 

4 th v 

FIGURE 4.77.--Higher mode shapes for the free square 
plate point supported a t  the four corners. (After ref. 
4.139) 

ii- 

20- 21 ~ -23- 24 - 25- 26 

FIGURE 4.78.--Geeeral finite difference mesh for tt 
square. (After ref. 4.139) 
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- 

Mesh width 

_______ 

w a z m  for mode- 

2 --___-____ 3 1 4 1 5  

46 

44 

A a = a b = a / 5 _ _ ~ _ ~ _ _ _ . - - - - - - - - - - - - - - - . - - - - -  15.0541 
A a = A b = a / 6 _ _ _ . - - - . - . - - . - - - - - - - - - - - - - - - - - -  ~ 15. 2650 

1 a 15. 73 

I I I I I 

16. 8311 35. 59.51 i 38. 7292 
17. 5659 40.2638 I 843.55 a 19.13 

l I 

FIGURE 4.80.--Variation in  the modified frequency 
parameter with Poisson's ratio for a free square 
plate point supported at the four corners. (After ref. 
4.139) 

Kirk (ref. 4.141) used the 
method and a mode shape 

~ o i s m ' s  Ratio, v 

FIGURE 4.79.-Variation of fr-quency parameter with 
Poisson's ratio for a free square plate point supported 
a t  the four corners. (After ref. 4.139) 

frequencies determined by the series method 
and by adapting the results of reference 4.139 
we compared with experimental results ob- 
tained with two aluminum plates. 

-j-(1-22A) sin-sin- 7rx n?/ (4.92) 
a b  

to obtain a fundamental frequency for the 
problem when v = 0 . 3 .  Minimizing the Ray- 
leigh quotient with respect to  A yields A= 
0.6956 and wa2,@D=7.224. 

The Rayleigh XU2thod and a mode shape of 
the form 

W(x, y)=Asin-+Bsin- a b (4.93) m sr?J 
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TABLE 4.92.--Higher Mode Shapes W(x, y) f o r  a Free Square Plate Point Supported at the 4 Corners; 
v=o.s 

Grid location 

2a 

0. 42800 
. 79707 

1. 0 
.93765 
. 57804 

-. 42500 
0 
. 39652 
.69381 
. 82122 
. 75841 
. 57804 

-. 79707 
-. 39652 
0 
. 36438 
. 64592 
. 82122 
. 93765 

-1. 0 
-. 69381 
-. 36438 
0 
. 36438 
. 69381 

1. 0 
-. 93765 
-. 82122 
- . 64592 
-. 36438 
0 
. 39652 
,79707 

-. 57804 
-. 75841 
-. 82122 
-. 59381 
-. 39652 
0 
.42800 

- I  57804 
-. 93765 

-1. 0 
-. 79707 
-. 42800 

2b 

0. 50302 
. 86736 

1. 0 
. 86736 
. 50302 
. 07502 
. 37920 
. 60887 
. 69381 
. 60887 
. 37920 
. 07502 
. 07029 
. 21235 
. 32296 
. 36438 
. 32296 
. 21235 
. 07029 

0 
0 
0 
0 
0 
0 
0 

-. 07029 
-. 21235 
-. 32296 
-. 36438 
-. 32296 
-. 21235 
-. 07029 
-. 07502 
-. 37920 
-. 60887 
-. 69381 
-. 60887 
-. 37920 
-. 07502 
-. 50302 
-. 86736 

-1. 0 
-. 86736 
-. 50302 

W(z,  y) for mode- 

3 

0.48159 
. 85688 

1. 0 
. 85688 
. 48159 

-. 48159 
0 
. 36362 
. 50055 
.36362 

0 
-. 48159 
-. 85688 
-. 36362 
0 

0 
. 13585 

-. 36362 
-. 55688 
- 1. 0 
-. 50055 
-. 13585 
0 

-. 13585 
-. 50055 

-1. 0 
-. 85688 
-. 36362 
0 

0 
. 13585 

-. 36362 
-. 85688 
-. 48159 
0 
.36362 
. 50055 
. 36362 

0 
-. 48159 

. 48159 

. 85688 

. 85688 

.48B59 

1. 0 

4 

0. 82466 
. 79791 

0 
-. 79791 
-. 82466 

~ 82466 

. 73369 
1. 0 

0 

-1. 0 
-. 73369 

-. 82466 
.79791 
. 73369 
. 47978 

0 .  
-. 47978 
-. 73369 
- . 7979 1 
0 
0 
0 
0 
0 
0 
0 

-. 79791 
-. 73369 
-. 47978 
0 
.47978 
,73369 
,79791 

-. 82466 
-1. 0 

0 

1. 0 

-. 73369 

.73369 

. 82466 
-. 82466 
-. 79791 

,79791 
. 82466 

0 

5 
~ 

-0. 49310 
-. 73475 
-. 78861 
-. 73475 
-. 49310 
-. 49310 
-. 35047 
-. 13858 
-. 02813 
-. 13858 
-. 35047 
-. 49310 
-. 73475 
-. 13858 

.44086 

. 69261 

. 44086 
-. 13858 
-. 73475 
-. 78861 
-. 02813 

. 69261 

. 69261 
1. 0 

-. 02813 
-. 78861 
-. 73475 
-. 13858 

. 44086 

. 69261 

.44086 
-. 13858 
-. 73475 
- . 493 10 
-. 35047 
-. 13858 
-. 02813 
-. 13858 
-. 35047 
-. 49310 
-. 49310 
-. 73475 
-. 78861 
-. 73475 
- . 493 10 
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42.76 
(43.1) 7.442 

(7.8) 
16.74 
(16.8) 

71.94 95.42 119.29 
( 120.6) (95.6) 

67.88 46.07 
(50.81 (67.5) (78.4) 

FIGURE 4.81.-Theoretical and experimental frequency parameters and nodal patterns for a free steel square plate 
point supported at the four corners. Experimental values are given in parentheses. (After ref. 4.14) 

TABLE 4.93.-Frequency Parameters, Nodal Patterns, and Amplitude Coe@ients for a Rectangular 
Plate Supported at Its 4 Corners; v=0.3 

[Values in pare,ntheses are obtained by keeping 24 terms of the series] 

Mode 1: 

alb 
-__ 

Normalized mode-shape 
coefficients 

Normalized mode-shape 
coefficients 

7. 46 
(1.12) 

~~ 

a@,= 1.000 
a03= - .0663 
azl= .I737 
aZ3 = .0329 
a4] = - .0267 

ao2= - 0.1248 
ao1= - .0075 
aZ2= .I695 
~ 4 4 =  -.0055 
a42= - .0146 

bo,= 1.000 
bo3= -.0663 16. 80 
b*,= .I737 (15.77) 
b23=.0329 
bri= - .026? 

1.0 

a02= -.I753 
ao,= .0002 
~ 2 =  .1530 
a24= - .0059 
a42= .0012 
a06= .0009 

1.5 9.21 
(8.92) 

22.78 
(21.53) 

aol = - .0054 
a03= - .0052 
a21= .570 
aZ3= .0013 
a41= - .0035 

bo]= 1.000 I 
bo3= - .@I79 
bzi= .0046 29.03 
b23= .0080 (27.50) 
bdl= - .0025 

bll= 1.000 
b13= - .0460 
b31= - .0893 
b33= .0159 
b51= - .0028 
b15= - .0093 

9.46 
(9.29) 

9.48 
(9.39) 

2.0 

ao1= - .019? 
ao3= - BO20 
azl= .0372 
a23= .0002 
~d*l= - .0007 

002= - .I984 
aon=.0100 
a22=. I550 
az1= - .0103 
a42= .0120 
a06= .0005 

2.5 
35.5 
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1. 5 

TABLE 4.93.-Frequency Parameters, Nodal Patterns, and Amplitude Coefiients for  a Rectangular 
Plate Supported aj Its 4 Corners; v=03--Continued 

[Values in  parentheses are obtained by keeping 24 terms of the series] 

27. 74 
(25. 82) 

16. 80 
1. 0 I (15.77) 

2. 5 3. 72 

--i 
2. 0 (32. 83) 

Mode 3: 

Normalized mode-shape 
coefficients 

211= 1. 000 
213= -. 0671 
231= -. 0574 
233 = .0348 

-. 0083 

all= 1. 000 
~ 3 =  -. 0817 
a31=. 0205 
a33=.  0428 
 US^=-. 0209 

all=O. 7924 
a13 = - .0877 
a3,=. 1496 
a33=. 0426 
asl = - .0304 

UII=O.  1928 
a13= -. 0337 
a31=. 1130 
as3=. 0150 
asl= -. 0109 

bgz= - 0. 1248 
bod= -. 0075 
bzz=. 1695 
bz4 = - .0055 
bnz=-. 0146 

boz=O. 1539 
bo4 = - .0380 
bzz=. 1850 
bza=. 0115 
b42= -. 0230 

boz= 1. 000 
b04=-. 0808 
bzz=. 1713 
b2a = . 0334 
b42= -. 0272 

boz= 1. 000 
bar - . 0479 
bzz = .0536 
bza=. 0191 
b12=-. 0112 

were used in reference 4.2 to obtain approximate 
fundamental frequencies for general values of 
a/b and v=0.25. The frequency may be com- 
puted from equation (4.17) with 

(4.94) 

Cox (ref. 4.142) also used the finite-diff erence 
method to solve the problem of the free square 
plate supported at the midpoints of its sides 
(see fig. 4.82). Frequencies obtained from two 
mesh widths and from the extrapofation formula 
equation (4.90) are listed in table 4.95 for 
v=o.3. 

Plass (ref. 4.143) used a variational method 
described later in this section to solve the prob- 

Mode 4: 

19.60 
( 19.60) 

34. 8 
(33.69) 

56. 2 
(52. 0) 

101.7 

Normalized mode-shape 
coefficients 

ao1= 1.000 
a03= -. 0244 
az1= -. 0802 
a23=. 0112 
all=. 0049 

ao1= 1. 000 
a03= -. 0536 
at, =. 0756 
a23=. 0255 
u ~ I =  -. 0107 

ao1= 1. 000 
a03 = -. 0726 
aZ1=. 2048 
a23=. 0322 
u41=. 0011 

aol = 0. 8438 
a93= -. 3091 
azl= - .8536 
a23=. 2419 
~ l = .  0530 

bel= - 1. 000 
b03=. 0244 
bzl= .0802 
b23= -. 0112 
bu = - .0049 

bel= -0. 8108 
bo3 = .0002 
bzl=. 1693 
b23=. 0171 
brl=--. 0191 

bo1 = - 0. 742 
bo3 =. 0903 
bzl=. 2277 
b23=. 0341 
bdl= -. 0277 

bel= - 0. 8072 
b03=. 1068 
b21= 1. 000 
b23= -. 1570 
br l=- .  1440 

lem of a free square plate clamped at  one mid- 
point as shown in figure 4.83. A deflection 
function 

(4.95) 

was used to yield a ~ u n d a ~ e n t a ~  frequency 
parameter wa2mD=2.580. In  this case the 
point clamp at  (0 ,  0) permits rotation about 
the Z-axis, but not about the @axis. 

The square plate having two adjacent edges 
both either damped or simply supported and 
a point support at the opposite corner (see 
fig. 4.84) was also malyzed by Cox (ref. 4.144). 
The finite difference method and ~ = 0 . 3  was 
used. Frequency parameters for both prob- 
lems are listed in table 4.96 for two mesh 
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TABLE 4.93.-prequency Parameters, Nodal Patterns, and Amplitude Coe$icient.s for a Rectangular 

Plate Supported at Its 4 Corners; v=O.S-Continued 
I 

Normalized mode-shape 
coefficients 

(38. 44) 
O I 41. 

waziplD 

56. 0 
(52. 7) 1. 5 

bl4= -. 0797 
b32= -. 0153 
b34=. 0326 
b5z= -. 0190 
bla= -. 0101 

67. 1 
(63.8) 2. 0 

57. 7 
(57. 7)  

2. 5 78. 5 

a12= 1. 000 
-. 1458 

a32=. 2107 
~ 3 4 ~ .  0645 
a52 = - .0433 
ais= - .0053 
alz= -. 0666 
all= -. 0342 
a32=. 1809 
a34=. 0119 
a52= -. 0049 
ala=. 0014 

m%'plD 

a12 = - . 1869 
a ] ( = - - .  0122 
a33=. 1764 
a34=. 0011 
am=. 0068 
ala=. 0015 

all= -. 0021 
a32=. 1772 
a34= -. 0038 
aS2=. 0134 
ale=. 0013 

QZ= -. 2238 

Normalized mode-shape 
coefficients 

biz= 1. 000 
bl4 = - . 1458 
b32=. 2107 
634 = .0645 
bsz = - .0433 

48. 3 
(44. 4) 1. 0 

75.4 
(70- 1) 1. 5 

51. 6 
(50.3) 

aol= 0.1555 

aZ1= 1.000 
a23= .I088 
all= - .0988 
aol= - 0.4491 
a,,%= - .I209 
a2!= 1.000 
az3=.0468 
all= - .O658 

Uo3= - .I950 

hie= -. 0053 
biz= 1. 000 

biz= 1. 000 
bl4= -. 0671 
ba2= -. 0548 
b31=. 0238 
b52=-. 0114 
bts= -. 0134 

73. 0 
(71.3) 

biz= 1. 000 
b14= -. 0630 
b32= -. 0717 
bra=. 0195 
b52= -, 0074 
hie= -. 0160 

97. 5 

Mode 6: 

Normalized mode-shape 
coefficients 

all= 1. 000 

a3,= -. 2789 
a33= -. 0007 
a51=. 0318 

all= 1. 000 
aI3= -. 0446 
as1=-. 1487 
a33=. 0225 
a51 = .0084 

U i 3 =  --. 0629 

a l l=  1. 000 
ais= -. 0597 
asl= -. 0626 
~ 3 ~ = .  0316 
aS1= -. 0013 

all= 1. 000 
a13= - .0705 
a31=  -. 0104 
a 3 3 = .  0364 
as l= .  0059 

Mode 7: 

boi=0.1555 
ba3= - .1950 
b21= 1.000 
b23=. 1088 
b ~ : =  - .0988 
bo,=O.6498 
bo,= -.0355 
bz,= .5491 
b23F .lo78 
bo= - .0590 

boz= -0. 9796 
b o 4 ~ .  0944 
bzz=. 0337 
bzh= -. 0492 
b,z= -. 0000 

boz= -0. 8072 
bm=. 0477 
bzz= .  1222 
bz4z -. 0232 
b 4 2 ~  -. 0078 

boz= -0.  6479 
bo4 = . 0324 
bZ2=. 1557 
bzn= -. 0051 
biz= -. 0151 

boz= -0. 5687 
bM=. 0720 
b 2 2 = .  1772 
bzr= .  0027 
biz= -. 0195 
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TABLE 4.94.--Comparison Between Experimental and Theoretical Results for Cyclic Frequencies of 
Rectangular Plates Point Supported in the Corners 

Solution 
from ref. 

4.139 

Cyclic frequencies, cps, for- ~ 

Experiment 

I 1 Plate 1: 12- by 12- by 0.129-in. 2024 aluminum 
Mode ~ E= 10.6X lo5 psi (book value) 

j Solution 
1 from ref. 
I 4.139 

61. 4 
136 
136 
166 
333 

- - - - - - - 
375' 

Experiment 

62 
134 
134 
169 
330 
434 
383 

Series 
solution 

61. 4 
136 
136 
170 
333 
436 
385 

Plate 2: 10- by 20- by 0.173-in. 2024 aluminum 
E= 10.6X IO3 psi (book value) 

38. 3 
I13 
136 
214 
261 
294 

_ _ _ _ _ _ _ _ _ _ _ _ _  

Series 
solution 

FIGURE 4.82.-Free square plate supported at  the 
midpoints of its sides. 

widths. ExtrapoIated values are derived from 
equation (4.90). 

The second mode shapes for these two prob- 
iems have node lines y=x,  and thereby dupli- 
cate the second modes that exist when the 
corner point is not supported. (See sees. 
4.3.6 and 4.3.13 for relevant information.) 
First and second mode shapes and frequencies 
can also be obtained directly from the results 

Clamped Point 
/- - 

X 

a/2 

Fmum $.83.--Free square plate clamped at one 
midpoint. 

of the free square plate point supported a t  its 
four corners given earlier in this section. 
Straight node lines duplicate simply supported 
boundary conditions. 

Consider next the problem of the rectangular 
plate simply supported on all edges and sup- 
ported a t  a point located at the coordinates 
5 ,  (fig. 4.85). Nowacki (refs. 4.137 and4.145) 
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Adjacent edge 
CORditiORS 

139 

Mesh width Extrap- - olated 
value 

a/4 1 a/5 ~ a16 

TABLE 4.95.-Fundamental Frequency Param- 
eter ua2JplD for a Free Square Plate Sup- 
ported at the Midpoints of Its Sides; v=O:S 

Extrapolated 
value 

Mesh width 
-- 

I 

17. 129 1 17.443 1 18. 002 

TABLE 4.96.-Frequency Parameters u a 2 j m  
for a Square Plate Simply Supported or 
Clamped on 2 Adjacent Edges and Supported 
at the Opposite Corner; v=O.3 

Simply supported--- 
Clamped _ _ _ _ _ _ _ _ _ _ _  

solved the problem by dividing the plate into 
two sections by the line y=f ,  assuming a solu- 
tion of the form 

m 

(4.96) 
where 

(4.97) 

for each section, and satisfying the boundary 
conditions along y=O and y=b and the con- 
tinuity conditions along y= 9 exactly. Con- 
tinuity of transverse shear along y=q requires 
expanding the point load at t ,  q into a Fourier 
sine series. These conditions lead to the char- 
acteristic equation 

sinh X,q sinh h4(b-q) 
k4 sinh Xqb 

Simply Supported /- 
or Clomped 

FIGURE 4.84.-Square plate simply supported or 
clamped OR two adjacent edges and supported at the 
opposite corner. 

X 

FIGURE 4.85.--SS-SS-SS-SS rectangular plate with 
point support along one symmetry axis. 

where a=mr/a. The roots h3 and X4 of 
equation (4.98) yield the frequencies. 

The fundamental frequency parameters for 
three alb ratios and with the point support at  
the center (f=a/2,  q= 15/29 are listed in table 4.97 e 

Frequencies were also determined (ref. 4.137) 
for the case of the square when the support 
point was allowed to relocate along the line 
y=a/2=6/2. Results are given in table 4.98. 
It is noted that corresponding values (t/a= x, 
a/b=P) of tables 4.97 and 4.98 show consider- 
able disagreement. 
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€la 

w a 2 m  _ _ _ _ _ _ _ _ _  

TABLE 4.97.-Fundamental Frequency Param- 
eters fo r  a SS-SS-!TS-SS Rectangular Plate 
Having a Point Bupport at the Center 

Q % % W %  

19.7 25. 5 30.4 38.9 49.3 

---___- 

The case when the plate is supported at  a 
point by a spring, with or without added mass, 
is discussed in the section entitled “Point 
Masses” (see. 4.5.2). 

The square hub-pin plate (fig. 4.86) consists 
of a hub support attached to the edge of a 
plate and having an axis of rotation parallel 
to  the adjacent edges and a pin support at 
another point along the same edge. For the 
particular locations shown in figure 4.87, the 
boundary conditions at  the hub are for W(x,y> 

(4.99) 

and at  the pin 

Y ,Y 

Free-edge boundary conditions apply every- 
where else. 

This problem was treated in references 4.66 
and 4.143 by using a modification of Reissner’s 
variational method (ref. 4.71) and a deflection 
function 

Moment boundary conditions were exactly 
satisfied at  discrete points and four degrees 
of approximate satisfaction of the shear bound- 
ary conditions were considered; the best results 
were obtained when the transverse shear con- 
ditions on the free edges were ignored. Fre- 
quency parameters from reference 4.66 com- 
pared with the experimental data of reference 
4.72 are presented in table 4.99 for an aluminum 
plate 7.5 by 7.5 inches by 0.25 inch. Experi- 
mental methods used to get these results are 

Mode shapes corresponding to the first three 
frequencies are shown in figure 4.87, where 

TABLE 4.99.-Frequency Parameters coazdp/D 
and Nodal Patterns jor  a Square Hub-Pin Plate 

escribed in reference 4.146. 

FIGURE 4.86.-Square hub-pin plate. 
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A --E xpenmentol 

0 -Theoretical 

fThe;l 15.3 cps fTh,;252 9cps fTko=6846Cps 

fEap = I  I9 6 CpS fExp =243.ocps fEap = 6 9 2 0 c p s  

MOOE 1 MODE 2 MODE 3 

F I G U R E  4.87.-Theoreticai and experimental mode shapes for a square hub-pin plate. 

(=?/a and s=iJa. Further experimental re- 
sults (ref. 4.86) for a thinner plate are shown 
in figure 4.88. More work on point-supported 
plates is contained in reference 4.147. 

4.5 ADDED MASS 

Tbe problem of the rectangular plate, simply 
supported on two opposite edges, free on the 
other two, and carrying a rigid mass of finite 
width I running across the center of the plate 
(fig. 4.89) was studied by Cohen and HandeI- 

man (ref. 4.148). In  reference 4.148, the 
Rayleigh-Ritz method is used with a funda- 
mental mode shape 

W ( z ,  y)=sin - 

(4.102) 

where A is an undetermined coefficient to be 
found from the minimization process. An ex- 
plicit formula for the frequency parameter is 
found t o  be 

(4.104) 
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+ I . 0 0 7 -  

€=O.WP * '"T 

FIGURE 4.88.-Experimental node lines and normalized deflection of a square hub-pin plate; 
material, 6061-T6 aluminum W inch thick. (a) Experimental node lines and data points. 
(b) First mode;fl=58.8 cps. (c) Second mode;f2=119 eps. (d) Third mode; f3=339 
eps. ( e )  Fourth mode; f4=462 cps. (f) Fifth mode; f5=570 cps. 

FIGURE 4.89.-SS-F-SS-F plate carrying a rigid mass. 
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and where p' is the mass density per unit area 
of the plate plus the additional mass in the 
region For 

large values of alb, equation (4.104) can be 
simplified by retaining terms of order (b/u)2, 

ut no higher powers, giving: ( 4 2 )  - (112) 1 < x< (a121 -/- (112) 1. 

X2' (4.105) 

Numerical results were evaluated in reference 
4.148 for v=0.25. For the square, equation 
(4.103) was used. Frequency variation with 
l/a ratio for several values of p ' lp  is shown in 
figure 4.90. For a/b= 10, equation (4.105) was 
used. Results are shown in figure 4.91. It is 
interesting to note that in both figures for 
p'/p<2 the frequency always increases as 
I/a increases, whereas for p' /p>2 there exist 
crossover points where the frequency of the 
plate with the added strip is the same as that of 
the unloaded plate. 

In  reference 4.149 the technique of reference 
4.148 was extended to the lowest antisym- 
metrical mode. A function 

(2, ?J>= &--SA--, px b3 X ( X - ~ + Z ) ~ S ~ -  'R7J (4.106) a a  b 
where p is the fundamental root of the 

tan0 1-- +/3-=0 (4.107) 

The explicit form for the frequency parameter 
is found t o  be 

equation 

( f) f 

6 

15 
5 

2 

0 
0 

l h  

FZGURE 4.90.--FundarnentaB irequency variation for a 
SS-F-SS-F square plate carrying a rigid strip mass; 
v=0.25. (After ref. 4.148) 

c 

(4.109) 

j I 0  

FIGURE 4.91.-Frequency variation for a SS-F-SS-F 
rectangular plate (a/b=10) carrying a rigid strip 
mass; v=0.25. (After ref. 4.148) 
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and where 

E3=& (1 --a"> 7 

(4.110) 

For large values of ajb, equation (4.108) 
simplifies to  

-2E5E9) -EL( E - 4  E&)] (4.1 1 I 

Numerical results were evaluated in refer- 
ence 4.149. For the square, equation (4.108) 
was used. Frequency variation with lla ratio 
for several values of p' /p is shown in figure 4.92. 
For a/b=lO, equation (4.111) was used. 
Results are shown in figure 4.93. 

A rectangular plate simply supported all 
a r o u ~ d  and having a Concentrated mass A4 
attached at  the coordinates 5,  7) is shown in 

bo 

FIGURE 4.92.-Variation of the first antisymmetric 
frequency for a SS-F-SS-F square plate carrying a 
rigid strip mass. (After ref. 4.149) 

figure 4.94. Gershgorin (ref. 4.150) solved 
the problem by dividing the plate into two 
regions O<y<v and T<y<b and assuming a 
solution (eq. (1.37)) for each region. Eight 
homogeneous equations are written, four for 
the boundary conditions at  y=O and y=b, 
and four for the continuity conditions across 
the line y = ~ .  The continuity condition for 
transverse shear takes into account the con- 
centrated mass by expanding a point load 
into 8. Fourier sine series. This procedure 
leads t o  a characteristic equation, the roots of 
which are the desired eigenvalues. 

Numerical results are presented in implicit 
form in reference 4.150 for the doubly symmet- 
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Y 

FIGURE 4.94.-SS-SS-SS-SS rectangular plate with a 
point mass M. 

ric modes of a square (a=6) when the mass 
is at  the center ($=a/b, q=a/2). It is obvious 
that for modes having an axis of antisymmetry 
the mass M will fall on a node line and, hence, 
will not affect the plate. The frequencies may 
be obtained from the characteristic equation 

tanh:t'(2m+l)2-X 

where 

(4.1 13) 

FIGURE 4.93.-Variatien of the first antisymmetric 
frequency for a SS-F-SS-F rectangular plate carrying 
a rigid strip mass; a/b= 10. (After ref. 4.149) 

The function .fl(X) is given in table 4.180 and 
plotted in figure 4.95. 

TABLE 4.100.-Characteristie Functions for a SS-SS-SS-SS Square Plate Having a Mass at 
the Center 

0 
. 0289 
. 1197 
. 2818 
. 5382 
. 9323 

1. 3698 
2. 6115 
4.7415 
7. 4900 

11. 1529 
24. 3803 

m 

m 

-26. 9900 
- 13. 9576 
-6. 5248 
-3. 7910 
- 1.7000 
-. 5124 
- 1. 2861 

- 

3. 7948 
8. 5774 

22. 0731 
45. 3092 

124. 2640 
03 

m 

- 264. 8749 
- 129. 7239 
-61. 1816 
-33. 3897 
- 13. 6614 
-7. 6301 
-3. 5239 

- 

. 6548 
6. 4283 

19. 7349 
42.6325 

113. 0580 
a 
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The method of obtaining frequencies is 
shown in figure 4.95. For a given problem, the 
right-hand side of equation (4.112) is computed. 
This is represented by the broken line in 
figure 4.95. The intersections of this line with 
the curves fi(X) yield the values of X on the 
abscissa. The frequency is then determined 
from equation (4.113). It is seen that f i (X)  
becomes infinite a t  values of X corresponding 
to the natural frequencies of the unloaded 
plate. Also, as the mass is increased, fi(x) 
always remains positive. Thus, for infinite F ~ ~ U R E  4 . g 5 . - ~ h ~ ~ ~ ~ t ~ ~ i ~ t i c  functions for SS-SS- 
mass M the higher frequencies are not zero. 

given by 

SS-SS square plate having a mass at t he  center. 
The doubly symmetric mode shapes are 

2, y)=&(-1)" 
m=O 

where A, are the associated frequency 
parameters. 

Wah (ref. 4.151) arid Amba-Rao (ref. 4.152) 
solved the problem by using a solution for the 
plate without an added mass (eq. (4.19)) and 
representing the Concentrated force resulting 
from the point mass by a Dirac delta function. 
In reference 4.152, the frequencies for modes 
which do not have nodes a t  ( t ,  7) are determined 
from the characteristic equation 

(4.115) 

Frequency parameters for doubly symmetric 
modes of a square having the mass M=pa2/4 
at  the center are listed in table 4.101. 

In reference 4.151, an approximate formula 
for the square of the fundamental frequency 
of bhe simply supported rectangle having 0 
point mass M at  the center is given as 

ab ($+by 
M+- 4 

(4.116) 4 
"2= 

and an independently derived approximation 
for the square of the fundamental frequency 
of a massless plate having the point mass is 

Thus the practical rule results that the funda- 
mental frequency of the plate-mass system in 
this case may be approximated by adding 
one-fourth of the mass of the plate to the 
central concentrated mass and calculating the 
frequency by equation (4.117) as if the plate 
itself were massless, 

Stokey and Zorowski (refs. 4.153 and 4.131) 
and Lee (ref. 4.154) developed a general 
method for deterwhing the frequencies of a 
rectangular plate with arbitrary edge condi- 
tions and any number of arbitrarily located 
masses having both transiational and rotational 
inertia. Deflections are expressed in terms of 
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Concentrated 
weight, Ib 

TABLE 4.101 .-Frequency Parameters wa2dpm 
f o r  a SS-SS-SS-SS Square Plate Having a 
Point Mass M = pa2/4 at the Center 

Cyclic frequency, cps 

Theoretical Experimental 

---- 

the eigenfunctions of the plate without masses, 
and the equations of motion of the plate-mass 
system are determined from Lagrange's 
equation 

where T is the kinetic energy of the plate- 
mass system, U is the potential energy of the 
system, q, are the generalized coordinates cor- 
responding to the eigenfunctions used, and t 
is time. The resulting infinite set of ordinary 
differential equations in the qr are solved for 
the frequencies of the system in the usual 
manner. 

Numerical results were obtained for a simply 
supported aluminum plate 20 by 20 inches by 
0.091 inch with a concentrated mass having 
negligible rotational inertia at  the center. By 
assuming a specific weight of 0.0955 pound per 
cubic inch for aluminurn, this gives the weight 
of the plate as 3.48 pounds. Theoretical and 
experirr ental fundamental cyclic frequencies 
were obtained and are given in table 4.102. 

nly the first four eigenfunctions of the S% 
SS-SS-SS plate were used in the calculation of 
the frequencies. 

Table 4.103 (ref. 4.153) lists the results for 
the effect of adding various numbers of cylin- 
drical masses having equal rotational inertias 
about all axes in the 2.y plane at  different loca- 
tions (the axis of the cylinder is perpendicular 
to  the plate). Moments of inertia listed are 
relative to  axes lying in the middle plane of 
the plate. 

The case when an externally connected 
translational spring of stiffness k (forceflength) 
is attached to the plate at  the same location 
as that of a concentrated mass is studied in 

23. 4 
17. 5 
15. 0 
13. 2 
12. 0 
11. 0 

reference 4.155. The characteristic equation 
for the simply supported square having a mass 
and a spring a t  its center is equation (4.112) 
with the right-hand side modified to become 

for doubly symmetric modes. Again, values 
of X ( X )  may be taken directly from table 4.100 
and figure 4.95. From equation (4.119) and 
figure 4.95 it is seen that for w = J k m  the 
vibrations of the spring-mass system and the 
plate become uncoupled. As k + w ,  j , ( X )  +0 
and the solution is that of a rigid point support 
at  the center. 

Consider next the simply supported square 
plate having four equal masses symmetrically 
located along its diagonals as shown in figure 
4.96. For modes symmetric with respect to 
x=a/2 and antisymmetric with respect to 
y=a /2 ,  the frequencies may be determined 
from the characteristic equation (ref. 4.150) 

c 

Y 

4(2m+I)'--X 

with k given in equation (4.113).  The function 
J 2 ( x )  is given in table 4.104 and plotted in 
figure 4.97. 
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TABLE 4.183 .-Fundamental Cyclic Frequencies f o r  a SS-SS-SS-SS Square Plate Hawing Various 
Numbers and Locations of Added Masses 

Location 

E 

I 

Cyclic frequency, cps I -__ 
Weight, lb 1 I ,  lb in. sec2 I- Theoretical Experimentai I 1 I 

2. 75 
2. 75 
2. 70 
2. 75 
2. 70 
2. 75 

0. 021 
. 021 
.020 
.021 
. 020 
.021 

25. 1 
28. 7 

I 

1 17.9 

] 20.1 

26. 0 
28. 5 

15. 5 

18. 0 

f21N 
100 

80 

60 

40 

m 

0 

m 

40 

60 

80 

100 

- A  
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The mode shapes corresponding to these frequencies are given by 

In references 4.156 and 4.157, Solecki gives 
the fundamental frequency of a square plate 
clamped all around and having a point mass at 
the center of twice its own mass. The fre- 
quency is found t o  be 

(4.122) 

The problem of the rectangular plate having 
Lhree sides simply supported and the ot,her 
clamped and having a mass M and a spring of 
st,iffness k attached at  a given point (fig. 4.98) 
was solved in reference 4.158. The method 
used was essentially that given in reference 
4.153 and discussed previously in this section. 
Ratios of the fundamental frequency of the 
system to that of the plate alone as functions 
of the stiffness ratio k /kc  and the mass ratio 
M/pab are shown in figure 4.99 for the case of 
the square, and E=q=0.2a. The quantity 
k, may be thought of as a generalized spring 
constant corresponding to a uniformly loaded 
SS-SS-SS-Cr square plate of negligible mass; 
that is, k,=D/0.00279a2. 

Y 

FIGURE 4.98.-sS-Ss-ss-@ plate with a point mass 
and point spring. 

The problem of the SS-SS-SS-C square plate 
having two point masses, one at  (1=71=0.2a 
and the other at  [2=72=0.4a, was also solved 
by Das and Navaratna (ref. 4.158). Frequency 
ratios are shown in figure 4.100. 

A method for determining frequencies of 
rectangular plates having added masses and 
elastic edge constraints is given in reference 
4.131. Theoretical and experimental fre- 
quencies are given for specific plates used as 
deetronic chassis. 

For a specific ease of a rectangular cantilever 
plate having added mass a t  the tip (x=a>, 
see the discussion under parallelogram plates 
entitled “Other Supports and Conditions” 
(sec. 5 .2 ) .  

Frequency Ratio 

FIGURE 4.99.-Ratio of the iundamental frequency of a 
SS-SS-SS-6 square plate having a point mass and a 
spring a t  E=q=0.2a to that of the plate alone. 
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Frequency Ratio 

FIGURE 4,1QO.--Ratio of the fundamental frequency of 
a SS-SS-SS-C square plate having point masses 
M I  and M z  at E1=71=Q.2a and Ez=?z=Q.4a, respec- 
tively, to  that  of the plate alone. 

4.6 INTERNAL CUTOUTS 
4.6.1 Circular Holes 

A rectangular plate either clamped or simply 
supported on the outer edges and having a 
centrally located circular hole is shown in fig- 
ure 4.101. Takahashi (ref. 4.159) solved the 
problem in the case when all edges are clamped 
by using the Rayleigh-Ritz method and deflec- 
tion functions which are products of beam func- 
tions. Variation in fundamental frequency 
parameter as a function of R/a ratio is given in 
figure 4.102 for several a/b ratios and v=0.3 .  
The frequency scale is amplified in figure 4.103 
and theoretical and experimental values are 
given for the case when a/b=0.5. 

Kumai (ref. 4.160) used the point-matching 
method to find the first three frequencies for 

X 

F x u m  4.l01.--Xectangular plate having a centrally 
located circular hole. 

Q 
0 

3 

0 

N 

FIGURE 4.102.--Frequency parameters da4p/D for a 
rectangular plate clamped all around having a 
central circular hole. (After ref. 4.159) 

the previous problem when a/b=0.5. Theoret- 
ical and experimental cyclic frequencies were 
obtained for celluloid plates 2.75 by 2.75 
inches by 0.020 inch having various Ria ratios 
and are shown in figure 4.104. In  table 4.105 
are listed the ratios of the frequencies of clamped 
square plates having central circular holes to 
those of plates without holes. 

The case when the outer boundary is simply 
supported was also studied in reference 4.160 
and cyclic frequency variations are shown in 
figure 4.105. Frequency ratios for this prob- 
lem are also shown in table 4.105. 

Joga-Rao and Pickett (ref. 4.37) used the 
ayleigh-Eitz method with algebraic poly- 

nomials and a biharrnonic singular function to  
obtain 

wa2Jm= 5.61 48 (4.123) 
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R/a 

F r a r R E  4.103.-Theoretical and experimental frequency 
parameters da4plD for a clamped rectangular plate 
having a central circular hole. (After ref. 4.159) 

for a SSSS-S%SS square plate having a 
central circular hole, R/a=0.5,  and v=0.3. 
The function used was (see fig. 4.101) 

A,+A, (‘)+A31n 

equency parameters for various numbers 
d combinations of coefficients retained in 

ation (4.124) are listed in table 4.106. 
cause all results are upper bounds, the 

lowest value is the most accurate one. 
The frequency parameter for the square 

plate having a central circular hole in the 

TABLE 4.105.-Frequency Ratios and Nodal 
Patterns for  Square Plates With Central 
CirGular Holes 

Nodal pattern 

a 

!i 
a 

- 

0 
. 2  
. 4  

0 
. 2  
. 4  

0 
. 2  
. 4  

-- 

Frequency ratio 

Clamped edge 

1.000 
. 986 

1. 118 

1.000 
.916 
. 876 

1.000 
1. 040 
1. 195 

SS edge 

1.000 
.985  
.965  

1.000 
. 913 
.go4 

1.000 
1. 024 
1.228 

case when the outer edge is completely free 
was given in reference 4.37 as 

o a 2 m = 2 . 8 9 6 3  (4.125) 

when R/a=Q.5 and v=0.3 .  The Rayleigh- 
Ritz method and the function 

(r,8>= (Alr2+A~r4+A,+A4r-2)  sin 28 (4.126) 

(see fig. 4.101) was used. Frequency param- 
eters for various numbers and combinations of 
coefficients retained in equation (4.126) are 
listed in table 4.107. 

4.6.2 Other Cutouts 

The case of the completely free square plate 
(fig. 4.106) having a centrally located square 
hole was investigated in reference 4.37. The 
Rayleigh-Ritx method and functions given in 
equation (4.126) were used for c/a=0.5. Fre- 
quency parameters for various numbers and 
combinations of coefficients retained in equa- 

TABLE 4.106.--Frequency Parameters ua2flD j o r  a SS-SS-SS-SS Square Plate Having a Central 
Circular Hole; v = 0.3 

CoeBcients retained 1 A I  Az I AB AI& 1 A& 1 A1AZA3 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
R/a 

FIGURE 4.104.--Cyelic frequencies €or GC-C-C 
square plate having a central circular hole. (After 
ref. 4.160) 

R/a 

FIGURE 4.105.-Cyclic frequencies for SS-SS-SS-SS 
square plate having a central circular hole. (After 
ref. 4.160) 

308-337 0 - 70 - i i  
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Coefficients retained 
___ 

o a Z J a  ._____________.____ 

A i  Az ' A3 A4 A1-43 AIAZAO A1A3A4 A I A ~ A A J  
_______ ~ - _ _ _ _ _ _ _ _ _ _ _ ~ _ _ - _  

3. 189 9. 478 7. 617 25.45 3. 026 2. 914 2. 962 2. 896 

TABLE 4.108.-Frequeney Parameters wa2Jpm f o r  a F-F-F-F Square Plate Having a Central 
Square Hole; v=O.S 

(I 

- x  

FIGURE 4.106.--F-F-F-F square plate with a central 
square hole. 

tion (4.126) are listed in table 4.108. The 
lowest value is the most accurate. 

Consider next the rectangular plate simply 
supported on all external edges and having a 
narrow slit of length e along one axis of sym- 
metry as shown in figure 4.107. This problem is 
studied in reference 4.136. One numerical 
result is given but it is highly inaccurate. 'The 
case when the slit is completely internal is 
formulated in reference 4.161, but no numerical 
results for vibration are given. 

I I 7 
I 

X 

FIGURE 4.107.-SS-SS-SS-SS rectangular plate with a 
symmetrically located slit. 
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Because no exact solutions to  equation (1.4) 
expressed in skew coordinates by equation 
(1.39) are known to exist in variables separable 
form, no significant exact solutions exist for 
parallelogram plates. Even the case when all 
edges are simply supported requires an intricate 
solution, unlike the case of the rectangle (sec. 
4.1). Some solutions have been obtained by 
approximate methods for a few of the many 
possible combinations of boundary conditions. 
Particular emphasis exists in the literature for 
the case of the cantilevered parallelogram 
because of its importance as an aerodynamic 
lifting or stabilizing surface. 

5.1 SIMPLE EDGE C ~ N D ~ ~ I ~ ~ S  
Results for plates with clamped (C), simply 

supported (SS), and free (F) edges are given 
in the following subsections. 
5.1.1 C-C-C-C 

Kaul and Cadambe (ref. 5.1) proposed 8 

solution to  the problem of the C-C-C-C 
parallelogram plate which used the Rayleigh- 
Ritz method and the products of characteristic 
beam functions; that is, 

where k,a is themth positive root of the tran- 
scendental equation 

tan (k,a/2)=(-1)m tanh (kma/2)  ( 5 . 3 )  

The functions #%(q) are obtained by replacing 
& a, and m in equation (5.2) by q,  b,  and n, 
respectively. 

Results were obtained in reference 5.1 by 
using only one term of equation (5.1) and the 
Rayleigh method t o  obtain upper bounds for 
frequency parameters for the case of the rhom- 
bus (a= b ) .  These results are given in table 5.1 ; 
the notation mfn is used to indicate the number 
of approximate half sine waves in the S/q 
directions, respectively (at least for sma 
values of a>. Combined modes of the form 
(m/n f n fm> having nearly equal frequencies 
exist, as in the case of the square. (See see. 
4.3.1.) 

Lower bounds were obtained in reference 5.1 
for some of the modes by use of the Kato- 

TABLE 5.1 .-Frequency Parameters aa2yiplD 
cos2 a for a 6'-C-6'-C Rhombic Plate 

m=l ,  2 ,3 , .  

W & ~ D  cos2 for values of skew 
angle, (Y, deg, of- 

15 

36.67 
74. 76 

111.43 
132. 90 
133.71 
169. 56 
226.76 
246. 91 
249.67 

161 
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TABLE 5.2.-Upper and Lower Bounds of w a 2 a D  cos2 a for a C-C-C-C Rhombic Plate 

Skew angle, 0, deg Mode type 

35.333 
71.768 

104. 988 
34.690 
63. 686 
32.959 
30.638 

a z 

1 _ _ _ _ _ _ _ _ _ _ _ _  

8.5 _ - _ _ _ _ _ _ _ _ _  

36. 109 
73.737 

108. 850 
36.666 
74.759 
38. 147 
40. 082 

ma2&@ cos2 CY for values of skew angle, a, deg, of- 

15 30 35 45 60 

Source 

-- 
Eef. 5.5 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  35. 636 34. 624 1 34. 172 _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ - _ - _  
Ref. 5.2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  35. 625 34. 788 1 _ _ _ _ _ _ _ _ _ _  32. 795 30. 323 
Ref. 5.5 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  24. 484 24. I96 1 24. 096 . . . . . . . . . . . . . . . . . . . .  

TABLE 5.3.-Fundamental Frequency Parameters w a 2 4 m  cos2 a _I 

Plate 

Mean value 

35. 721 
72.752 

106.919 
35. 678 
69. 222 
35.55 
35. 36 

Maximum 
possible 

percentage 
deviation from 

mean value 
-____ 

1. 07 
1. 33 
1. 77 
2. 69 
7. 41 
6. 80 

11. 36 

for a C-C-C-C Parallelogram 

Temple method. These are given in table 5.2 
along with a mean value of frequency parameter 
determined from the lower and upper bounds 
and a computation of the maximum possible 
error which can arise from using the mean 
value. 

It is clear from table 5.2 that the accuracies 
of the solutions decrease as (1) the mode 
number increases and (2)  the skew angle 
increases. 

Further results for this problem were obtained 
by Hamada (refs. 5.2 and 5.3) who used the 
method of Trefltz (ref. 5.4) and deflection 
functions 

mat nz-g mrt n a g  +&,, cos - sin- t C,, sin- cos- a b a b 

(5.4) 

and by Hasegawa (ref. 5.5) who used the 
Rayleigh-Rita method and deflection functions 
(see fig. 5.1) 

Wi-, 5)=E"~a/2)"2 ~;i"-(b/2>"3'~A~ 

These results are summarized in table 5.3 for 
a/b=1 and a/b=0.5. The problem is also 
discussed in reference 5.6. 

In references 5.2 and 5.3, experimental results 
for the rhombic plate were also given. Mild 
steel plates with a=b=2.36 inches and h=0.035 
inch were used. Figure 5.2 shows the ratio of 
the freqhency of the rhombic plate t o  that of 
the square as a function of the skew angle. 
The curve shorn is from the theoretical results. 

Conway and Farnham (ref. 5.7) analyzed 
points are experimental data. 
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j3, deg _ _ _ _ _ _ _ _ _ _ _  45 40 37.5 

w c " d p / D  _ _ _ _ _ _ _ _  18. 00 21. 70 24. 05 

TABLE 5.4.-Frequeney Parametersfor a C-C-C-C Rhombic Plate 

35 30 27.5 25 22.5 20 15 
~ - _ _ _ ~ - - ~ ~  -- 

26. 90 34.66 40.03 47. 05 56. 02 67. 91 107. 27 

1/1____________ 
112 _ _ _ _ _ _ _ _ _ _ _ _  
211 _ _ _ _ _ _ _ _ _ _ _ _  
212 _ _ _ _ _ _ _ _ _ _ _ _  
113 - - _ _ _ _ - - - _ _ _  
311 _ _ _ _ _ _ _ _ _ _ _ _  
213 _ _ _ _ _ _ _ _ _ _ _ _  
312 _ _ _ _ _ _ _ _ _ _ _ _  
313 _ _ _ _ _ _ _ _ _ _ _ _  

which exactly satisfy the differential equation 
(1.4) were taken. Boundary conditions of 
w=bwfbr=O at 8=Oo, 30°, 60°, and 90° were 
matched, thus giving an eighth-order charac- 
teristic determinant. Frequency parameters for 
variom values of B are listed in table 5.4. 

0 15 
-- 

31. 95 32. 54 
63. 66 64.76 
71.43 72. 40 

101.26 103. 83 
116. 97 118. 29 
130. 84 132. 03 
152. 75 156.50 
160. 00 163. 51 
209. 97 215. 82 

I 

FIGURE 5 . L - G G G C  parallelogram plate. 

the case of the rhombus by the point-matching 
method. In terms of the coordinate system 
shown in figure 5.3, the deflection functions 

FIQURE 5.3.-C-GGC rhombic plate. 

TABLE 5.5.-Frequeney Parameters wa2CD 
cos2 o for a C-(2-C-Si3 Rhombic Plate 

FIGURE 5.2.--Ratio of the frequency of a C-6-C-C 
rhombic plate to that of a square. (After ref. 5.2) 

-2 . \ ip lD  cos2 cy for values of 
skew angle, a, deg, of- 

Mode type 
I 

30 

34. 09 
67. 68 
75. 04 

110. 58 
121. 81 
135. 11 
166. 32 
172. 75 
231. 06 

45 

36. 11 
71.47 
78. 46 

119.18 
126,47 
139.25 
178. 87 
184.62 
250. 37 
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TABLE 5.6.-Upper and Lower Bounds of w a 2 d m  cos2 a for a C-C-C-SS R h b 2  Plate 

Skew angle, CY, deg Mode type 

Lower bound Upper bound 

31.460 
62.227 
31.467 
60.881 
30. 351 
29.464 

Mean value 

I-- - 

31.953 
63.659 
32.541 
64.761 
34.094 
36. 108 

31.707 
62.943 
32.004 
62.821 
32.222 
32. 786 

5.1.2 c-c-c-ss 
The problem of the C-C-C-SS parallelogram 

plate (fig. 5.4) is solved in reference 5.1 by 
using the Rayleigh method and a single term 
which is the product of beam functions ex- 
pressed in terms of the skew coordinates. (See 
preceding sec. 5.1.1.) Frequency parameters 
for the case a=b are given in table 5.5. Lower 
bounds from reference 5.1 are given in table 
5.6 along with a mean value of frequency pa- 
rameter determined from its lower and upper 
bounds. Also given is the maximum possible 
error which can arise from using the mean 
value. Accuracies of the solutions decrease as 
(1) the mode number increases and (2) the 
skew angle increases. 

FIGTJBE 5.4.--C-GG-SS parallelogram plate. 

Maximum 
possible 

percentage 
deviation from 

mean value 

0. 77 
1. 13 
1. 65 
2. 99 
5. 49 
9. 20 

TABLE 5.7.-Frequency Parameters wa2JplD 
cos2 a for a C-C-SS-SS Rhomb2 Plate 

Mode type 

w a a m  cos2 a for values of skew 
angle, a, deg, of- 

0 

21.19 
60.69 
61. 29 
93. 13 

115.06 
115. 31 
145.98 
146. 81 
198.55 

15 

27.84 
61.73 
62.40 
95.74 

116.29 
116.57 
149.58 
150.50 
204 43 

30 

29.52 
64.48 
65. 33 

102.33 
119.60 
119. 96 
159. 00 
160. 15 
219.69 

45 

31. 68 
68.06 
69. I3  

111. 15 
124 44 
124.44 
171. 04 
172. 46 
238. 97 

5.1.3 c-c-ss-ss 
The problem of the C-C-SSSS parallelo- 

gram plate (fig. 5.5) is solved in reference 5.1 
by using the Rayleigh method and a single 
term which is the product of beam functions 
expressed in terms of skew coordinates. (See 
sec. 5.1.1.) Frequency parameters for the case 
a=b are given in table 5.7. Lower bounds 
from reference 5.1 are given in table 5.8 along 
with a mean value of frequency parameter 
determined from its lower and upper bounds. 
Also given is the maximum possible error that 
can arise from using the mean value. Accu- 
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TABLE 5.8.-Upper and Lower Bounds of wazdplDcoS2 a for a C-C-SS-SS Rhombic Plate 

Mode type 

111 
(1/2) - (2/Q 

Skew angle, a, deg 

Lower bound 

26.225 
59.407 

Mean value 

26. 710 
60. 048 
26. 375 
25.487 

i 

Maximum 
possible 

percentage 
deviation from 

mean value 

1. 78 
1. 06 
5. 25 

13.67 

FIGURE 5.5.--6-@SS.SS parallelogram plate. 

racies of the solutions decrease as (1) the mode 
number increases and (2) the skew angle 
increases. 

5.1.4 ss-ss-ss-ss 
Tsydzik (ref. 5.8) solved the problem of the 

SS-SS-SSSS parallelogram plate (fig. 5.6) by 
using the perturbation method. Equation (1.4) 
can be expressed as 

(5.7) 

C 

n a 

FIGURE 5.6.--SS-SS-SS-SS parallelogram plate. 

Upper bound 

27. 195 
60. 690 
27. 838 
29.523 

where €=tan a, X=w2p/D, W=W(E, q ) ,  

and 6 may be considered as a perturbation 
parameter. Solutions for W and are then 
assumed in the form 

wmn=w~~+Ew:;+E~w~,n,s * - 
x,,=x?g+ax:A+r2x,+ * ' 0 

(5.9) 

Substituting equations (5.9) into equation - -  
(5.7) and equating powers of E yield 

v4w:;-x:;w:~=0 

Thus WzL and are taken to be 

(5.10) 

(5.11) 

(5.12) 

(5.13) 
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TABLE 5.9.-Frequency Parameters, Nodal Patterns, and Mode Shape Coescients for a SS-SS-SS-SS 
Rhmbic Plate; tan a = O . I  

Nodal pattern--.. _____-_--..- 

Amplitude coefficients - - - - - - - 

1 

19.87 

Air= 1.00000 
Azz= -. 00963 
Azc= -. 00058 
Aza= -. 00019 
A42= -. 00058 
A44= -. 00009 
A4a= -. 00004 
Aa2= -. 00019 
AM= -. 00004 
Am= -. 00001 

49.27 1 49.27 

A ~ z =  I. 00000 
Azl= 0 
A%= -. 09020 
A2&= -. 00126 
A*&=. 00219 
A43= -. 00173 
Ads= -. 00025 
ABI=.  00028 
As=  -. 00033 
A i =  -. 00007 

A,,= 1.00000 
Aiz=O 
Air=. 00219 
Ale=. 00028 
A32 = - .09020 
Aar= -. 00173 
A36 = - .00033 
Aai= -. 00126 
As=  -. 00025 
Ass= -. 00007 

3 

78.67 

A**= 1.00000 
All=. 03850 
Ais=. 11540 
Ais=. 00269 
&=. 11540 
As= -. 02880 
A35= -. 00274 
Ab,=. 00269 
A ~ J =  -. 00274 
Ass = - ,00048 

and the solution to equation (5.11) is assumed to 
e 

This is substituted in equation (5.11) to yield 
A,, and A::, and the procedure is continued. 

Results for the first three independent modes 
of a rhombus (a=b) are given in reference 5.8 
or €=tan C Y = O . ~ .  Frequency parameters and 

mode shapes for this plate are given in table 
5.9. Fundamental frequencies all may be ob- 
tained for other skew angles CY and other a/b 
ratios from the curves of figure 5.7, where 

(5.15) 

Seth (ref. 5.9) gave an exact solution for the 
parallelogram bounded by the sides x=O, x=a, 
y= XI&, and y= (x/&) +(2a/&) as shown in 
figure 5.8. Frequencies are given by 

(5.16) 

E 

FIGURE B.?.--Fundamentaf frequency parameters %I= 

wllub&jB/2a as a function of skew angle LL and 
aspect ratio parameter @/a) COS a for a SS-SS-SS- 
SS parailelogram plate. 
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and the mode shapes by 

(am+n)rx nr&y -2sin a cos - a 

Conway and Farnham (ref. 5.7) solved the 
problem by using the point-matching method. 

FIGVRE 5.9.-SS-SS-SS-SS rhombic plate. 

Fundamental frequencies for the rhombus (fig. 
5.9) were derived by choosing a solution for the 
bending moment M in the form 

M= 2 A,J,(kr)cos@ (5.18) 
n=1,3,. -. 

where q=nwJB and M is defined by 

(5.19) 

The function in equation (5.18) satisfies exactly 
the differential equation (eq. (1.4)) and the 
boundary conditions along the edges e=&@. 
Symmetry conditions require that the trans- 
verse shear Qz be zero along the line x=c. 
Satisfying this boundary condition a t  N discrete 
points along z=c in the interval 0 5 y<c tan 0 
results in an N-by-N characteristic determinant 
for frequencies. Frequency parameters ob- 
tained by using various numbers of points are 
given in table 5.10. 

In  reference 5.7 the case of the general 
parallelogram (fig. 5.6) was also studied. In  
this case the functions 

M= 2 A,J,(kr)sinqB (5.20) 
R.=1,2,. . . 

FIGURE 5.8.-SS-SS-SS-SS paralleiogram plate having 
an exact solution. 

were ehosen and a characteristic determinant 
y satisfying symmetry conditions 
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along the diagonal AC having the length c. 
Pointwise symmetry conditions employed were 

w I T =  cl3= WI 7 =se i  3 

Wlr=2ci3=WIr=4ci3 

(5.21) 

Solutions of the resulting fourth-order character- 
istic determinants are given in table 5.11 for 
various angles p and a16 ratios. 

Accuracy of the results can be estimated by 
comparing values for p=90° with the known 
exact ones (section entitled “All Sides SS” under 
“Rectangular Plates” (4.1)) and the parameters 
for a/6= 1 with those of table 5.10. 

TABLE 5.10.-Frequency Parameters wc2&?D for 
SS-SS-SS-SS Rhombic Plates 

WCamD for determinant of 
size- 

3 b y 3  1 6 b y 6  

TABLE 5.1 I .--Frequency Parameters w132.J 
for SS-SS-SS-SS ParaUelogram Plates 

Analogies which permit one to obtain fre- 
quencies for polygonal plates simply supported 
all around from the problems of either (a) 
membrane vibration or (b)  plate buckling due 
to  hydrostatic pressure are discussed in the 
chapter entitled “PIatesof Other Shapes” (ch. 8). 

5.1.5 C-F-F-F 
Barton (ref. 5.10) obtained the first compre- 

hensive set of results for the problem of C-F- 
F-F parallelograms (fig. 5.10) by using the 
Rayleigh-Ritz method with deflection functions 
which are products of characteristic beam 
functions; that is, 

w(t,S)=k A A n b ( t ) + n ( q l  (5.221 
m = l  n=1 

where 
em5 __ em 5 

c $ ~ =  eosh - cos - a a 

a 
- am(sinha ern4 - sin - 

and where Em, en, am, an 
table 4.46. 

a,, are found from 

I 
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Results were computed by using 18 terms in 
equation (5.22), and frequency parameters, 
nodal lines, and mode shape amplitude coefi- 
cients are given in table 5.12 for cr=15’, 30°, 

resu-lts include an app 

nodal patterns, is shown in figure 5.11. Photo- 

graphs of nodal patterns obtained when a=30° 
are shown in figure 5.12. 

Claassen (refs. 5.13 and 5.14) extended the 
work of reference 5.10 by using the same ana- 
lytical procedure. A detailed Fortran pro- 
gram statement listing for the procedure is also 
given in reference 5.13. The first nine fre- 
quency parameters for a=Oo, 5’, IO’, . . ., 
3 5 O ,  and a/b=l are given in table 5.14. In  
reference 5.13, extensive frequency and node 
line data are given in the vicinity of “transition 
curves”; i.e., the frequencies at  which the basic 
form of the nodal pattern changes into another. 
This phenomenon is discussed in the section on 
rectangular plates entitled “All Sides Clamped” 
(4.3.1). In  this case the mode shapes vary 

TABLE 5.12-Frequeney P Lines, and Amplitude Coe$icients for GF-F-F 
s; a/b=l; v=O.3 

a, deg . . . . . . . . . . . . . . . . . . . . .  15 

-. 0015 
-. 0006 
-. 0001 
-. 0011 
-. 0006 
-. 0003 
-. 0005 
-. 0007 
-. 0001 

.0001 

2 

8.872 

0. 1162 
1.0000 

-. 0721 
-. 0145 
-. 0049 
. 0892 
. 1035 

. 0057 
-. 0384 

-. 0035 
-. 0043 
-. 0081 
--- 0074 
-. 0005 
-. 0034 

. 0032 
-. 0020 
-. 0010 

1 

3.961 

1.0000 
-. 2288 
. 0889 

-. 0006 
. 0001 

-. 0339 
-. 0399 

. 0074 
-. 0028 

.0002 
-. 0006 

. 0010 

. 0017 
-. 0008 
-. 0014 
-. 0010 

~ 0002 
. 0002 

30 

2 

10.190 

0. 2387 
1.0000 

-. 1447 
-. 0179 
-. 0093 
. 1785 
. 0489 

. 0103 
-. 0708 

-. 0049 
-. 0138 
-. 0254 
-. 0078 

.0024 

. 0057 

.0020 
-. 0009 
-. 0026 

1 

4.824 

1.0000 
-. 3302 

. 0231 

. 0013 

. 0010 
-. 0704 
-. 0488 

.0197 

. 0007 

. 0082 

.0036 
-. 0021 
-. 0021 
-. 0008 
-. 0007 

. 0005 

-. 0038 

-. 0003 

45 

2 

13.75 

0.3534 
1.0000 

-. 2173 
-. 0237 
-. 0116 

. 2685 
-. 0411 
-. 0970 

. 0203 
-. 0040 
-. 0337 
-. 0511 

. 0027 

. 0064 

. 0046 

. 0039 

. o m  

-. 0044 
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Corrected 
test results 

with skew angle a as well as with the alb ratio, 
and the "transition points" of section 4.3.1 
consequently become "transition curves" in a 
three-dimensional plot. 

Plass, Gaines, and Newsom (refs. 5.15 and 
5.16) used a variational method (see the section 
for C-F-F-F cantilever rectangular plates 
(4.3.12)) to obtain the first three frequencies 
and mode shapes for the case when a=45" and 
a= b. Theoretical and experimental frequency 
parameters arelisted in table 5.15. Mode shapes 
are shown in figure 5.13. Experimental results 
are taken from reference 5.12. 

Hall, Pinckney, and Tulloch (ref. 5.17 used) 
statically determined influence functions to 
obtain frequencies and mode shapes for three 
cantilevered skew plates. The plates were 
given six degrees of freedom-three points 
along ?= b/2 were allowed transverse displace- 
ment, and the corresponding three stations 
were allowed t o  rotate about an axis normal 
to the q-direction. The first three cyclic 
frequencies for a=3Oo, 45", and 60" are given 
in table 5.16 for aluminum-alloy plates 0.613 
inch thick (p=0.0001561 lb-sec2/in?) having 
varying dimensions as indicated. The experi- 

Theoretical 
results 

ments were conducted with accelerometers, 
each with a mass of 0.0005135 lb-sec2fin. Five 
accelerometers were equally spaced along the 
leading edge (q=O) and five along the trailing 
edge (?=b). The effects of the accelerometer 
masses were included in the theoretical cal- 
culations. In  figure 5.14 are shown the mode 
shapes corresponding to the frequencies of 
table 5.16. The deflections W* are defined as 
the mean of the leading and trailing edge 
deflections measured a t  points intersecting 
#=constant (see fig. 5.10); the angles 8 refer 
to rotations about axes parallel to the #-axis. 
The quantity 0 is defined as the difference 
between the deflections at the leading and trail- 
ing edges divided by b. 

Extensive numerical results for frequencies 
and mode shapes are obtained and presented in 
reference 5.18 by use of the same theoretical 
procedure as that in reference 5.17. Sweep 
angles are taken as Oo, 15O, 30°, 3 7 x 0 ,  45O, 50°, 
55", and 60". Ratios cfa of 1.5, 2.0, 2.5, 3.0, 
4.0, 5.0, 6.0, 10.0: and 20.0 were used. Ratios 
EIIGJ of %, 1, and 1% were taken, where 
E1 and GJ are the flexural and torsional mo 
of rigidity, respectively, in a plane normal to  

Uncorrected 
percent 

difference 

6. 2 
2. 7 

_ _ _ - _ _ _ - - - _ _ _ -  

ABLE 5.13.-Experimental and Theoretical Frequencg Parameters wa2KD for  a GF-3'-F 
Parallelogram; a / b = l ;  Material, $24 8-T Aluminum Alloy 

Corrected 
percent 

difference 

4. 6 
2. 1 

- _ _ _ _ - _ _ _ - - - - _  

Mode 

I 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 

~ 

Test results 

3. 38 
8. 63 

21.49 
26.04 
33.01 

3. 82 
9. 23 

24. 51 
25.54 
40.64 

4. 26 
11.07 
26.52 
30. 13 
50.19 

3. 44 3. 60 
8.68 1 8.87 

_ _ _ _ _ _ _ - _ _ _ _ _ I _ _ _ _ _ _ _ _ _ _ _ _ _ _  

10. 3 
18. 5 
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I 

3. 48 
3. 46 
3. 42 
3. 36 
3. 25 
3. 12 
2. 96 
2. 76 

the swept centerline (or normal to  the <:axis). Craig, Plass, and Caughfield (ref. 5.19) 
Cyclic frequency parameters fa2Jmo/EI cos a, measured the first four frequencies and mode 
where mo is mass (Slugs) Per unit length meas- shapes on aluminum rhombic plates having 
ured along the [-direction, are shown in figure sweep angles of 150,300, 450, and 600. cyclic 
5.15. Translational and rotational mode shape frequencies, nodal patterns, and mode shapes 
deflections are listed in reference 5.18 for 12 for these four configurations are shown in fig- 
values of + and the sweep angle, o/a, and 

theseresults (47 pages of tables) is too great of the accuracy of the nodal Patterns can be 
to  be included here. obtained from figure 4.47. 

EIiGJvariations just described. The volume of 5.'6 to 5*19, An estimate 

2 
-~ 

8. 52 
8. 48 
8. 36 
8. 16 
7. 91 
7. 60 
7. 24 
6. 87 

TABLE 5.14.-Frequency Parameters u a 2 q D  cos2 Q! f o r  a C-F-F-F Parallelogram; a/b=l; v=O.S 

3 4 
~-~ 

21. 3 27. 2 
21. 3 26. 8 
21. 1 26. 0 
20. 8 24. 7 
20. 4 23. 1 
19. 8 21. 4 
19. 1 19. 6 
17. 8 18. 4 

5 

31. 1 
31. 2 
31. 6 
31. 9 
32. 1 
32. 1 
31. 8 
31. 2 

6 

54. 3 
53. 6 
51. 6 
48. 8 
45. 6 
42. I 
38. 7 
35. 3 

7 

61. 4 
61. 3 
60. 9 
60. 3 
59. 2 
57. 7 
55. 2 
51. 2 

8 

64. 3 
64. 3 
64. 0 
63. 0 
61. 4 
59. 2 
56. 3 
53. 4 

9 

71. 3 
71. 6 
72. 3 
73. 4 
7 4  0 
70. 5 
66. 5 
63. 7 

TABLE 6.BG.-Theoretical and Experimental Cyclic Frequencies jor C-F- F-F Parallelogram Plates; 
Material, 65 S Aluminum Alloy 
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FIRST MODE 

Experimentol Node Line 

SECOND MODE 

Theoretical Node Line 

Theoretical Node Line 

THIRD MODE 

FIGURE 5.13.-Mode shapes for a GF-F-F parallelo- 
gram plate; a=45O; a=b; v=0 .3 .  (After refs. 5.15 
and 5.16) 

12 

O B  

0 s 
0 4  2 

0 

-04 

0 15 

0 k 

1 \ 1  i 012 n l  
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0 8  

. o s  
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2 0  

D 

008 

-ow 

-0 08 -0a 

I I I I i-0 16 
0 2  0 4  0 6  0 8  10 

-1 so 
10 Spn PDItM $1. 

FIGURE 5.14.--Theoretical and experimental mode 
shapes for GF-F-F parallelogram plates; material, 
65 S aluminum alloy. (a) Fundamental mode; 
ru=30°. (b )  First overtone mode; a=30°. (e )  
Second overtone mode; a= 30'. (d)  Fundamental 
mode; 0 ( = 4 5 O .  (e )  First overtone mode; a=45O. 
cf) Second overtone mode; a=45'. (9)  Fundamen- 
tal mode; a=603. ( k )  First overtone mode; a=60°. 
(i) Second overtone mode; a=60'. 
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FIGURE 5.14-Concluded. 
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FIGURE 5.16.--Experimentally determined cyclic fre- 

quencies, nodal patterns, and mode shapes for a 
6-F-F-F rhombic plate; a= 15O; material, 6061- 
T6 aluminum alloy W inch thick. (a) Experimental 
node lines and data points. (b )  Mode 1; fi=76.6 
cps. (c) Mode 2; fz=179 cps. (d )  Mode 3; fa=469 
cps. (e)  Mode 4; f4=566 cps. 

@SHAKER POSITION- 
NO DEFLECTION DATA 

id) 

O W A K E R  POSITIW- 
NO DEFLECTION DATA 
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0 SHAKER POSITION- I NO DEFLECTION DATA -om p 

FIGURE 5.17.-Experimentally determined cyclic fre- 
quencies, nodal patterns, and mode shapes for a 
C-P-F-F rhombic plate; a= 30°; material, 6061-T6 
aluminum alloy W inch thick. (a) Experimental 
node lines and data points. ( b )  Mode 1; f,=83.5 cps. 
(c) Mode 2; fz=195 cps. ( d )  Mode 3; f3=521 cps. 
(e) Mode 4; f4=556 cps. 
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FIGURE 5.18.-ExperimentaUy determined cyclic fre- 
quencies, nodal patterns, and mode shapes for a 
GF-F-F rhombic plate; a= 45'; material, 6061-2'6 
aluminum alloy % inch thick. (a) Experimental 
node lines and data points. (b )  Mode 1; jl=97.4 
cps. (e) Mode 2; f2=231 cps. ( d )  Mode 3; f3=560 
eps. (e) Mode 4; j4=669 eps. 
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CLAMPEDEDGE 

FIGURE 5.19.-Experimentally determined cyclic frequencies, nodal patterns, and mode shapes for a 6-F-F-F 
rhombic plate; a=60'; material, 6061-3'6 aluminum alloy inch thick. (a) Experimental node lines and 
data points. (c) Mode 2; f2=305 cps. ( b )  Mode 1; .f1=97 cps. (d) Mode 3; f3=570 cps. 
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Hanson and Tuovila (ref. 5.20) used a 
method “called the 1-g method” to determine 
experimental mode shapes. In  this method the 
plate is sprinkled with sand, and the sand 
particles themselves are used as accelerometers. 
At any given frequency, particles having equal 
accelerations will also have equal amplitudes. 
An acceleration corresponding to that of 
gravity occurs when a particle placed on a 
vibrating plate just begins to rise from the 
surface. In  this way “1-g lines” of constant 
amplitude may be located, in addition to the 
nodal lines. Varying the magnitude of the 
exciting force allows one to  find other 1-g lines. 

Experimental results were obtained on four 
plate configurations made of 0.041-inch-thick 
magnesium having a weight density of 0.064 
I b / h 3  The plate dimensions in terms of figure 
5.10 are given in table 5.17. 

Frequencies and mode shapes for the first 
three modes of each plate are shown in figures 
5.20 to 5.23 and the deflections are given in 
tables 5.18 to 5.21, respectively. In  these 
figures the heavy solid lines indicate the posi- 
tion of the plate at  rest. The broken lines 
indicate the deflected shape in its mode of 
vibration. Vertical lines measure the relative 
amplitudes of points on the plate surface. 

0.7 

0. 547 
. 569 
~ 569 
.608 
. 631 

-.485 
-. 297 
-. 106 

. 100 
~ 331 
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TABLE 5.18.-De$ections for First 3 Modes of Plate 1 

0.9 

0. 800 
.817 
.840 
. 856 
. 875 

-.207 
-. 008 

. 180 

. 386 

. 758 

--- j 0.00 
.25 
.50 
.75 

1. 00 
. 00 
. 25 

2 b  . 50 
. 7 5  

1. 00 
. 00 
.25 

3c . 5 0  
. 75  

I 1s 

1 1.00 

.048 

.053 

. 056 
-.088 
-.080 
-.069 
-. 044 
-. 014 

5.1.6 F-F-F-F 
Very little information is known on the 

problem of the F-F-F-F parallelogram plate 
(see fig. 5.24). Waller (ref. 5.21) obtained the 
nodal patterns shown in figure 5.25. 

. 185 

.zoo 

. 225  
-. 361 
-.289 
-. 210 
-. 135 
-.062 

5.4 OTHER SUPPORTS AND CONDITIONS 

.099 

.021 
-. 042 
-. 099 
- 1  155 

No results are available for parallelogram 
plates having elastic or discontinuous edge 
conditions, or being supported a t  discrete 
points. Some results for plates with added 
mass were discussed earlier for the cantilever 
(sec. 5.1.5) as obtained in reference 5.17. The 
accelerometer masses added there were small 
and well distributed and so had small effect 
upon the problem. 

. 106 
-. 035 
-. 190 
-. 345 
-. 556 

TABLE 5.17.-Dimensions of .4 Experimen;E;E;E;E;E;E;E;E;E;E;E;E;E;E;E; 
Plate Specimens 

e 401 
. 116 

-. 085 
-. 338 
--.148 

15 
30 
45 
60 

. 788 

. 412 
~ 190 

-.099 
-. 313 

Normalized deflection at E/a of- 

0.1 1 0.3 0.5 

0.316 
.338 
. 360 
.383 
. 406 

-. 579 
-. 407 
-. 260 
-. 120 

.014 

. 162 
-. 021 
-. 225 
-. 451 
-. 831 

1.0 

0.952 
.966 
.983 

1.000 
-. 055 

. 117 

. 310 

.524 
1.000 
1.000 
. 654 
.352 
. 085 

-. 162 



PARALLELOGRAM PLATES 185 

TABLE 5.19.-DeJtections for First 3 Modes of Plate 2 

Normalized deflection at fla of- 
Mode 

j 1 0.1 1 0.3 

0.00 0.011 0. 052 
.015 I . 067 

1. .018 .080 
.025 . 098 
.030 . 118 

-00 -.025 -.264 
.25  -.031 -. 264 

2b .50  -.033 -.228 
.75 -.028 -. 125 

-.011 -.022 

. 010 .028 
.2.5 -.006 --.061 

30 .50 -.019 -.232 
.75  -. 074 -. 445 

1.00 -. 168 -. 677 

TABLE 5.2O.-DeJlections for First 3 Modes of Plate 3 

Mode 

2b 

30 

1.0 

0.472 
. 509 
. 635 
.778 

1.000 

-. 361 
-. 028 
. 300 
. 630 

1.000 

1.000 
.830 
.613 
.355 
. 097 

.1 

0.007 
.017 
.021 
.028 
.039 

. 007 

.021 

.046 

.050 
036 

. 000 
-. 004 
-. 008 
-. 050 
-. 214 

Normalized deflection a t  E/ca  of- 

0.3 

0.054 
.070 
091 

. 117 

. 159 

. 132 

.286 

. 300 

. I79 
-. 196 

-. 017 
-. 059 
-. 201 
-. 470 

-1.000 

e 238 .395 
.307 1 .500 

.578 .872 

.625 .718 
e 471 .403 
.057 -. 282 

-. 518 -.793 

-. 071 . 063 
185 -.029 

-. 374 --.200 
-.676 -.412 

-1.000 -. 504 

0.9 

0.350 
.418 
.510 
.640 
.812 

.904 

.668 

. 014 
-. 678 
-. 947 

. 622 
~ 520 
.416 
. 310 
. 250 

1.0 
~- 

0.467 
.557 
. 673 
.810 

1.000 

.857 

. 607 
-. 143 
-. 786 

-1.000 

1.000 
. 840 
.735 
.681 
.651 
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Mode 

B _ _ _ _ _ _ _ _ _ _ _ _ _ _  
2 _ _ _ _ _ _ _ _ _ _ _ _ _ _  
3 _ _ _ _ _ _ - _ - _ _ _ _ _  

VIBRATION OF PLATES 

TABLE 5.21.-Deflectims for First 3 Modes of Plate 4 

Gyciic frequency, cpe, for values of 
skew angle, a, deg, of- 

0 30 45 60 
- ~ -  

11. 33 12.40 10.91 15. 35 
_ _ _ _ _ _ _ _  23. 07 27. 39 40.83 
101.7 114.9 111.1 153.5 

Mode 

1" 

30 

I 0:;; 

.50 

. 75  
1. 00 

. 00 
I .25 

.50 

.75 
1. 00 

. 00 

.25 

.50 

.75 
1. 00 

Normalized deflection at €/a of- 

0.1 0.3 0.5 

0.012 0.040 0.085 
.015 .058 . I16 
.022 .091 . 171 
.040 . 135 .272 
.062 .211 .400 

-. 156 
-. 258 
-. 312 -. 180 

. 109 

-. 347 
-. 202 

.238 
e 808 

1.000 

.j1=4? CIJS. bf2-207 CPS. Ofs=380 CPS. 

The case of a cantilevered parallelogram 
with an added mass at  the tip is discussed in 
reference 5.22. An aluminum-alloy plate hav- 
ing dimensions a=30 inches, c=10 inches, 
b=% inch and having a total mass of 0.0468 
Ib-sec2/in. is loaded by a mass at  the tip 
(,$=a, q=b/2, in terms of fig. 5.10) which has 
the following inertial properties : mass= 0.0330 
Ib-sec2/in., le= 6.483 lb-in.-sec2, &=0. 1242 lb-in.- 
sec2. The mass moments of inertia IO and I+ 
are about axes in the #- and q-directions, re- 
spectively. 
s=b /2 .  The first three theoretical frequencies 
for a=Oo,  30°, 45", and 60" are given in table 
5.22. I n  figure 5.26 are shown the nodal lines 
for the fundamental and second modes of 

These axes pa& through ,$=a an 

-. 383 
-. 433 
-. 328 

.019 

.484 

-. 606 
-. 303 

.216 

.657 

. 657 

-. 495 
-. 445 
-. 156 

. 350 

.867 

-. 667 
-. 505 
-. 252 
-. 162 
-. 353 

1.0 

0.380 
.475 
. 620 
.800 

1.000 

-. 515 
-. 390 

.047 

.515 
1. 000 

-. 650 
-. 707 
-. 666 
-. 656 

-1.000 

vibration for a=3Oo, 45", and 60' wit 
without the tip mass. 

TABLE 5.22.-6yclic Frequencies for a 6-F- 
F-F Parallelogram Plate With Added Tip 
Mass; Material, 65 S Aluminum Alby 
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FIWEE 5.2O.-First three mode shapes 
and frequencies for a C-F-F-F plate; 
a= 15"; material, magnesium. (a) 
Mode 1; f1=36 cps. (b) Mode 2; 
fi= 205 cps. (c) Mode 3; fa= 238 cps. 
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FIGURE 5.2L-First t h e e  mode shapes and frequencies 
for a 6-F-F-F plate; or=3Q0; material, magnesium. 
(a) Mode li;f1=39 cps. (b)  Mode 2;f2=212 cps. (e)  
Mode 3; j3=272 CPS. 
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1 

189 

-I"# 

FIGURE 5.22.--First three mode shapes and frequencies for a C-F-F-F plate; c~=45'; 
material, magnesium. (a) Mode 1; j c = 3 8  cps. (b)  Mode 2; fz= 184 cps. (e)  Mode 3 ;  
j3=263 CPS. 
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I .O I .O 

FIGURE 5.23.--First three mode shapes and frequencies for a C-F-F-F plate; a=60'; material, magne- 
sium. (a) Mod? 1; f1=.47 cps. (b)  Mode 2: f2=207 eps. (c) Mode 3; j3=380 cps. 
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a=3W 

FIGERE 5.24.-F-F-F-F parallelogram plate. 
._ 

19 1 

a =45O a =60° 

- Fundomentol 

---- First Overtone 

PIGERE 5.26-Nodal lines for GF-F-F parallelogram 
plates with and without tip mass; material. 65 S 
aluminum alloy. 

FIGUEE 5.25.-Nodal patterns of F-F-F-F pardldo- 
g a m  plates. (After ref. 5.21) 
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Chapter 6 

era 

6.1 TRAPEZOIDS 
6.1 .1 

The problem of the trapezoidal plate simply 
supported all around ( S M S - S S )  (see 
fig. 6.1) was solved by Klein (ref. 6.1) by using 
the collocation method for the case a1=az=a. 

A fnnction 

All Edges Simply Supported 

2,( 2- e) +A, sin ~ 

a 

374s-c) ( c o s ~ c o b a )  (6.1) 
U 

+A3 sin 

was used. This function guarantees that- 
(1) The deflections are zero on all edges 
(2 )  The bending moment M, is zero at  

( c ,  0 )  and (e+a, 0).  
(3) The bending moment M E  is zero at some 

point in the region h / 3 S x S 2 h / 3  along the 
edges y= & x tan a 

(4) Symmetry exists about y=O 

The differential equation (eq. (1.4)) is satisfied 
at  the three points along the line y=O given by 
(x--G)/a= 113,112,213. This leads to a third-order 
characteristic determinant for the frequencies, 
the elements of which are listed in reference 6.1. 

Fundamental frequencies for varying values 
of a and average width i;= (bl+bz)/2 are shown 
in figures 6.2 and 6.3. 

FIGURE 6. I.-SS-SS-SS-SS trapezoidal plate. 

a 
FIGURE 6,2.--Fundamental frequency parameter 

- wbaJpm, - where b= (bl+b2)/2, against a for an 

isosceles SS-SS-SS-SS trapezoidal plate. (After ref. 
6.1) 

7r2 

A method of perturbing the solution for the 
rectangle simply supported all around in order 
to solve this problem is discussed in reference 
6.2. 

Reipert (ref. 6.3) formulated a solution in 
terms of functions (eq. (1.37)) which satisfy 
the differential equation (eq. (1.4)) and the 
parallel edge boundary conditions exactly. 
Satisfaction of the remaining boundary con- 
itions yielded a characteristic determinant 

for the frequencies. A first a ~ ~ ~ o ~ m a t ~ ~ ~  
yields the following formula for fundamental fre- 

193 
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FIGURE 6.3.-Fundamental frequency parameter 

A=-> where b = ( b , + b J / 2 ,  against blla for 
+2 

an isosceles SS-SS-SSSS trapezoidal plate. (After 
ref. 6.1) 

quency parameters of isosceles trapezoids (aI= 
f f 2 = d :  

- W B J D  - 

Numerical vdues for 

from a second approximation. 
6.1 .P Cantilever (C-F-F-F) 

The problem of the C-F-F-F trapezoidal 
plate is depicted in figure 6.4. Nagaraja 
(ref. 6.4) used the Rayleigh-Ritz method and 
the nonorthogond right triangular coordinates 
shown in figure 6.5 to solve the problem in the 
special case when az=O. The coordinates 
u, v are related to the x, y coordinates by: 

are given in table 
etermined from equation (6.2) and 

TABLE 6.1 .-Fundamental Frequency Parameters 
ua2 JJD for a SS-SS-SS-SS Isosceles Trape- 
zoidal Plate; a=4b0 

a 
bz 
- ~ 

First approxi- Second 
mation approximation 

--____ 

10.11 10.09 
10.96 11.177 
13. 4 14. 311 
19. 7 24. 7 

FIGURE 6.4.-C-F-F-F trapezoidal plate. 

FIGURE 6.5.--Right triangular coordinates. 

Using the chain r d e  of 
substituting equation (6.3) into equation (1.32) 
yield the following expression for the strain 
energy of the plate (ref. 6.4): 
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7. 163 
8. 150 

12. 291 

Vd2WdW v d2w dw +4 7 (v2+ cot2,)-- bv2 bv 4-4--- uau2 bv u 

6. 880 
8. 042 

18. 160 

4 VW aw -- { 2 V 2 + ( 1 + Y )  cot2CY] __ - 
U2 bu. bv bv 

Modulus of elasticity, psi 

x-direction y-direction 

Series 

X _ _ _ _ _ _ _ _ _ _  29. 3X1@ 31. 5X108 
11 _ _ _ _ _ _ _ _ _  29.2 21. 8 
PPI _ _ _ _ _ _ _ _  29.0 i 27.8  

2 
u3 

+--[2$--(1-v) cot2a] 

Thickness, 
In. 

0.0622 
.0613 
. 0613 

The kinetic energy of translation is 

w2dudv (6.5) PP tan CY T= ~ 

2 

Deflection functions of the form 

were used, where C $ ~ ( U )  and Gn(v) are the char- 
acteristic beam functions deduced from equation 
(5.23). Because the limits of integration of 
equation (6.4) give considerable algebraic com- 
plication, the integration was performed numer- 
ically. Results for the first two modes for tan a 
=1/2 and for various ell ratios are given in 
table 6.2. 

TABLE 6.2 .-Frequency Parameters UP, 'plD for  
a C-F-F-F Trapezoidal Plate; v=O.Q 

Mode 1 

Upper bound 1 
Beam 

functions 

7. 152 
8. 465 

13.121 
18. 397 

Lower 1 bound 
Polyno- 

mial 

21. 209 
23. 996 
26. 625 
30. 965 

er t o  d e t e r ~ ~ n e  another set of upper 
PI the problem, the polynomial 

(u, V> = (1 - - .~L~)~(A,+  talou+Az,.~~*ga> (6.7 ) 

was also used in reference 6.4 with the Rayieigh- 
Ritz method. Resulting fundamental fre- 
quency parameters are tabulated in table 6.2. 
Lower bounds appearing in the table are ob- 
tained by application of the Kato-Temple 
method (refs. 6.5 and 6.6). 

Rather extensive experimental results are 
available for this problem. Gustafson, Stokey, 
and Zorowski (ref. 6.7) took three series of 
steel plates obtained by cutting the t,ips off of 
cantilevered triangles. These series are shown 
in figure 6.6. Measured material properties for 
the three series are given in table 6.3. The 
weight density for all series was pg=0.281 
pound per cubic inch and v was taken as 0.29. 
Experimentally measured cyclic frequencies for 
the three series of plates are given in table 6.4. 

OI 0 2  0 2 5  0 3  035 0 4  
(b) H-0 1-1 1-2 1-3 1-4 1-5  1-6 

10" 9' 8' 75"  7" 6 5" 6" 
E O  01 0 2  0 2 5  03 035 0 4  

~~~ 1-0 I-I 9 - 2  1-3 1 - 4  1 - 5  1-6 

FIQURE 6.6.-C!--F-F-F trapezoidal plate configura- 
tions. (a)  Series I plates. ( b )  Series I1 plates. 
(c) Series 111 plates. (After ref. 6.7) 

TABLE 6.3.-Mate&l Properties for 3 Series of 
Trapezoidal Cantilever Plates; v=O.29 
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TABLE 6.4.-Experimentally Measured Cyclic Frequencies for C-F-F-F Trapezoidal Plates; v=O.29 

164 
179 
184 
186 
190 
196 
202 
190 
198 
223 
243 
268 
300 
339 
171 
184 
198 
215 
243 
277 
314 

Series 

181 
181 
212 
235 
266 
299 
350 
325 
335 
364 
374 
385 
410 
434 
259 
274 
289 
300 
312 
327 
347 

C 

0 
. 1  
. 2  
. 25  
. 3  
. 35 
. 4  

. I  

. 2  

. 25 

. 3  

.35 

. 4  

. 1  

. 2  

.25 

. 3  

. 35  

. 4  

0 

0 

1 

32. 8 
34 
38. 5 
41. 9 
48. 3 
53. 7 
60 
34. 5 
37 
42 
46 
50. 5 
56 
64 
26. 3 
27. 9 
31. 5 
34. 8 
38. 5 
44. 9 
51. 7 

Cyclic frequencies, cps, for mode- 

2 

91 
93 
97. 6 
99. 4 

103. 4 
107.4 
112 
136 
142 
153 
157 
161 
169 
175 
101 
1 10 
122 
130 
136 
143 
151 

3 1 4  
5 

283 
293 
302 
304 
308 
314 
312 
44 1 
482 
561 
596 
606 
629 
639 
346 
376 
438 
476 
505 
540 
573 

6 

348 
352 
362 
366 
379 
404 
436 

"578 - 
583 
598 
62 1 
660 
695 
718 
522 
525 
542 
567 
623 
674 
699 

Nodal patterns corresponding to most of the 
frequencies of table 6.4 are shown in figures 
6.7, 6.8, and 6.9. Plate designations are 
shown on the fundamental modes and refer to 
those of figure 6.6. 

Weiba (ref. 6.8) experimentally determined 
frequencies and mode shapes for 12 trapezoidal 
plates of various aspect ratios and having 
cu1=150, 30°, and 45' and az=O (fig. 6.10). 
Aspect ratios of 2.0, 1.6, 1.2, and 0.8 were used, 
where the aspect rstio 3 4 u / ( b l  +bz). The plates 
were made of %-inch-thick steel. Cyclic fre- 
quencies and nodal patterns for the first six 
modes of each plate are shown in figure 6.10. 
Planform dimensions are given on the funda- 
mental mode in each case. The mode labels 

(mln) identify the number of nodal lines ap- 
proximately parallel to the x- and y-directions, 
respectively. Modes having double labels (e.g., 
(0/1)+(2/0)) can be thought of as being the 
superposition of two simple modes, each of the 
designated label. The variation in frequency 
with tan cyI is shown in Ggure 6.11. It is seen 
that this choice of parameters yields small 
variations. Frequencies for aI=Q for the rec- 
tangle, as well as nodal patterns, are listed in 
section 4.3.12. 

.2 OTHER ~ ~ A ~ R ~ ~ A ~ E R A ~ S  OF GE 
ERAL SHAPE 

No published results exist for quadrilaterals 
of general shape. 
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FIQURE 6.8.-?+odal pat thns for aeries 11 plates; v = O . ~ .  (From ref. 6.7) 
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FIGURE 6.9.--Nodal patterns for series I11 plates; v=0.3.  (From ref. 6.7) 
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700 

600 

50 (310 

40 

30 

100 
(O/O) 

0 0.2 0.4 0.6 0.8 1.0 tana,  
(b ) 

RQURE 6.Il.-Variation of frequency (cps) with tangent of sweep angle for a trapezoidal GF-F-F plate; material, 
steel. (a) Aspect ratio= 2.0. (b) Aspect ratio= 1.6. (e) Aspect ratio= 1.2. (d) Aspect ratio=0.8. 
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Chapter 7 

7.2 SIMPLE EDGE CONDITIONS 
Ten combinations of simple (Le., clamped 

( C ) ,  simply supported (SS), or free (F)) bound- 
ary conditions exist for a triangular plate. 
these, only six have a significant amount of 
results. One, the case when one edge is 
simply supported and the others free, has 
absolutely no results in the published literature 
and will not be discussed herein. 
7.1.4 c-c-c 

In  terms of the E ,  TJ skew coordinates for the 
C-C-C triangular plate shown in figure 7.1, 
the dzerential equation (e¶. (1 .4))  for the 
region becomes 

Cox and Klein (ref. 7.1) took a deflection 
function 

( m = I ,  3 . .  .) (7 .2 )  

where AI and Az are undetermined constants. 
Equation (7.2) satisfies the boundary condi- 
tions exactly. Equation (7.1) was satisfied a t  
the two points E=c/2 and 2eI3 and q=Q; this 
yielded a second-order characteristic determi- 
nant. Fundamental frequency parameters are 
shown in figure 7.2 for +-0" and 25". As dis- 
cussed later in this section, the h i t i r i g  case ns 
2 c / 6 4 0  is wc'%/qD=22.4, an exact solution, 
which indicates a lack of accuracy for small 
values of 2c/b in figure 7 .2 .  According to 
reference '?.I, the results are not sufficiently 
accurate for use when 4 > 2 5 O ,  but, by suitable 

I 

FIGURE 7.1.--C-C-C triangular plate. 

choice of coordinates, + can almost always be 
kept less than 25'. The mode shape compo- 
nents arising from equation (7.2) are shown in 
figure 7.3. 

The results were also checked in reference 
7.2 €or the case when cp=O and the triangle is 
equilateral by using the finite difference method. 

he two triangular meshes shown in figure 7.4 
ere used. For the fundamental mode, only 

one sextile of the triangle is required; this 
results in independent deflections of one point 
in figure 7.4(a) and eight points in figure 
7.4(b).  Results from using these two meshes 
and the extrapolation formula (eq. 4.90)) are 
given in table 7.1. 

In  reference 7.3 the solution for the rhombus 
given in reference 7.4 (see discussion on the 
C-6-@-C rhombic plate, see. 5.1.1) is extended 
t o  yield the solutior, for the isosceles triangle 
damped di around. Fundamental frequency 
parameters wEZ3/ for CY~=CY~=CY,  where I is 

205 
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Solution 

w c Z m  _ _ _ _ _ _ _ _ _ _  

2c/b 
FIGURE 7.2-Fundamental frequency parameters for a 

G G C  triangular plate. (After ref. 7.1) 

I point 8 points Extrapo- 
lation 

42. 31 65.85 I 70.34 

2a, deg 

- 
w P d p / D  _ _ _ _ _ _ _ _ _ _ _ _  

the length of one of the equal sides, are given 
in table 7.2. 

These results are also plotted as a solid line 
in figure 7.5 along with experimental data ob- 
tained on two mild steel plates having 1=2.95 
inches and thicknesses h=0.091 and 0.063 inch. 

30 60 90 

199. 6 99. 2 93. 6 

(b) 

FIGURE 7.3.-Fundamental mode shape components for 
(a) Shape along &axis. a G G C  triangular plate. 

(b)  Shape parallel to ?-axis. (After ref. 7.1) 

The limiting values as a1=a2=a-+O and 
~ y ~ = a ~ = ( r _ + 9 0 ~  are both well-known exact 
solutions. Both cases become, in the limit, 
that of an infinite strip having its opposite 
edges clamped; that is, wb2,/p7D=22.4. This 
limiting value is used to plot the curves of 
figures 7.6 and 7.7 wBich were taken from 
reference 7.3. 

Hersch (ref. 7.5) showed that a lower bound 
for the frequency of an equilateral triangle 
clamped all around is given by w b 2 m > 8 2 . 2 0 .  

7.1.2 C-C-SS 
The only known solutions to the problem of 

the C-CSS triangular plate are for the case 
when the triangle is isosceles, as shown in 
figure 7.8. 

TABLE 7.2.-Fundamental Frequency Parum- 
eters wl2,/,/D for C-C-C Isosceles Triangle 
Plates 
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FIGURE 7.4.--Triangular finite digerenee meshes. (a )  Coarse grid. ( b )  Fine grid. 

IO0 

2a 

FIGURE ?.B.--Theoretical and experimental funda- 
mental frequency parameters for C-6-C and 6-6-58 
isosceles triangular plates. (After ref. 7.3) 

ein (ref. ?.S> solved the problem 
by using the collocation method and the de- 
flection function 

A,sin-+Azsin-++A3sin- m 2m 3 m  
a a a 

on (7.3) satisfies all the 
exactly except that fo 

500 

400 

300 

200 

100 

0 30' 60' 90" 120' 150' 
2Q 

FIGURE 7.&--Fundamental frequency parameterti 
wP.\l= €or G C - 6  and C-C-SS isosceles triangular 
plates. (After ref. 7.3) 

moment Mz along x=a. It satisfies this con- 
dition ody  at the midpoint of the side @e., a t  
y=O). The differential equation (eq. (1.4)) 
was satisfied at the three points ( 4 2 ,  0), 
(2a/3, 01, and (3a/4, O), thus giving a third-order 
characteristic determinant for the frequencies. 
Results for the fundamental frequency param- 
eter obtained directly from the collocation pro- 
cedure are shown as the broken curve in figure 
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2a, deg 30 

o12m _ _ - - - _ _ _  178.8 

2 a  

FIGURE 7.7.-Fundamental frequency parameters 
W C Z ~  for C-C-C and C-C-SS isosceles triangular 
plates. (After ref. 7.3) 

60 90 120 ’ 150 
______--____ 

81.6 73.6 105.2 304.0 

kB 0 

FIGURE 7.8.-C-G-SS isosceles triangular plate. 

7.9. The solid curve, which is indicated in 
reference 7.6 as being more accurate, was found 
from an extrapolation of finite difference 
solutions. 

Ota, Hamada, and Tarumoto (ref. 7.3) used 
the solution for the rhombus given in reference 
7.4 (see sec. 5.1.1 of the present work) to solve 
the problem of the isosceles triangje. Funda- 
mental frequency parameters are given in 
table 1.3,  where I is the length of the equal 
sides. These frequency parameters are plotted 

250 

200 

150 

100 
90 

5 :: 
60 

50 

45 

30 

“ 0  0 5  10 15 2 0  2 5  3 0  35 4 0  
2a/ b 

in figure 7.5 along with experimental results 
obtained on mild steel plates. In figures 7.6 
and 7.7 they are plotted again in terms of 
other length dimensions, including the limiting 
cases as 2a+O and as 2a-+18O0, for which 
there are exact solutions. 

For more results on the problem, including 
those for higher frequencies, see the discussion 
of the antisymmetric modes of a C-C-C-C 
rhombus (see. 5.1.1) and of a C-C-6-c! square 
(sec. 4.3.1).  
7-43 c-c-F 

There are no specific solutions of the prob- 
lem of the C-C-F; triangular plate. Westmann 
(ref. 7.7) proposes for the case of the isosceles 
triangle having its equal sides clamped that 
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the frequency is bounded by those of the in- 
scribed and circumscribing C-C-F sectorial 
plates as shown in figure 7.10. Results for the 
sectorial plates are given in the chapter entitled 
“”Plates of Other Shapes” (sec. 8.2). 

7.1.4 c-ss-ss 
Cox and Klein (ref. 7.8) solved the problem 

of the CSS-SS triangular plate for the case 
of an isosceles shape; that is, Lyl=az in figure 
7.11. The collocation method was used, with 
a deflection function 

m 3-x . 23-x A,x2 sin2 -+ A2x0 sin -sin - a a a  

+ A 3 7 ( x - a ) 4 ) ~ ~ ~ ~ ~ )  2 4  (7.4) 
a 

The differential equation (eq. (1.4)) is satisfied 
at  the three points (a/2, 0), (2~13, O ) ,  and 
( 3 ~ 1 4 ~ 0 )  thus giving a third-order characteristic 
determinant for the frequencies. Resulting 
fundamental frequency parameters are shown 
in figure 7.12. 

For the case when a1=a2=450, the funda- 
mental frequency may be found quite accu- 
rately from the fourth mode of a square plate 
clamped all around (sec. 4.3.1). Using the 
value from reference 7.9 yields waz3W=32.98 
as a close upper bound. The value from figure 
7.12 is 34.7 (ref. 7.8). 

Solecki (ref. 7.10) solved the problem for the 
case w=6Oo, az=300. A solution for the 
SS-SS-SS case (see sec. 7.1.6) is taken, and a 
Fredholm integral equation of the first kind is 
formulated t o  satisfy the condition of zero 

FIGURE T.lO.-C-C-F isosceles triangular plate with 
inscribed and circumscribing sectors. 

X 

FIGURE 7.11.-C-SS-SS triangular plate. 

2o0 0 5  10 15 2 0  2 5  3 0  3 5  4 0  
201 b 

FXGIJRE 7.12.--Fundamental frequency parameters for a 
C-SS-SS isosceles triangular plate. (After ref. 7.8) 

slope along x=a. 
is found to  be w= (120.04D2)/c2. 

7.1.5 C-SEF 
No solutions of the specific problem of the 

C-SS-F triangular plate are known. In the 
case of the right triangular plate (see fig. 7.13) 
having the hypotenuse free, a considerable 
amount of information can be obtained from 
the antisymmetric. modes of a SyIBmebTiC 
C-F-F triangular plate (sec. 7.1.8). 

The fundamental frequency 
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FIGURE 7.13.-GSS-F right triangular plate. 

7.1.6 SS-SS-SS 
Conway and Farnham (ref. 7.11) solved the 

problem for the SS-SS-SS isosceles triangle 
(aI=a2=a in fig. 7.14) by using the method 
employed on the SS-SS-SS-SS rhombus (sec. 
5.1.4). Functions given in equation (5.18) 
were used and boundary conditions of zero 
bending moment were satisfied at  N points 
along the edge x=a (fig. 7.14). Frequency 
parameters arising from various Nth-order char- 
acteristic determinants are displayed in table 
7.4. For a first-order determinant, the single 
point used was at  x=a, y=O. 

Cox and Klein (ref. 7.2) solved the case of 
the isosceles triangle by the collocation method 
using a deflection function 

f l  2n-x sin -+A, sin - a a 

This function satisfies the condition of zero 
deflection exactly on all boundaries. It also 
gives zero normal moment a t  (a, 0)  and a t  some 
point in the interval a / 2 S x S  3a/4 along the 
equal sides. The differential equation (eq. 
(1.4)) is satisfied a t  the three points (h/2, 0 ) ,  
(2h/3, 01, and (3h/4, O), giving a third-order 
characteristic determinant to solve for the fre- 
quencies. Fundamental frequency parameters 
are given in figure 7.15. When 2a=90° the fre- 
quency parameter is found by the foregoing 
method t o  be wa2wD=24.028. This is in 
error by 2.61 percent (ref. 7.2) from the exact 
value of 24.674 obtained from the second mods 
of a SSSSSS-SS square plate. It must be 

x 

FIGURE 7.14.-SS-SS-SS triangular plate. 

20/b 

FIGURE 7.15.-FundamentaI frequency parameters for 
a S S S S - S S  isosceles triangular plate. (After ref. 7.2) 

observed that the curve of figure 7.15 is clearly 
inaccurate for small values of 2a/b, for in the 
limiting case 2alb-4 the exact solution for 
the case of a SSSS strip, which is oa2JplD= 
2=9.87, applies. 

The wsdts of reference 7.2 were eAended in 
reference 7.12 to estimate the frequencies of non- 
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TABLE 7.4-Frequency Parameters u a 2 m  for  
SS-SS-SS Isosceles Triangular Plates 

w a 2 g D  for .determinant of 
€312- 

deg 

I b y l  I 3 b y 3  
177. 69 
97.93 
66. 34 
49.45 
39. 48 
32. 87 
28. 18 
24.67 

I I 

isosceles triangles. This was done by taking 
the results of reference 7.2 and redefining the 
dimensions a and b so that one of the equal 
angles becomes the vertex angle and its opposite 
side becomes the base of length b .  This gives 
some points on the curves of figure 7.16. Other 

points are determined from the relationship 

relating the frequency parameters wc2m 
corresponding to the medians of the triangle 
which have lengths cl, c2, and c3. Again, the 
curves are inaccurate for small values of 2clb. 

Solecki (ref. '7.10) gave the frequencies and 
mode shapes for the 30'-60'-90' triangle shown 
in figure 7.17. Mode shapes were taken as 

( m = 2 , 3 , .  . .;n=l, 2 , .  . .; m>n) (7.7) 

0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 
2C/b 

FIGERE ? . ~ ~ . - ~ ~ ~ a a ~ e ~ t a ~  ~ ~ e ~ ~ e ~ ~ ~  parametem for 
a SS-SS-SS triangular plate. (After ref. 7.12) FIGURE ?.1?.-3O0-6Q0-9O0 SS-SS-SS ~ r i ~ ~ g ~ l a ~  plate. 
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in terms of figure 7.17. Corresponding fre- 
quencies are found from substituting equation 
(7.7) into equation (1.4), giving 

(m=2, 3 , .  . . ;n=l,  2 , 3 , .  . ,; m>n) (7.8) 

Thus the fundamental frequency is found from 
equation (7.8) to be ~,~a~,&@=92.113. 

This was also found in reference 7.13 by 
using the solution for the SS-SS-SS-SS rec- 
tangle and the method of images. Nodal 
patterns for the first six modes are shown in 
figure 7.18. The case of the 3O0-6Oo-9O0 
triangle is also discussed in reference 7.14. 

Schaefer and Havers (ref. 7.15) found the 
fundamental frequency of the equilateral tri- 
angle of altitude a t o  be wa2,i,lD=39.478. 
The problem was also solved by Conway by 
analogy in reference 7.16 and by the point- 
matching method in reference 7.11. The 
problem is also solved in references 7.17 and 7.18. 

The case when C Y I = C Y Z = ~ ~ ~  (fig. 7.14) can be 
deduced from the higher mode shapes of a 
SS-SS-SS-SS square plate. The fundamental 
frequency parameter is wa2WD=24.674. 

The case when al=az=600 was examined by 
Seth (ref. 7.171, who gave a fundamental fre- 
quency parameter of wa2&@= 17.272. 

Much more information is available for this 
problem from an analogy that exists between 

FIGURE 7.18.-Nodal patterns for a 3Q0-6Oo-9Q0 SS- 
SS-SS triangdar plate. 

a vibrating membrane and a simply supported 
polygonal plate (see the chapter entitled 
“Plates of Other Shapes” (ch. 8)). 
7.1.7 SS-SS-F 

There are no specific solutions of the problem 
of SS-SS-F triangular plates. Wes tmann (ref. 
7.7) proposed obtaining bounds from SS-SS-F 
sectorial plates. (See sec. 7.1.3.) 
7.1.8 C-F-F 

Consider first the symmetric cantilevered 
triangle depicted in figure 7.19. Andersen 
(refs. 7.19 and 7.20) solved the problem by 
using the Rayleigh-Ritz method and the 
triangular u-v coordinates shown in figure 7.19 
(see also the discussion for the C-F-F-F 
trapezoidal plate, sec. 6.1.2). For symmetric 
modes, the four-term series 

was used, and for antisymmetric modes the 
series 

FIGURE ?.1S.-Symmetric 6-F-F triangular plate. 
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was used, where and c $ ~  represent the f i s t  
two modes of a cantilever beam free at  u=O 
and clamped a t  u=l. (See discussion of the 
rectangular cantilever beam, sec. 4.3.12.) The 
functions $J3 and $J4 represent the first symmetric 
and antisymmetric modes, respectively, of a 
beam free at  v = + I .  The expression for the 
strain energy in triangular coordinates is 
given in equation (6.4). Integration was 
performed numerically. Frequency param- 
eters, nodal patterns, and amplitude coeBcients 
for the first four modes and several a/b ratios 
are given in table 7.5. Poisson’s ratio is 0.3. 

Variation of frequency parameter with a/b 
ratio for the two antisymmetric modes is 
shown in figure 7.20. It is seen that the 
frequency parameters increase linearly with 
a/b, as was the case for the C-F-F-3’ 
rectangle (sec. 4.3.12). Frequency variations 
for the first two modes are shown in figure 7.21 
where the frequency parameters wa21/12p/Eh3 
obtained from beam theory are also plotted 
as horizontal broken lines. It must be re- 
membered that the plate and beam frequency 
parameters differ by the factor l - v 2 .  Thus, 
when Poisson’s ratio is considered, the plate 
frequencies themselves are slightly higher than 
those predicted by beam theory. 

DuEn, Gustafson, and Warner (ref. 7.21) 
also used the Rayleigh-Ritz method to analyze 
the triangular plate of symmetric shape. A 
partial summary of deflection functions used 
and frequency parameters obtained is given 
in table 7.6, where the notation used is that of 
figure 7.19 and v=1/4. Because modes 1 and 
2 are symmetric and antisymmetric, respec- 
tively, the frequency parameters listed for 
these modes are guaranteed to be upper bounds 
OR the exact frequencies, and improvement in 
bounds with the various functions used is 
clearly indicated in the table. Further results 
were obtained which showed the variation in 
fundamental frequency parameter and mode 
shape with a/b ratio and Poisson’s ratio 
using the deflection function. 

These are shown in table 7.7. 

P 

2 3 4 5 6  I 
0 
0 

o/b 

FIGURE 7’.2O.--Variation in antisymmetric frequency 
parameters with a/b for a C-F-F symmetric triangular 
plate; v=Q.3. (After ref. 1.20) 

FIGURE ?.2l.-Variationin symmetric frequencyparsm- 
eters with a16 for a C-F-F symmetric triangular 
plate; ~ ~ 0 . 3 .  (After ref. 7.20) 
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TABLE 7.5.-Frepuency Parameters, Nodal Patterns, and Amplitude Coe#&nts for a C-F-F 
- Symmetric Triangular Plate; v=O.5 - ,  

7.122 7.080 

1.000000 1.000000 
-. 018583 -. 020249 
-. 000068 -. 000026 

2 

7.068 

1.000000 
-. 020664 
-. 000008 

3 

-. 001362 

4 

-. OOCM98 I -. 000176 

Nodal lines 

-0.77460 
1. 00000 

-. 02305 
. 04645 

Amplitude 
coefficient 

-0.76682 -0.76427 -0.76368 
1.00000 1.00000 1.00000 
. 00527 .00208 .00073 
* 01022 .00241 .00077 

7.149 

0.60941 
1.00000 
,00155 

-. 00079 

1.000000 
-. 013453 

.000887 

.002312 

0.33684 0.27432 
1.00000 1.00008 
.00038 .00012 

-. 00019 -. 00006 

148.8 259.4 1 493.4 

30.803 I 30.718 1 30.654 1 30.638 

853.6 

I I I 

1.00000 
-. 31823 
-. 00156 

.00122 

1.00000 
-. 31430 -. 31330 
-. 00036 -. 00012 

.00029 .00009 

1.00000 

oa%?D 

61.131 1 90.105 I 157.70 I 265.98 

1.64125 
1.00000 
.00581 

-. 00380 

1.00000 
-. 32893 
-. 00808 

.00586 
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TABLE 7,6.-De$ection Functions and Frequency Parametersfor a Rayleigh-Ritz Analysis of a C-F-F 
Symmetric Triangdar Plate; v = l f 4  

alb Mode no. Deflection function, W(x, y) 

($- 1)' (E+&) 
(E- 1)2($+5)+A, (:-- I)a$ 

(E- 1)' 

(z- l)'(i+Azf) 

a 5- I)a(z+A,) a 

2- a I)&4,) 

z- a I)'(:+As) 

(E- 1)*(5+5)+A1(:- 1)'@ a2 

Amplitude 
coeacients 

Ao= 513 

Ai= - 4.85 

Az= - 1 

A3=0.462 

Ad=49/164 

Aa=5/3 

At= - 3.61 

7. 15 

6. 55 

26. 5 

23. 8 

23. 0 

37. 1 

7. 15 

7. 02 

TABLE 7.7.-Frequency Paramekrs and Amplitude C o e m n t s  for C-F-F Symmetric T r ~ n ~ ~ ~ a r  
Plates 

Kumaraswamy and Cadambe (ref. 7.22) 
experimentally determined the first 18 modes 
and frequencies of a symmetric triangular 
cantilever plate made of commercial mild steel. 
Pertinent dimensions and physical constants 
were: a=6.00 inches, b=6.00 inches, h=0.0895 
inch, pg=O.282 pound per cubic inch, length- 
wise E=29,83X IO6 psi, breadthwise E=29.18 
X10' psi, and v=0.29 (assumed). Cyclic fre- 
quencies and frequency parameters are given 
in table 7.8. The disagreement in values ob 
w a z d a  between tables 7.5 and 7.8 for afb=l 
is readily apparent. Nodal patterns are shown 
i~ figure 7.22. 

Further experimental results from reference 
1.23 for a/b=l are given later in this section. 

Consider next the delta cantilever plate 
depicted in figure 7.23. This problem was 
solved in reference 7.20 for the first two modes 
by the method described earlier in this section. 
The following six-term series was used for the 
deflection function : 

Frequency parameters, no al patterns, and 
mnplitude coeEcients are listed in table 7.9 for 
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1.00000 
.02035 

-. 31370 
-. 14370 
- .00073 
- .00598 

v=O.3. Variation of frequency parameter with 
alb ratio is seen in figure 7.21. 

In  reference 7.24 the method of reference 
7.20 given previously was duplicated by using 
only the four terms of equation (7.12) asso- 
ciated with A,,, AZ1, A12, and Aw. The funda- 
mental frequency for the plate of figure 7.23 
was found to be wa2mD= 5.045 for a/b= 1. 

1.00000 
- .00077 
- .09379 
- .07012 
- .00005 
-. 00198 

A corroborating experimental value of w a 2 J m =  
5.36 was determined for a steel plate (a=6.00 
in., b=6.00 in., h=Q.0895 in., pg=Q.282 Ib/in.3, 
and E=29.5X 10E psi). Tabular values of the 
integrals obtained from equation (6.4) are also 
given in reference 7.24. 

In reference 7.21 the delta plate having 
a = 4 5 O  was also analyzed by the Rayleigh- 

25.40 

-0.81541 
1.00000 
3.1448 

-1.25112 
.05200 
.01845 

TABLE 7.8.-Experimeni.ally Determined Frequencies and Frequency Parameters for a O F - F  
Symmetric Triangular Plate; a/b= 1 ; v =0.29 

28.80 

- 0.77842 
1.00000 
1.11722 

-. 50815 
.01065 
.00748 

6499 272. 4 
6526 273. 5 
6884 288. 5 
7627 319.7 
8498 356. 4. 
9875 413. 8 

TABLE 7.9.-Frequency Parameters, Nodal Patterns, and Amplitude Goeflcients for a G-F-F Right 
Triangular Plate; v=0.3 

Mode 

I 

Nodal lines Amplitude 
coefficient 

w a 4 D  

5.887 1 6.617 / 6.897 

1.00000 
- .01287 
- .03234 
-. 02783 
- .00002 
- .00075 

30.28 

- 0.77340 
1.00000 
.40809 

-. 19731 
.00320 
.05028 
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FIGURE 7.22.--Nodal patterns for a. C-F-F symmetric 
triangular plate, a/b= 1; material, steel. (From ref. 
7.22) 

b 

X a 

t 
FPGURE 7.23.--C-F-F right triangular plate. 

3054337 0-70-15 

Ritz method, using v=1/4. A summary of 
deflection functions used and the frequency 
parameters obtained is given in table 7.10. 
(See fig. 7.23.) 

Gustafson, Stokey, and Zorowski (ref. 7.23) 
obtained experimental mode shapes and fre- 
quencies €or the delta configurations shown in 
figure 7.24. The plates were cut from sheet 
steel averaging 0.061 inch in thickness. Ob- 
served nodal patterns and cyclic frequencies 
for the first six mode shapes of each plate are 
shown in figure 7.25, where the designations 
AI, A2, etc., refer to  figure 7.24. Variation in 
cyclic frequency with b/a ratio for each mode is 
shown in figure 7.26. 

Christensen (ref. 7.25) used the method of 
replacing plate elements by equivalent beam 
networks as developed by Hrennikoff (ref. 7.26) 
to  analyze the delta plate when a=45'. The 
10 grid points shown in figure 7.27 were used. 
Each grid point is allowed rotation about axes 
parallel to the x- and y-axes and a w displace- 
ment, and a thirtieth-order characteristic de- 
terminant results. Frequency parameters and 
grid-point deflections associated with each of 
the first 10 vibration modes are given in table 
7.11 for v=O.3. Experimental frequency pa- 
rameters converted in reference 7.25 from 
reference 7.23 (discussed previously) and values 
obtained from reference 7.27 by using the 
Rayleigh-Ritz method and polynomials are 
also listed for comparison. The total mass 
of the plate is M. Nodal patterns compared 
with the experimental results of reference 
7.23 are shown in figure 7.28. 

IO" I O "  

Designation AI A 2  A 3  A 4  A 5  

FIGURE 7.24.--C-F-F delta configurations. (After ref. 
7.23) 
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TABLE 7.lO.-DeJEectwn Functions and Frequency Parameters for a Rayleigh-Ritz Analysis of a 
C-F-F 45' Delta Triangular Plate; v = l / g  

Deflection function, W(z,  y) Amplitude 
coefficients 

u a G i D  

7. 15 

38.90 

39. 3 

43.5 

6. 37 

7. 16 

53.65 

53. 3 

_------. 

6. 57 

7. 05 

1 
.07 

-3.62 
.39 

-. 31 
1. 88 
.44 
.49 

1. 24 
1.78 

28. 0 

26. 9 

57. 5 

54. 3 

1 
- .74 

18 
-- 06 

. 04 

. 03 

.55  

. 4 7  
-. 19 

-1. 28 

TABLE 7.Il.-Frequency Parameters w a r n  (M, Total Mass o j  Plate) and Mode Shapes for Q 

C-F-F 45' Delta Triangular Plate; v=O.S 

1 
-1.32 

1. 64 
2. 32 

-1.65 
-. 65 

-1.05 
-. 43 

-1.99 
2.76 

- 

I- 

1 
-1.60 

3. 70 
5. 08 

-6. 98 
5. 54 

-5.48 
8. 62 

2. 89 
-6. 00 

4. 35 

4. 17 

4. 42 

-1.15 
1. 86 
1. 36 

-2.08 
4.38 
3. 05 

-3.77 
-1.92 

.84 

1 
. 65  
..56 
. 3 3  
.28 
. 2 0  
. 10  
.08 
. 06 
. 02 

-1.02 
-1.03 

1. 10 
1.74 

-. 37 
--I. 66 
- .70  

-1.17 
1.18 

2 1 3 1 4 1 5  

16.76 

16. 4 

16. 9 

1 
.29 

-. 94 
-. 05 
-. 78 

-1.33 
-. 05 
-. 32 
-. 45 
-. 31 

23.01 

23. 0 

23. 7 

1 
-. 27 

. 4 5  
-. 81 
-. 07 

.43  
-. 47 
-. PI 

. 12 

. 14 

8 

60.32 

69. 9 

1 
-1.01 

1. 39 
.04 

-. 002 
-1.99 

.90  

.27 

.27 
2. 65 

7 1 8  9 I 10 

i 
107. 1 1 148. 6 
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Picswa~ 7.25.--Experimentally observed cyclic frequencies, cps, and nodal patterns for C-F-F delta triangular 
steel plates. (From ref. 7.23) 
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FIGURE ?.26.-Experimentally measured cyclic fre- 
quencies for C-F-F delta triangular steel plates. 
(After ref. 7.23) 

FIGURE ?.27.--Grid points in a structural element 
representation of a C-C-F triangular plate. 
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Mode 

OF PLATES 

CycIic frequencies for values of b/a of- 

1 
2 (6 grid 
points) 

6 grid 10 grid 
points points 

Kawashima (ref. 7.28) used the finite differ- 
ence method to obtain frequencies and mode 
shapes for delta plates (fig. 7.23) having 
b/a=1 and 2. The 45' delta was analyzed by 

more accurate 

clamped boundary, 
The first gives the d 

responding results for the case b/a=2 are also 
given in reference 7. but are considerably 
inaccurate. 

2nd 3rd 4th 51h 61h 71h 

MODES 

FIGURE 7.28.--Nodai patterns for a GF-F 45' delta 
triangular plate; material, steel. (After ref. 7.25) 

TABLE 7.12.--Theoretieal Cyclic Frequencies .for 
GC-F Delta Triangular Steel Plates 

The delta plate for the cases b/a=l and 2 
was a h  analyzed by Walton (ref. 7.29) by 
using the method of reference 7.30 which re- 
places the derivatives in the strain energy 
integral by finite differences. Twenty-eight 
free grid points were used in the analysis. 
Frequencies were computed and compared 
with experimental data for s 
having the dimensions a= 1 
inches and a=10 inches, a 
Both plates were 0.061 inch thick and v and E 
were taken as 0.025 and 30X106 psi, respec- 
tively. The first six cyclic €re 
plate are given in table 7.13. 
for the five higher modes o 
depicted in figures 7.30 and 7.31.  

Hanson and Tuovila (ref. 7.31) experimen- 

FIRST MODE 

0 -0459 0449 1595 2.992 

SECOND MODE 

I 
0 

FIGURE 7.29.--Deffections and bending moments M ,  
for a C-F-F 45' delta triangular steel plate. 
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tally investigated 45' and 60' delta plates 
made of 0.034-inch-thick magnesium (pg= 
0.064 l b / i ~ ~ . ~ ) .  (See discussion of the C-F-F-F 
parallelogram plate, sec. 5.1.5.) They investi- 
gated plates with a=45', 6=6.00 inches, and 
~r=60O, b=8.50 inches. The first three fre- 
quencies and mode shapes for the two plates 
are shown in figures 7.32 and 7.33. Note that 
the three-dimensional perspective used in these 
figures distorts the right angle at the clamped 
edge. 

Craig, Plass, and Caughfield (refs. 7.32 and 
7.33) measured mode shapes and frequencies 
on three 6061-T6 duminum plates X inch 
thick and having the dimensions a=7.5 inches, 
b=7.5 inches; a=12.5 inches, b=7.5 inches; 
and a=15 inches, b=7.5 inches. Cyclic he- 
quencies, nodal patterns, and mode shapes me 
given in figures 7.34, 7.35, and 7.36. 

TABLE 7.13.-CycliC Frequencies for 6-F-F 
Delta Triangular Steel Plates 

Mode 

1 
2 
3 
4 
5 
6 
P 
2 
3 
4 
5 
6 

Cyclic frequency, f ,  
CPS 

Theoret- 
ical 

36. 4 
139 
192 
327 - 
432 
566 
32. 8 
89. 9 

164 
175 
263 
328 

Experi- 
mental 

34. 5 
136 
190 
325 
441 
578 

32. 8 
91. 0 

164 
181 
283 
348 

Mode 2 Mode 3 

, 
Mode 2 Mode 3 Mode 4 

Mode 4 Mode 5 

Experimental - 
A Calculoled 

Mode 6 

Fraom 7.30.-Nodal. patterns for a 6-F--F delta 
triangular steel plate, bja= 1. 

1. 06 
1. 02 
1. 01 
1. 01 

~ 980 
.979  

. 9 8 8  

. 967 

. 929 

. 943 

1. 00 

1. 00 

Experimenfoi 
Calculated 

Mode 5 Mode 6 

FIGUEE 7.3I.-Nodal patterns for a C-F-F delta tri- 
angular steel plate, b/a= 2. 
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Dashed lines indicate shape of 
plate at marimun amplitude of cycle 

\ 

1 *action I 
of Nonml.Ized deflection at (l-x/a) - 

---- 
Heavy sold lines lndlcate 
plate 01 no 0 . 

FIGURE 7.32.-Experimental frequencies and mode shapes for a 60" delta cantilever plate; material, magnesium. 
(u) Mode 1,Jl=50 cps. ( b )  Mode 2,f2=184 eps. ( c )  Mode 3,fa=258 cps. 



TRIANGULAR PLATES 223 

y solid lines indcate 

Dashed lines indicate shape of 
plate a? mxirnurn amplitude of cycle 

FIGWBE 7.33.--Experimental frequencies and node shapes for a 45" delta cantilever plate; material, magnesium. 
(a) Mode 1, j1=66 cps. (b)  Mode 2, f2= I85 cps. ( c )  Mode 3, f3=336 cps. 
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f 

1 SHAKER POSITION 
FOR ALL MODES 

I I 
-0.4 -0.2 6 +0.2 f0.4 

71 
( C )  

CLAMPED 
EDGE 

4 

FIGURE ?.34.--Experirnental data for a 45" delta 
cantilever plate; material, 6061-T6 aluminum W 
inch thick. (a) Experimental node lines and data 

(b)  Normalized deflection; mode 1; fl=118.1 cps. 
( c )  Normalized deflection; mode 2 ;  f2=448.5 cps. 
(d) Normalized deflection; mode 3; f3=670.5 cps. 

points; f1=ll8.1 C ~ S ;  f2=448.5 C ~ S ;  f3=670.5 C ~ S .  

-0.67 I 

4 + 0.4 
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"Mi 
+I 201 

- 0  

""T 

+ '  " t  

+0401 

(e) - 1 6 0  

-033 -018 -003 ' + 0 1 2  +027 +040 

+I 20 

(f) -160 

FIGURE 7.35.-Ex@erimentd data for a 31" delta 
cantilever plate; material, 6061-T6 aluminum % 
inch thick. (a) Experimental node lines and data 

f4=524 eps; fs=809 C ~ S .  ( b )  Normalized deflection; 
mode 1; f1=5O.2 cps. (c) Normalized deflection; 
mode 2; fz=212 cps. (d )  Normalized deflection; 
mode 3; f3=316.5 cps. ( e )  Normalized deflection; 
mode 4; f4=524 cps. (f) Normalized deflection; 
mode 5; fs=809 cps. 

points; f1=50.2 C ~ S ;  jz=212 CPS; j3=316.5 CPS; 
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1 
- Iml 

FIGURE ?.36.--Experimental data for a 28.8' delta cantilever plate; material, BO61-TB 
aluminum ?4 inch thick. (a)  Experimental node lines and data points; j l=11.2 cp5;J~=300 
cp5; f3=508 cps. (b)  Normalized deflection; mode I; fl=91.2 cps. (6) Normalized deflection; 
mode 2; fi= 300 cps. (d) Normalized deflection; mode 3;  j3= 508 cps. 
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Theoretical 

Consider finally the triangular cantilever 
plate of general shape as shown in figure 7.37. 
In reference 7.29 this problem was also (see 
discussion earlier in this subsection) solved ana- 
lytically for a sheet steel plate having dimen- 
sions a= 10 inches, b = l O  inches, /32= 116.6', 
and h=0.061 inch. Material constants were 
taken as ~=0.250 a 30X loe psi. Thirty- 
one grid points wer n the analysis. The- 
oretical frequencies are compared with experi- 
mental ones in table 7.14. Nodal patterns for 
the five higher modes are depicted in figure 
7.38. 

Frequencies and nodal patterns were found 
experimentally in reference 7.23 for sheet 
steel plates having a= 10.0 inches, b= 10.0 
inches, h=0.061 inch, and &=63.4', 78.7', go', 

Experimental 

Y 

X 

FIGURE 7.37.-C-F-F triangular plate of general 
shape. 

TABLE 7.14.-6ycEic Frequemies for a 6-F-P 
~ r ~ n g ~ ~ a r  Steel Plate; v = 0.66 

i Cyclic frequency, cps 

27. 6 
107 
173 
262 
352 
480 

26. 3 
101 
171 
259 
346 
522 

Theoretical 
Experimental 

I. 05 
1. 06 
1. 01 
1. 01 
1. 02 

~ 92 

101.3', and 126.6'. Results for the first six 
modes are shown in figure 7.39. 

mein (ref. 7.34) proposed a set of empirical 
formulas for the prediction of frequencies of the 
first three bending modes and the first torsional 
mode for arbitrarily shaped triangles. These 
formulas are given in table 7.15. 

The planform dimensions used on both sides 
of the formulas in table 7.15 are those of 
figure 7.40. Substantiation of the formulas of 
table 7.15 was given in reference 7.34 by com- 
parison with the experimental results of refer- 
ence 7.23. These data are reproduced in table 
7.16. The plate designations used are those 
shown in figures 7.25 and 7.39. 

The vibration of C-F-F triangular plates is 
also discussed in references 7.35 and 7.36. 

- Experimntol 
A COIculated 

FIQURE ?.38.--Nodal patterns for a C-F--F triangular 
steel plate. 
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FIGURE 7.39.-Experimentaily observed cyclic frequencies, cps! and nodal patterns for C-F-F triangular steel 
plates. (From ref. 7.23) 

FIGURE ?.4O.--PIanform dimens:ons of a C-F-F tri- 
angular plate of arbitrary shape. (After ref. 7.34) FIGURE 1.41 .-F-F-F 45" right triangular plate. 
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P a t e  

AI- .-- _ - - - - - - - - - - 
A2 - _ _  - - - - - - - - - - - - 
A3 - _- - - - - - - - - - - - - 
A4 - - - - - - - - - - - - - 
A5 - _ _  - - - - - - - - _ - - - 

Si ____.__ - - - _ - -  _ _  - 
s2- _ - _ _ _  - - - - - - - - - 
s3 - - _ _  - - - - _ - - - - - 

TABLE 7.15.-Empirkal Formulas for Calculating the Frequencies of C-F-F TTiangular Plates of 
Arbitrary Shape 

Frequency formula i Mode 

Frequency, cps, computed from- 

I Bending type modes 

fl f z  f 3  

Torsional mode 

-- 
Formula Test Formula Test Formula Test Formula Test 

-~ 

32. 5 32. 8 92 91 179 181 164 164 
35. 3 34. 5 140 136 325 325 192 190 
38. 3 37. 5 160 161 386 392 245 24 3 
39. 6 38. 4 168 165 401 403 330 338 
40. 6 40. 2 173 172 414 41 1 598 608 

39. 1 38. 5 168 169 400 404 167 166 
37. 8 37. 8 156 151 365 363 194 186 
35. 3 34. 5 140 136 325 325 192 190 

_- 

s4 - - -_- - - - - I - - - _ - 31. 6 32. 4 121 120 293 293 
S5 - - __- - - - - _ - - - - - ! 26.6 26. 3 101 255 259 

98 I 
1.1.9 F-F-F 

Waller (ref. 7.37) experimentally investigated 
completeBy free 45" right triangular plates. 
The modes were classified as m/n according to 
the corresponding products of beam functions, 
namely, 

179 182 
166 171 

where x and y are as shown in figure 7.41 and 
the beam functions apply to beams of length a. 
Cyclic frequencies were obtained for a brass 

plate having dimensions a=8.86 inches and 
.I52 inch and are given in table 7.17' along 

with frequency ratios relative to the funda- 
mental frequency. Corresponding nodal pat- 
terns are shown in figure 7.42. Nodal patterns 
for some higher nodes are shown in figure 7.43. 

Some nodal patterns obtained for free equi- 
lateral trianguIar plates (ref. 7.38) are depicted 
in figure 1.44. 

BRTS AND CONDIT 
The problem of a, simply supported 30'-60'- 

90' triangular plate with an internal point 
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2 _ _ _ _ _ _ _ _ _ _  
3 _ _ _ _ _ _ _ _ _ _  

4 _ _ _ _ _ _ _ _ _ _  

5 - - - _ - - - - - -  

support at (, q (see fig. 7.45) was studied by 
Solecki (ref. 7.10). Frequency paramekrs for 
the first three modes and for various locations 
of the point support are given in table 7.18. 

The isosceles right triangular plate with all  
edges free and having hub-pin supports (see 
fig. 7.46) was investigated experimentally by 
Craig, Plass, and Caughfield (refs. 7.32 and 
7.33). Pertinent dimensions, cyclic frequen- 
cies, and the nodal patterns of the first four 
modes of vibration are shown in figure 7.46. 
Corresponding mode shapes are plotted in 
figure 7.47. 

TABLE 7.1?.-Cyclic and Rehtive Frequencies 
f o r  a F-F-F 46' Right Triangdar Brass 
Plate 

[Relative frequency ratios are in parentheses] 

162 227 380 _ _ - _ - - _ - - 
(11 (1.4) (2.36) _ _ _ _ _ _ _ _ _  

414 590 710 1090 
(2. 56) (3. 65) (4. 39) (6. 8) 

862 1078 1350 1690 
(5.32) (6.62) (8.36) (10.4) 

1380 1670 2000 2490 
(8.54) (10.3) (12.4) (15.4) 

Cyclic frequency, cps, for values 
of R of- 

- 
6 

-- 

0. 50 
. 50 
. 50 
.50 
. 50 

~ 167 
.250 
.333 
. 250 
. 333 

1 

97.91 
99.88 

101.06 
101. 85 
101.85 
129. 88 
152.39 
140. 15 
170. 55 
B47.25 

TABLE ?.18.-Frequemy Parameters u b 2 m  for 
a 5'8-SS-88 SOG-&OG-90G ~ ~ a ~ ~ u ~ r  Phte 
With an Interior Point Support 

2 

205.29 
216. 34 
219. 50 
220.29 
189. 10 
216.34 
206.08 
175. 28 
170.94 
233. 71 

E - 
Q 

3 

258. 19 
261.35 
263. 32 
264. 51 
259.77 
276.35 
249,90 
250.29 
276.35 
264. 11 

0. 10 
.20  
. 2 5  
. 3 0  
.40  
.50 
. 50 
. 50 
. 250 
.333 

3 

5 

0 I 2 3 

FIQURE 7.42.-Nodal patterns for a F-F-F 45' right 
triangular plate; material, brass. (From ref. 7.37) 

614 

FIQURE 7.43.-Nodal patterns for some higher modes of 
a F-F-F 45" right triangular plate; material, brass. 
(From ref. 7.37) 
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FIGURE 7.44.-Nodal patterns for a F-F-F equilateral 
triangular plate; material, brass. (From ref. 7.38) 

ROTATIONAL 
CONSTRAINT POINT 

I I 
?*IN. 

= 0.9 

SHAKER POSITION 
FOR ALL MODES 

FIGURE 7.46.--Gyclie frequencies and nodal patterns 
for aa  isosceles right triangular plate with hub-pin 
supports; material, 6061-T6 aluminum 36 inch 
thick. fi= 76.9 cps; j2= 297 cps; f3= 390 eps; ,f4= 848 
cps. 

X 

PHEURE 7.45.-SS-SS-SS 30°-600-900 triangular plate 
with internal point support. 
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-0.40 -0.20 +0.20 0.32 

4- 1.20 

+OB0 

(=0.6 
2 - 

&I - B .201 

FKXTEE 7.4?.--Normdieed deflections of a 45" triangular hub-pin plate; material, 6061--T6 aluminum. 
f1=76.9 cps. (b)  Mode 2;f2=297 cps. (c) Mode 3;f3=390 cps. (dj Mode 4; J,=841 eps. 

(a) Mode 
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Chapter 8 

es o 

8.1 POLYGONAL PLATES 
Well-known analogies (refs. 8.1 and 8.2) 

exist between the separate problems of trans- 
verse free vibration and buckling of a polygonal 
plate simply supported all around and the 
problem of the transverse vibration of a 
prestretched membrane having no deflection a t  
its edges. 

The governing differential equation for the 
vibrating membrane is 

O2W+ (+) W=o 

where W= W(x, y> is the transverse deflection, 
p, is the mass density per unit area, w, is the 
frequency, and T is the membrane tension 
(force per unit length). Operating on equation 
(8.1) by V2 and substituting for 02W from 
equation (8.1) give the resulting equation 

which is identical to  equation (1.4) except for 
the constant coeEcient of W .  Furthermore, if 
W=Q along the polygonal boundary of the 
membrane, then by equation (8.1) VzW is also 
zero, which satisfies the boundary conditions 
for the simply supported plate. Thus a com- 
plete analogy exists between the two problems, 
and the frequency of the plate can be obtained 
from that of the membrane through the 
correspondence 

(8.31 

Again, operating on equation (8.1) by V2 
gives 

(8.4) 

which is of the same form as the differential 
equation governing the buckling of ti plate 
under the action of the inplane forces 
N,=N,=No (a constant; i.e., hydrostatic 
pressure) : 

O 4 W * % W L Q  D (8.5) 

Again, the homogeneous boundary conditions 
for the simply supported polygonal edges of 
the plate are satisfied by the conditions around 
the membrane. Thus the following corre- 
spondence exists: 

where (N,JC, is the critical buckling load of 
the plate; that is, the eigenvalues which 
satisfy the homogeneous boundary conditions. 

Finally, from a comparison of relationships 
(eq. (8.3) and eq. (8.6)), it is seen that the 
following correspondence exists between the 
plate vibration and plate buckling problems 
(whenn, of course, all edges are rectilinear and 
simply supported) : 

(8.7) 

Results given for polygonal plates having all 
edges simply supported in the sections that 
follow are taken from literature which dealt 
directly with the plate problem. For further 
results which can be obtained through the 
analogy (eq. (8.3)), the reader is directed to the 
published literature dealing with membrane 
vibrations. 

KaczkowsE (ref. 8.3) analyzed the regular 
pentagon of side a (fig. 8.1) for the case when 

237 
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which exactly satisfies the symmetry conditions 
along AB and the simply supported conditions 
along OA. The symmetry conditions along 
OB yield a characteristic determinant for the 
problem. The fundamental frequency was 
found to be oa2JplD=10.863. 

Waller (ref. 8.4) experimentally found several 
nodal patterns for a completely free regular 
pentagon. 

8.1 .P Hexagons 

The fundamental frequency of a regular 
hexagon of side length a and simply supported 
along all sides was determined by Kaczkowski 
(ref. 8.3) to  be m 2 4 p ~ = 6 . 9 6 1  by using the 
method described in the previous section. 

0 A Conway (ref. 8.5) solved the problem by the 

These are exhibited in figure 8.2. 

- X  

FIGURE 8.1.-Regular pentagon. point-matching method, using the solution in 
polar coordinates (eq. (2.1)) and satisfying 
boundary conditions at  all corners, midpoints, 
and quarter points of the sides. This gave the 
fundamental frequency as wa21m=7.129. 
The problem is also discussed in references 
8.2 and 8.6. 

Nodal patterns for completely free regular 
hexagonal plates were determined experimen- 
tally by Waller (ref. 8.4) and are exhibited in 

all edges are simply supported. 
deflection function 

He chose a 

(sin 

(8.8) figure 8.3. 

FIGURE 8.2.-Nodal patterns of completely free regular pentagonal plates. (From ref. 8.4) 

FIGURE 8.3.-Nodsl patterns of completely free regular hexagonal plates. (From ref. 8.4) 
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FIGURE 8.4.--Nodal patterns of completely free regular octagonal plates. (From ref. 8.4) 

8.1.3 Other Polygonal Plates 

The fundamental frequency of a regular 
octagonal plate of side length a and simply 
supported along all edges was computed to be 
wa24rD=3.624 in reference 8.3. The method 
used was that described in the discussion of 
pentagons (sec. 8.1.1). 

Experimentally observed nodal patterns for 
completely free regular octagonal plates are 
set forth in figure 8.4 (ref. 8.4). 

8.2 SECTORIAL PLATES 

sector are shown in figure 8.5. 

8.2.1 Radial Sides Simply Supported 
An exact solution is obtainable for the case 

when the two radial edges are simply sup- 
ported, regardless of the homogeneous bound- 
ary conditions which exist along the circdar 

Coordinates and dimensions of a circular 

edge. I€ one takes solutions to  equation (1.4) 
in the form of equation (2.1) with n = ~ / 2 a ,  
3 ~ / 2 a ,  . . . (fig. 8.5), satisfaction of the bound- 
ary conditions along the circular edge yields a 
second-order characteristic determinant for the fre- 
quencies of symmetric modes. Similarly, the 
antisymmetric modes are determined by re- 
placing cos ne with sin ne where %=a/@, 
3a/a,  . . . . In  spite of the relative simplicity 
of this approach, the only known solutions of 
this type are those €or which n is an integer 
and which correspond to the higher modes of 
a circular plate. 

Westmann (ref. 8.7) solved the case when 
the circular edge is free by using the Rayleigh 
procedure, assuming a deflection function 

03.9) 

and obtained the following approximate for- 
mula for the fundamental frequency parameter: 

w2a4p/D =3 (n4 - 2n2+ 8 )  - V( Sn*- 8) ( 8.10) 

For the case when n=3 (2a=60°), results for 
w obtained from equation (8.10) for v=O and 
v=1/3 are determined (ref. 8.7) to be 4.8 an 
5.5 percent too high, respectively, when com- 
pared with an exact solution obtained from the 
threefold symmetric mode of a completely free 
circular plate (see sec. 2.1.3). 

8.2.2 Other Boundary Conditions 

Ben-Amoz (ref. 8.8) used the Rayleigh-Ritz 
method to solve the problem when all edges are 
clamped. A deflection function 

W(T, e) =T2 cos n8 

W(T,  0) =t2(1 -En)'   COS^ Y ~ O S C O S  726) 

+C2 (co~h7~O-cosr~e)+C~ (sinhrle 
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2 uo= 3 (m-1) 

2 
I (8.12) bo= $(m+2) (2+3m+2m2) 

w2u4p (m+l)( 2m f 1)(3 mf2) 
9D (m + 3)( m + 6)(2m -1- 3) Po=- ~ - 

This function satisfies the clamped edge condi- 
tions at  r=u exactly. Substituting equation 
(8.11) into the boundary conditions a t  O=fa 
yields the characteristic equation 

Yla Yza! a0 Y l a  Yzcr eosh - cos -= 1 + - sinb -sin - (8.13) 2 2 YlY2 2 2  

Variation of the fundamental frequency with 
sectorial angle is shown in figure 8.6. 

The case when the two radial edges are 
clamped and the circular edge is free was ana- 
lyzed in reference 8.7 by using the Rayleigh 
procedure and an assumed mode 

W(r, e)=7.2(l+cos me) (8.14) 

giving a fundamental frequency parameter of 

m a p i  D-(m4-2mzf24)-v(6m2-24) - (8.15) 

1̂ 
where m is taken as ?ria. 

Waller (ref. 8.4) experimentally observed the 
two nodal patterns shown in figure 8.7 for a 
completely free semicircular plate. 

8.3 OTHER PLATES 
Grinsted (ref. 8.9) experimentally determined 

the frequencies and mode shapes of a flat brass 
plate designed to simulate an impeller blade. 
The plate was 0.064 inch thick, and the remain- 
ing dimensions are given in figure 8.8. Mode 
shapes observed, along with the corresponding 
cyclic frequencies, are depicted in figure 8.9. 

In reference 8.9, experimental results are 
also given for a cantilevered plate of irregular 
shape intended to simulate a marine propeller 
blade. Dimensions of the plate and cyclic fre- 
quencies are given in figure 8.10. Correspond- 

FIGURE 8.6.-Fundamental frequency parameter for a 
completely clamped sectorial plate. (After ref. 8.8) 

FIGURE 8.7.-Nodal patterns for a completely free 
semicircular plate. (From ref. 8.4) 

ing mode shapes are shown in figure 8.11. The 
material is mild steel. 

Ruscoe (ref. 8.10) experimentally found 
several “complex modes” of a gat plate in the 
shape of a turbine vane having a curved edge 
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Edge 

FIGURE 8.8.-Dimensions of a flat-plate model of an 
impeller blade; R, radius. (After ref. 8.9) 

T? <a 7 

FIGURE 8.9.--Cyelic frequencies and mode shapes for 

? :  , ., , 

a flat-plate model of an impeller blade. (From ref. 8.9) 
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7,542 
316 

4 5 6 

FIGURE 8.10.--Plate dimensions and cyclic frequencies for a gat-plate model of a marine propeller 
blade. (After ref. 8.9) 
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8 89 i/d 1,135 012 t2/0 1,365 210 -0/2 2 49 f / Q  4 15 o/ 1 

2,155 2/1+0/3 2,418 2/1-0/3 1,819 1 /2  3,009 113 2,202 0/3 

3,804 2/2-0/4 4,470 1/4 +3/1 3,343 3/0 3,416 2/2t0/4 4 3  0 31 

4,934 2/3-0/5 5,558 2/3+0/5 6,098 1/5-3/2 6,517 312 -8/5 6,2 45 /O 

7,987 / I  ,594 V64-3 

FIGCRE 8.1 1.-Nodal patterns and cyclic frequencies for a Biat-piate model of a marine propeller blade. (After ref. 8.9) 
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clamped and two straight edges free as shown 
in figure 8.12. Frequencies were given but 
plate dimensions were unspecified. 

The problem of a plate of epicycloidal shape 
clamped on its contour is studied in reference 
8.11. 

In  reference 8.12, a method for analyzing 
plates having two parallel edges of general cur- 
vilinear shape and simply supported is pre- 
sented. No numerical vibration results are 
included. 

Some bounds on frequencies of clamped plates 
of irregular shape are discussed in references 
8.13 and 8.14. 

No numerical results are given. 

FIGURE 8.12.-Sonie mode shapes of an irregular plate. 
(After ref. 8.10) 

OF PLATES 
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Chapter 9 

es 

No work in the literature has been found for 
the case of general anisotropy. Results for 
the special cases of polar and rectangular 
orthotropy are summarized in the following 
sections. 

9.1 P O L A R  O R T H O T R O P Y  
The differential equation for the transverse 

bending of a polar orthotropic plate is (see the 
appendix) : 

D,- 2-- d4w . D,e b4w +--+22- Deb4w D 
W +  r2 ar2a2 r4 w r i~ 

2Drs b3w D s b ' ~  2 aZW 

r3 , 2 + $ D B + D T 8 ) ~  

Assuming a variables separable solution 

m 

w=CW,(r) cosne cos at (9.2) 
n=O 

The solution to equation (9.3) can be expressed 
as a power series 

(9.4) 

as was shown first by Akasaka and Takagishi 
(ref. 9.1) and later in references 9.2, 9.3, and 
9.4. Substitution of equation (9.4) leads to a 
reeursion relationship among the coefficients (e3 .  

Results exist for circular plates for only two 
cases of simple edge conditions-when the 
edge is either completely clamped or simply 
supported. 

9.1 .I Clamped Circular Plate 

The coordinate system and dimensions for 
a elamped circular plate are shown in figure 2.1. 
Boundary conditions are stated in equation 
(2.2). 

For axisymmetric modes (n= 0)  certain 
terms in equation (9.1) disappear; that  is, 
terms containing derivatives with respect to 8. 
Akasaka and Takagishi (ref. 9.1) used .the 
infinite series (eq. (9.4)) to  formulate a. secon 
order characteristic determinant for the 
frequencies 

where 

24 5 
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and where f2=Dr/pa4 and k2=Do/Dr. An ap- 
proximate formula for the first two axisym- 
metric modes is obtained from equation (9.5) by 
truncating the series and is given in reference 
9.1 85 

w2a4p/Dr= 24(3+k) ~ [ ( 4 f k )  (7+ k) 
5+k 

where terms of degree (014)~ and lower are 
retained. Letting k2=Dg/Dr= 1 gives a/[= 
10.23 and 34.3 for the first two axisymmetric 
frequencies of an isotropic plate; these values 
compare with the values of 10.22 and 39.77 
from the discussion of the clamped circular 
plate (sec. 2.1.1). 

Borsuk (ref. 9.2) solved the problem by ex- 
pressing the series (eq. (9.4)) in terms of 
hypergeometric functions. He presented closed- 
form expressions for the frequency equations 
for all values of n given in terms of the hyper- 
geometric functions. The only numerical result 
given is for the axisymmetric case (n=O) and 
t ' ~ o / ~ , = ~ . 4  and is waZ&7Dr=4.55. However, 
because this value is much lower than the value 
of 10.22 for the isotropic plate and because 
values of De/Dr greater than unity should 
further stiffen the plate, this result is clearly 
questionable. 

The first antisymmetric frequency parameter 
(n-1) is given in reference 9.1 as 

i. 

The fundamental frequency parameter for 
the case when a concentrated mass M is 
attached at the center is given in reference 
9.1 as 

Pandalai and Patel (ref. 9.4) also solved 
the problem by using the infinite series (eq. 

(9.4)) and obtained the following characteristic 
equat,ion for arbitrary values of n: 

,-12w2a4p x -- Erh3 (9.12) 

If the infinite series of equation (9.10) are 
truncated to include terms up to the degree 
2ni-4, a first approximation for the eigenvalue 
X is given by 

X4= 1 /( 6,s - 3 Dn6) (9.13) 

which for the fundamental frequency (n=O> 
reduces to  

(9.14) 
1 

x4=z (9-0) (25--p) 

In  reference 9.3 the same series solution was 
assumed and 8 frequency equation was written, 
but no numerical results were given for the 
problem. 
9.1.2 Simply Supported Circular Plate 

The coordinate system and dimensions for a 
simply supported circular plate are shown in 
figure 2.2. The boundary conditions we stated 
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0. 25 
~ 50 
. 50 
. 75 

1. 00 
1.00 
1. 25 
I. 25 
1. 50 

in equation (2.9). Minkarah and Hoppmann (ref. 9.3) solved the problem for axisyrnmetric modes 
by assuming the series solution (eq. (9.4)) and arrived at  the frequency equation 

~ _ _ _  

0. 22 10. 70X104 
.40  4.75 
.30  5.20 
. 70 2. 64 
.75 1. 88 
.75 1. 60 

1. 00 1. 33 
. 50 1. 50 
. 75 1. 08 

(9.15) 

where 

-+(2)2'(2j)!(9-kZ)(49-k2). ( c V ) * j  . .[(4j-1)"k'] +...  

a4=w2p/DI1 A=rya, k2=Dg/Drl and v g  is the elastic 
cofistant in the axisymmetric relationship 

The primes indicate differentiation with respect 
to  r .  

Axisymmetric frequency parameters for vari- 
ous combinations of elastic constants are given 
in table 9.1 taken from reference 9.3. 

Experimental frequencies were also measured 
in reference 9.3 for the plate of table 9.1 having 
k=1.50, v,=O.5O1 and 0 ,=11500 .  The cor- 

ABLE 9. 1 .-Axisymmetric Frequency Param- 
eters jor  a Simply Supported Circular Plate 
Having Polar Orthotropy 

Elastic constants 1 ua%EC7 

Mode 

2. 500 
3. 629 
3.452 
4. 765 
5. 518 
5.518 
6.472 
5.934 
6. 906 
6. 646 
7. 188 

Mode 2 

- - - - - - -. 
- - - - - - . 
- - - - - - - . 
28.249 
30. 206 
30. 206 
32. 524 
31. 843 
34.047 
33. 791 
35.557 

Mode 3 

. - - - - - - 

. - - - - - - 

. - - - - - - 
71. 572 
74. 132 
74. 132 
76.562 
76. 318 
81.000 
79. 924 
83. 174 

responding frequency parameters and nodal 
patterns are shown in figure 9.1 for the first 
five axisymmetric modes and the first four 
nonaxisymmetric modes. 

In reference 9.4 the frequency equation is 
written as 

- 1 +a> -m2] Cn*Xn+'--2 
* 

P-yvhere the terrninolo& is the same as that used 
in the discussion of clamped circular plates 
(sec. 9.1.1). Equation (9.16) is obviously ap- 
propriate for general vibration modes of the 
plate. Truncating the infinite series contained 
in equation (9.16) to include terms up to the 
degree 2n+4 gives the following equation for 
frequency parameters : 

(9.17) 2n+ 1 +a 
his=( zn+5sa)  

Here Ass and Xc are the frequency parameters 
(12w2a4p/E,h3)'I4 for the simply supported and 
clamped cases, respectively, and the symbol a 
is defined in the discussion of the damped 
circular plate (see. 9.1.1). The parameter hc 
is given by equation (9.13). 
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2 3 4 5 
= 27.70 =64.93 =116.3 =183.1 I 

(a)  

=15.77 =27.74 =45.44 ~66.12 

(b 1 
FIGURE 9.l.-Experimentally determined frequency parameters 0 a 2 J n ,  and nodal patterns for a simply supported 
circular plate having polar orthotropy. ( b )  Nonaxisymmetric modes. (After ref. 9.3) (a)  Axisymmetric modes. 

A frequency determinant for the problem 
is also presented in reference 9.2, although no 
numerical results are given. 

9.1.3 Other Shapes 
Pyesyennikova and Sakharov (ref. 9.5) 

treated the problem of the annular plate having 
inside radius a and outside radius b for the 
axisymmetric modes of two eases of boundary 

conditions by using the Boobnov-Gaferkin 
method. 

For the case of the inner boundary free and 
the outer boundary clamped, a deflection 
function 

w~(t)=&iJo(fft) A r z Y o ( 4  

+ A I J o ( ~ J + A M K o ( Q ~ )  (9.18) 

was chosen, where .$=TI 
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where 
1 - (DdD,) A E  

Frequency parameters for varying ratios of a/b 
and D,/D, are depicted in figure 9.2. In order 
for the results of figure 9.2 to  be completely 

25 

15 

o/b 

FIGURE 9.2.--Frequency parameters for a clamped-free 
annular plate having polar orthotropy. 

minant giving a is 

definitive, the value of either v, or Vg must be 
known. Unfortunately, neither is given in 
reference 9.5. 

For the case of the inner boundary free and 
the outer boundary simply supported, a deflec- 
tion function 

was chosen, where 

and where the remaining symbols are as defined earlier in this section. The characteristic deter- 

=o  (9.21) 
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Frequency parameters for varying ratios of alb 
andDB/D, are depicted in figure 9.3.  The figure 
is not completely definitive for the same reason 
8s that given in the preceding paragraph. 

9.2 RECTANGULAR ORTHOTROPY 
The differential equation for the transverse 

bending of a plate having rectangular orthot- 
ropy is (see the appendix) : 

If the orthotropic constants D:, Di, and 
D:, are known with respect to the a? and Y’ 
coordinate axes, it has been shown (refs. 9.6 
and 9.7) that the orthotropic constants D,, D,, 
and D,, can be determined from 

D,=D: cos4 ++DI sin4 ++2D:, sin2 + cos2 4 
D,=D: sin4 ++D; c0s4 ++2D:, sin2 + c0s2 + 

Dzu= (30:+30~-220: , )  sin2 9 cos2 + 

The moment-curvature relations are 

Other useful equations are given in the appendix. 
The elastic constants are related by (see the 

appendix) 

wb ‘@r 

E2h3 Dz- 
12(1-v,Yy) 

D,= Eh3 
12 (1 - v,v,) (9.24) 

H) Gh3 
k- 12 

20 

10 

0 
01 0.3 0.5  

Q/b 

+D:.(COS~ +-sin2 412 

(9.25) 

When the angle + between the 2’- and the 
x-axis is a multiple of 22.5’, equations (9.25) 
can be used to obtain the equivalent elastic 
constants for equation (9.22). For an angle 4 
not equal to 22.5”, 45O, 67.5’, . . ., however, 
equation (9.22) is transformed into an equation 
having terms of the type d4wlbx and d4w/d23 
ay as well. 

The assumption of simple harmonic motion 

w=W(s, y) cos ot (9.26) 

gives for equation (9.22) 

(9.27) 

The strain energy of bending and twisting 
of a plate having rectangular orthotropy, 
expressed in rectangular coordinates, is 

1 “=z 

dA (9.28) 

For rectangular orthotropic plates having 
either clamped or simply supported edges, 
Hearmon (ref. 9.8) used the Rayleigh method 
to extend Warburton’s work (ref. 9.9) for iso- 
tropic plates (see chapter entitled “Rectangular 
Plates” (ch. 4)) to obtain frequency parameters 
for air; modes of vibration. The frequencies me 

etermined from the equation 

(9.29) 4Dz B4D, 2CDz, 
-4- b’ + %2@- 

FIGURE 9.X-Frequency parameters for a simply sup- 
ported free annular plate having polar orthotropy. 
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where A, B, and C are summarized in table 9.2 
for the various boundary conditions and modes. 
The terms Yi. and et in table 9-2 are given by 

9.2.1 All Sides Simply Supported 

This problem of the rectangular plate with 
311 sides simply supported ( S S S S S S - S S )  has 

yo=m?r a simple, exact solution. A coordinate system 
is chosen as in figure 9.4. The boundary 
conditions are 

%=(m+;)T 

E 0 = m  

w=O, M,=O (for x = O ,  a> 

w=O, M,=O (for y=O, b)  
(9.30) 

E 1 = (n+ a) 7r By using equations (9.23) it is seen that 

E* = (n. a) 17 (9.31) mn-x 1 nqy MI,,=&, sin - sin - 
a b 

TABLE 9.2.-Frequency Coe$icients in Equation (9.2929) 

Boundary conditions c 

I 1 I ! 1 

I : 1, 2, 3, j I, 2, 3, . . . 

.. . 
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Material 

PIywood - - _ _ _ _ _ _ _ - - - _ _ _ _ _ -  
Veneer . . . . . . . . . . . . . . . . . . . .  

satisfies the boundary conditions, where A,, 
is an amplitude coefficient determined from the 
initial conditions of the problem and m and n 
are integers. Substituting equation (9.31) into 
equation (9.27) gives the frequency 

~ ~~ ~ 

- 
Properties I 

Dz D ,  Dz, 1 term 2 terms Exact 
- 

19. 1x108 7. 1X108 4. 4X108 0. 592QX105 0. 5917X105 0. 5916x105 
2. 97 .2H . 69 I . 2131 .2136 . 2 1 3 5  

1 

(9.32) 

This result was obtained by Wearmon (ref. 
9.10) and by many others. 

The variation of frequency with a/b ratio 
was determined in reference 9.8 for several 
higher modes. This variation is depicted in 
figure . 9.5 for a five-ply maple-plywood 
plate having Dz/Dzy= 1.543 and D,/D,,=4.810. 

The accuracy of the Rayleigh-Ritz method 
as applied to orthotropic plates was studied in 
reference 9.10 by solving this problem using 
a deflection function 

W(x, y) = x(a- 2) y ( b  - y) (a2 + ax- 2 2 )  

( b2 + by - Y2) iA 1 + A2z (a - x) y (6  - y) 1 (9.3 3 ; 
where AI and Az are undetermined coefficients. 
The results obtained by taking only A, (Le., 

Y 

a 

FXGURE 9.4.-SS-SS-SS-SS plate. 

0 2 3  

7- 

s I I t 
0 I 2 3  

0 I 2 3  

0 1 2 3  
a / b  

FIGURE 9.5.-Frequency parameter wabdplD, , /d  for 
SS-SS-SS-SS, C-C-SS-SS, and C-GC-C five-ply 
maple-plywood rectangular orthotropic plates. (After 
rei. 9.8) 

A2=O) and both A, and Az are given in table 
9.3 for five-ply plywood and veneer square 
plates of birch with the orthotropic constants 
determined experimentally. 

Extensive experimental results are also given 
in reference 9.10 for several types of wood ve- 
neers and plywoods. In references 9.7 and 
9.11, this experimental work is extended t o  
study the effect on the frequencies when the 
grain of the veneer or plywood is not parallel to  
the sides of the plate. 

oppmann, Wuffington, and Magness (ref. 
9.12) simulated a stiffened plate by taking a 
steel plate and milling longitudinal grooves into 
it. In one case, the grooves were on only one 

TABLE 9.3.-$hdamen tal lii.eqzcency Parameters f5r a S8-ss-sS-88 Square Orthotropic Plate 
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1 (1950); (2020)l (2150) 
I i 

side of the plate, and, in the other, they were 
on bath sides. The dimensions and spacing of 
the grooves are given in figure 9.6. The plate 
was then considered orthotropic for purposes 
of calculation. The statically measured ortho- 
tropic constants are set forth in table 9.4. 
Nine experimentally measured cyclic frequen- 
cies for each of the plates are listed in table 9.5, 
along with theoretical results as determined 
from equation (9.32) by using the data of 
table 9.4. 

This work mas further extended in reference 
9.13 wherein an aluminum plate 11 by 11 inches 
by 0.275 inch thick had grooves 0.625 inch wide 
and 0.210 inch deep milled into one side of it. 
A typical repeating section of the plate -was 
0.75 inch wide, thereby giving 15 integral 
stiffeners each 0.125 inch wide across the width 
of the plate. Fifteen cyclic frequencies, both 
theoretical and experimental, are exhibited in 
table 9.6, where the grooves are assumed to run 
in the y-direction (i.e., D,>Dz). The corre- 
sponding measured mode shapes are depicted 
in figure 9.7. The problem was discussed 
further in reference 9.14. 

(2349) (2638) 

TABLE 9.4.--0rthotropic Constants .{or Grooved 
Plates 

I Orthotropic constants, Ib-in 

I j D, j D, 

Both sides 

D x v  Dk 
__-__ 

25 210 8920 

18 030 6480 

TABLE 9.5.--Cyclic Frequencies for Grooved 
SS-SS-SS-SS Square Plates 

~~ 

! Cyclic frequency, cps, for plate- 

Grooved on 1 side 
Mode m/n 

Theoret- ! ical 
Experi- 
mental 

366 
820 

1620 
870 

1330 
2100 
1700 
2180 
2900 

Grooved on both 
sides 

Thcoret- 
ical 

294 
657 

4250 
799 

1175 
1782 
1643 
2022 
2645 

Experi- 
mental 

302 
644 

1216 
810 

1152 
1760 
1580 
2040 
2570 

TABLE 9.6.-Experamental and Theoretical Cy- 
clic Frequencies Jor a Qrooved SS-SS-SS-SS 
Square Plate 

[Theoretical values (from eq. (9.32)) are in parentheses] 

1 Cyclic irequegcy, cps, for values of m of- 
n l  __ 

0 2568" 

0.1378" 

Crass Section of Biota Grooved 
on One Side Only 

Cross Section of Plots Grooved 
on Both Sides 

FIGURE %&--Dimensions and spacing of grooves in B stiffened plate. (After ref. 9.12) 
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FIGURE 9.7.-Experimentally observed nodal patterns for grooved SS-SS-SS-SS square plate. (After ref. 9.13) 

Wah (ref. 9.15) made a study in which he 
evaluated the accuracy of simulating the gross 
vibration modes of a beam-plate system by 
means of an orthotropic plate. The cross 
section of a plate having stiffeners of a particular 
size and spacing is shown in figure 9.8. The 
stiffeners are parallel to  the s-direction. Both 
materials are assumed to be mild steel. First, 
an "exact" solution to  the beam-plate structure 
is feud by using classical isotropic $ate theory 
for the plate and beam theory for the beams, 
including twisting. Continuity conditions are 
enforced across the stiffeners. This solution is 
compared M ith the results of orthotropic-plate 

"Half" Stiffener 

Plote Stiffener or Beam Simple Support 

FIGURE 9.8.--Cross section of a stigened plate. (After 
ref. 9.15) 

theory as displayed in table 9.7. The ortho- 
tropic constants used in the orthotropic-plate 
idealization were DJD= 3.396, D,lD= 1, and 
Dz,/D=1.08, where D is the flexural rigidity of 
the unstsened plate. The quantity p b  is de- 
fined as the mass density per unit volume of 
stiffener, and R is the number of stiffeners. I t  
would appear from table 9.7 that orthotropic- 
plate theory gives frequencies that are a$proxi- 
mately 3 percent too high regardless of the 
stiffener spacing. 

A method for representing a simply sup- 
ported gridwork of beams as an orthotropic 
plate is discussed in reference 9.16. The 
vibration of a S S - S S S - S S  rectangular ortho- 
tropic plate is also discussed in references 
9.8 and 9.17 to  9.20. 

9.2.2 Two Opposite Sides Simply Supported 

Let a rectangular plate have its sides x=O, 
z=a simply supported as shown in figure 9.9. 
It is easily seen that the solution originally 
suggested by Voigt in 1893 (ref. 9.21) for the 
vibration of an isotropic plate having t;wo 
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WbZ __ TABLE 9.7.-Frequency Parameters p d ~ " l D  for  a Stiflened SS-SS-SS-SS Rectangular Plate 

g q  for values of b/a of- 

Mode 

m= I, n= 1 

m = l , n = 2  

m=2,n=1 

m=2, n = 2  

R 
1.0 

Exact 

2. 602 
1. 464 
. 478 
. 163 
. 0586 

5.375 
3. 026 
.988 
. 336 
. 1211 

8.043 
4. 556 
1.492 
. 508 
. 183 

5.847 
1. 912 
.651 
.2343 

10. 34 

=Same  as for b/a=1, rn=n=1. 
b Same as for b/a= 1, m= 1, n= 2. 

Eq. (9.32) 

2. 660 
1. 496 
.488 
. 166 
.0599 

5. 501 
3. 094 
1.010 
. 344 
. 1238 

8. 310 
4. 674 
1. 526 
.519 
. 187 

5.985 
1.954 
. 6 6 5  
. 2304 

10. 64 

I 

X 

FIGURE 9.9.-Reetangular orthotropic plate having two 
opposite sides simply supported. 

opposite sides simply supported is also ap- 
plicable here. That is, assume 

(9.34) 
m=l  

0.5 

Exact 

1.345 
,757 
. 247 
. 0849 
.0303 

4. 346 
2.447 
.7995 
~ 272 
.098 

( 8)  

(9 

Eq. (9.32) 

1.375 
.774 
. 252 
. 086 
. 0309 

4.453 
2. 505 
. 818 
. 278 
. 1002 

ai  

b) 

0.333 

Exact 

I. 150 
. 647 
. 2 1 1  
. 072 
. 0259 

4.181 
2.354 
. 769 
. 262 
. 0942 

1. 649 
. 928 
. 303 
. 103 
. 0367 

4.593 
2. 587 
.8450 
. 2815 
. I035 

Eq. (9.32) 

1. 176 
. 662 
. 216 
. 074 
. 0266 

4.284 
2. 410 
. 787 
.268 
. 0964 

1. 686 
.948 
.310 
. 105 
. 0379 
4. 706 
2. 647 
. 8643 
. 2941 
. 1059 

with er=mrja, which clearly satisfies the 
boundary conditions we&=O at x=O, a. 
Substituting equation (9.34) into equation 

(9.35) 
as a general solution 

Ym=A, sin $,y+B, cos $,y 

where 
+@, sinh +,y+Dm cosh +,y (9.36) 

(9.37) 
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It is seen that equations (9.34) and (9.36) are 
of exactly the same form as equation (4.21) 
for isotropic plates, the only difference being 
in the definitions of the frequency parameters 
$m and 4,. 

The standard procedure for satisfying the 
boundary conditions along the sides y=O and 
g= b,  lvhatever they may be, is substitution of 
equation (9.36) into these conditions. The 
determinant of the resulting four homogeneous 
equations in A,, B,, C,, and D, is then set 
equal to  zero for a nontrivial solution. This 
yields an exact solution for the frequencies. 
This procedure mas followed by Huffington 
and Hoppmann (ref. 9.19), who presented 
frequency equations and mode shapes for all 
six cases arising from the sides y=O, b being 
either clamped, simply supported, or free, and 
the case of the sides elastically supported. 

It is easily seen that the boundary conditions 
for simply supported or clamped sides are 
identical to those of the isotropic case. I t  
was previously mentioned that the solutions 
to  the governing differential equations also 
take the same form. Thus, substitution of 
the solution into the boundary conditions for 
the three sets of boundary conditions ( S S S S -  
SS-SS, SS-C-SS-C, and SS-C-SS-SS) would 
yield the same , characteristic determinant 
in terms of J.  and 4 as that for the isotropic 
case. However, $ and 4 are related differently 
than they are in the isotropic case; conse- 
quently, the eigenvalue results (uzp/a4D) ob- 
tained for the isotropic problems in the dis- 
cussion of SS-SS-SS-SS, SS-C-SS-C, and 
SS-C-SS-SS rectangular plates (sees. 4.1, 
4.2.1, and 4.2.2) cannot be directly applied here. 

It should be noted that the form of solution 
given by equation (9.36) depends upon $ and 
CP being real, positive constants. However, by 
looking at  equations (9.37) it is seen that, 
depending upon the ratios Dx/D, and D,,/D,, 
the constants #I and t#~ may also take on zero, 
imaginary, or complex values. In  these cases 
the form of equation (9.36) must be modified. 
A careful study of this phenomenon was done 
in the case of isotropic plates (see the discussion 
of rectangular plates with two opposite sides 
simply supported (sec. 4.2)), but no systematic 

investigation of this has been made for ortho- 
tropic plates. 

By using the Rayleigh method, Hearmon 
(ref. 9.20) gave an alternate form of equation 
(9.29) for determining the fundamental fre- 
quency parameters of rectangular orthotropic 
plates having two opposite sides simply sup- 
ported. Accordingly, the fundamental fre- 
quency parameter is determined from 

(9.38) 

where J ,  K ,  and L are given in table 9.8 for 
the various cases. Fundamental frequency 
parameters for a five-ply maple-plywood plate 
determined by equation (9.38) are also given 
there. 

For the SS-C-SS-C plate (fig. 4.4) the 
boundary conditions are given by equation 
(4.25). The frequency equation is given in 
reference 9.19 as 

a2 5'sinh +b sin #b++#(1 -cosh 4b cos @I)=@ 
Dv 

(9.39) 

with $ and $I as given in equations (9.37). 
The mode shapes are 

(9.40) 

where $ and + are the roots of equation (9.39). 
The fundamental frequency parameters of a 
five-ply ~ a p ~ e - ~ ~ ~ o o d  plate determined by 
this method in reference 9.22 are given in 
table 9.8. 

Kanazawa and Kawai (ref. 9.23) solved this 
problem by an integral equation approach and 
gave numerical results for the fundamental 
frequency parameters of a square having vari- 
ous ratios of Dx/D, an Du/Dzv. These are ex- 
hibited in table 9.9. The values computed from 
equation (9.29) are fslsnd in re€erence 9.8; these 
can be compared with the footnoted values in 
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Boundary conditions 

I 

Constants in eq. (9.38) w a 2 d p / D ,  
- ___ Physical 

parameters 
Ref. 9.20 ~ Ref. 9.22 

TABLE 9.8.-Fundamentul Frequency Parameters for a 5-Ply Maple-Plywood Rectangular Orthotropic 
Plate Hawing Various Boundary Conditions 

~ ~- 

500. 56 

I I I 

a=2.0 
121. 5 129.5 94.57 94. 56 b 

3 3 . 1 1 7  

D 
v "=a12 
yD, I 237.81 I 113.4 113.4 68. 53 68. 52 

! 

20. 65 

i 
0 

I 

~ 97.41 1 97.41 91. 41 
I 

20. 65 

i 
0 

I 

48. 65 48. 65 

TABLE 9.9.--Fundamental Frequency Parame- 
ters ~~~ljp/D~. for  SS-GSS-6 Square Ortho- 
tropic Plates Having the Sides x=O and x=a 
Simply Supported 

1 
D., 1 

~ 

oaZdp/Dz, for values of D,/Dz, of- 

24. 664 
26. 397 
30. 968 
38. 384 
44. 589 

826. 595 
28. 226 
32. 507 
39. 662 

&45. 696 

table 9.9. The values from reference 9.8 are 
wa24p/~,,=21.@, 26.5, 42.2, and 45.1. 

Frequencies for this problem may also be 
determined from equation (9.29). 

For the SSC-SS-SS plate (fig. 4.8) the 
boundary conditions are given by equation 
(4.32). The frequency equation is given in 
reference 9.19 as 

6 tan $4 = # tanh 6b (9.41) 

The 

__ 

with # and 4 as given in equations (9.37) ~ 

mode shapes are 

Compare with values from ref. 9.8. 
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~ Exact value 1 (eq. (9.43)) 

where $ and 4 are the roots of equation (9.41). 
The fundamental frequency of a five-ply maple- 
plywood plate determined by this method in 
reference 9.22 is given in table 9.8. The case 
when alb=10 was also analyzed for the same 
material and gave ua2Jm= 1546.68 when 
equation (9.41) was used and 1546.96 from 
equation (9.38). 

For the SS-C-SS-F plate (see fig. 4.10) the 
boundary conditions are given by equation 
(4.36). The frequency equation is given in 
reference 9.19 as 

Rayleigh method 
(eq. (9.29)) 

($2y2- +262) sinh +b sin $b 
++$[(y2-+h2) cosh +b COS $b+2yS]=Q (9.43) 

with $ and 4 as given in equations (9.37) and 

y = D#- a2D,v, 
6 =DUJ."+dDzv, (9.44) 

The mode shapes are 

(9.45) 

Several roots of equation (9.43) were found 
in reference 9.22 for a five-ply maple-plywood 
plate having alb=2.0 and having the material 
properties listed in table 9.8. The frequency 
parameters for this plate are given in table 9.10. 
The corresponding values obtained by the 
Rayleigh method from equation (9.29) are aIso 
given in reference 9.22 and are listed in table 
9.10. It should be noted that for m = I  and 
n=3 the "exact" value is not lower than that 
of the Rayleigh method; this indicates round-off 
error in these calculations. 

For the SS-SS-SS-F plate (see fig. 4.11) the 
boundary conditions are given by equation 
(4.40). The frequency equation is (ref. 9.19) 

(9.46) 

with #, 4, y ,  and 6 given by equations (9.37) 
and (9.44). The mode shapes are 

TABLE 9.lO.-Freyuency Parameters wa2JpP, 
for a SS-C-SS-F 5-Ply Maple-Plywood 
Rectangular Orthotropic Plate 

Wa2JplD, I I- 
26. 06 
97. 68 

254. 68 
490.98 
261. 72 
212. 04 
439.74 

26. 22 
97. 70 

254.65 
491.00 
162.67 
213. 67 
441. 14 

Some numerical results for this problem are 
given in table 9.8. 

For the SS-F-SS-F plate (see fig. 4.12) the 
boundary conditions are given by equation 
(4.44). The frequency equation (ref. 9.19) is 

'\Jt"-y4-4264) sinh +b sin $b 
+24$y2h2(~osh +b COS $6- 1 > = O  (9.48) 

with $, 4, y, and S given by equations (9.37) 
and (9.44). The mode shapes are 

6 cosh 6ySy COS $y- 
Y(y'=y6(cosh +--cos $b)  

- $7 sinh +y + 46 sin 9.49) 
$q2 sinh4b-+h2 singb 

Some numerical results for this problem are 
given in table 9.8. 

Naruoka and Yonezawa (ref. 9.24) rewrote 
the differential equation (eq. (9.27)) as 

(9.50) 

I( = D,UlJrn, (9.51) 
where 

In  this form it is clear that equation (9.50) is 
factorable if K is either I or 0, and these values 
are used in reference 9.24. Furthermore, 
symmetry is taken advantage of by using 
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I _ _ _ _ _ _ _ _ _ _  
2 _ _ _ _ _ _ _ _ _ _  
4- _._______ 

8.. _ _ _ _ _ _ _ _ _  

the 5 and y-axes (see fig. 4.12;) through the 
plate centroid. Finally, the two cases 

1:1.5:2.6 1:1.1:1.4 1:1.1:1.3 
1:2.4:6.4 1:1.3:2.2 1:1.2:1.9 
1:4.8:20 1:2.1:5.1 1:1.9:3.9 
1:7.1:73 1:4.0:17 , 1:3.4:13 I I I 

are considered, and eight specialized frequency 
equations are given which consider K=O,  K= 1, 
the separate cases of equations (9.52), and 
symmetric and antisymmetric modes in c. 

Particular attention is devoted in reference 
9.24 to the first antisymmetric mode and the 
second symmetric mode, both taken with 
respect to i .  These modes are shown in figure 
9.10. Variation in frequency parameter with 
D,/D, ratio is shown in figure 9.11 for K = O ,  
K=I ,  and beam theory. Poisson’s ratio V =  

vz l /=vYz  is taken as zero and alb=2. Further 
results for varying a/b ratios are given in figure 
9.12 for the second symmetric mode. Finally, 
the ratio of second and third frequencies to the 

TABLE 9.11 .-Ratio of Second and Third Fre- 
quencies 20 the Fundamental for SS-F-SS-F 
Rectangular Orthotropic Plates 

fundamental is set forth in table 9.11 for various 
a/b and D,/D, ratios. Poisson’s ratio and K 

are not given in table 9.11 but are presumed 
to  be 0 and 1, respectively. 

For the plate elastically supported on the 
edges y=O and y=a (fig. 1.59) and simply 
supported on the other two edges, the boundary 
conditions are given by equations (4.71). The 
frequency equation is (ref. 9.19) 

{$zyz(y2- K,K3a4) - +262(62- KlK3a4) + K&a4[42(62- K,K3a4) - $2(y2- K,K8a4)] 

+a2(y+ 6) 2(K1K2+2@- KsK4a4)) sinh +b sin $b + ++[2y26’- KlK3u4 (y2 + 6’) 
-KzK4a4(62+y2-2K,K3a4) --a4(K2K3+K,K4) (y+6)2] C Q S ~  +b cos $b 

+ a $ ( $ + 6 ) ~ - K ~ a 2 y 2 + K ~ ~ 2 6 2 - K ~ a 2 ~ y z - K ~ K ~ a ~ ~  +K~+2(62-KlK3a4j 

+K2K4a4(K3a2-KK,+2)] sinh & cos $b+a+(y+6)~K~a282+K,$2y2 

+K4a2(62- K,K3u4) +KZJ/2(y2-KlKsa4) --KzK,jK3aZ+KlJ/2)] cash +b sin ’$b 

- 2+$($ -+ K1K3cc4y(y& + K2K4a4) = 0 (9.53) 

with $, 4’ y, and 6 given by equations (9.37) and (9.44) and the spring constants K,, . . ., 
determined by equations (4.71). The mode shapes are 
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0-4 

FIGURE 9.lO.-Modes of a SS-F-SS-F rectangular 
orthotropic plate. ( a )  First antisymmetric mode 
taken with respect to 1/. ( 6 )  Second symmetric mode 
taken with respect to  5. (After ref. 9.24) 
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(b) D x I D y  

FIGURE S.PP.-Frequency parameters for SS-F-SS-F 
rectangular orthotropic plates having V =  0 and 
a/b= 2; ~ = D , , t ' m .  (a )  First antisymmetric 
mode with respect to i. (b)  Second symmetric mode 
with respect to i. (After ref. 9.24) 

9.2.3 All Sides Clamped 

The problem for the plate with all sides 
clamped is described by figure 4.18. Frequency 
parameters may be calculated from a formula 
based upon the Rayleigh method given previ- 
ously as equation (9.29). Plots of frequency 
parameter variation with a/b ratio for  four 
modes were given previously in figure 9.5 for a 
particular maple-plywood plate. 
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F:GWRE 9.E-Frequency parameters for the second 
symmetric mode (with respect to i j )  of SS-F-SS-F 
rectangular orthotropic plates for various a/b ratios ; 
K =  1. ( a )  a / b = l .  ( b )  a/b=2. ( c )  a/b=4. ( d )  
a/b=8. (After ref. 9.24) 
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Method 
Isotropic case 5-ply plates 

I 

Another Rayleigh solution is obtained in 
references 9.10 and 9.17 by taking the deflection 
function 

Veneer 
plate 

W(2, 5) -[ 22- (4)2 p-(;y-J (9.55) 

which yields the fundamental frequency 

This result was also obtained in reference 9.16 
by using the Galerkin method and equation 
(9.55). In reference 9.17 the function 

W(Z, ?)=(I +cos F) (I + cos 7) (9.57) 

is used, giving 

by the Rayleigh method. Finally, reference 9.8 
gives the Rayleigh solution using beam func- 
tions described previously as 

(9.59) 

this latter clearly being the best of the three 
results listed, because i t  gives the lowest upper 
bound unless D,, is considerably larger than 
, and D,. 
Further improvement of the theoretical fre- 

quencies was obtained in reference 9.10 by 
taking the two-term de6ection function 

(9.60) 

and using the Rayleigh-Ritz procedure. The 
convergence of frequency parameters when 
equations (9.55) and (9.60) are used can be 
seen in table 9.12 for two types of square 
plates made of birch. Results are also in- 
cluded for the isotropic case for comparison 
with Tomotika’s “exact” solution (ref. 9.25). 
(See discussion of the 6-C-6-6 rectangular 
plate (sec. 4.3.1).) 

TABLE 9. I2.-Frepuency Parameters wa2& for 
C-6C-C Square Orthotropic Plates Made of 
Birch 

j ua2Jp for- 

&!!any experimentally determined funda- 
mental frequencies are also given in reference 
9.20 for plywood and veneer plates made of 
various wooden materials. In references 9.7 
and 9.11 this experimental work is extended 
in order to study the effect on the frequencies 
when the grain of the veneer OF plywood is not 
parallel t o  the sides of the plate. 

HuEngton (ref. 9.26) postulated the exist- 
ence of nonparallel node lines for clamped 
orthotropic plates; this idea was based upon 
his observations of the numerical behavior of a 
two-term Ritz solution using beam functions. 
This phenomenon is predicted by the curves 
of figure 9.13 which show frequency parameters !v 

as functions of a/b ratio for the-:case when -,e 
D,/D,,=1.543 and D,/D,,=4.810. The nu- 
Rnerical results show that the curves (each 
associated with a mode shape) do not cross but 
approach each other and veer away. In  the 
s7icinity of the location where the curves ap- 
proach each other, there is a rapid change in 
nodal patterns, as depicted in figure 9.14. It 
must be remarked that this phenomenon has 
been observed elsewhere (see discussion of the 
C-C-6-C rectangular plate (sec. 4.3.1) and 
that of the 6-F-F-F rectangular plate (sec. 
4.3.12)) and the question exists of whether it 
is the result of numerical truncation. 

Kanazawa and Kawai (ref. 9.23) solved 
this problem by an integral-equation approach 
and gave numerical results for the funda- 
mental frequency parameters of a square having 
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D, 
D,, 

_ _ _ _ _  
_.___ 

1 _ _ _ _ _ _  
2 _ _ _ _ _ _  
3 _ _ _ _ _ _  

M 
0 
3 

"_l __ 

WCL~JZ for values of D,/D,, of- 

34 % 1 1 2 1 3  
---____-- 

25.034 26.741 31. 235 38.674 44.837 
26. 741 28. 346 32. 625 39. 775 45. 820 
31. 235 32. 625 36. 408 42.939 48. 584 
38. 674 39. 775 42. 939 
44. 837 45. 820 48, 584 

3/1+1/3 mode 

3/1-1/3 mode 

0.750 0.752 0.754 0.756 0.758 

Q / b  

FIGURE 9.13.--Frequency parameters W a Z d p l D r u  against 
D,/D,,= alb ratio for a clamped orthotropic plate. 

1.543; D,/D,,=4.810. (After ref. 9.26) 

b) 

FIGURE 9.14.-Nodal patterns in the vicinity of a 
transition point. (a) Nodal patterns for mode 
3/1-1/3. (b)  Nodal patterns for mode 3/1+1/3. 
(After ref. 9.26) 

various ratios of Dz/Dz, and D,/Dz,. These are 
exhibited in table 9.13. An interesting plot of 
the results of table 9.13 is given in figure 9.15. 
It would appear from this figure that the varia- 
tion in the square of the frequency with either 

or D, is linear. 

FIGWRE Q.l5.-Fundamental frequency parameters 
w2a4p/DZ,7r4 against DJDzu  and D,/Ds,  for G C -  
C-C orthotropic square plates. (After ref. 9.23) 

9.2.4 Other Boundary Conditions 
Frequency parameters for C-C-C-SS and 

C-C-SS-SS rectangular orthotropic plates may 
be determined from the RayIeigh formula given 
previously as equation (9.29). Plots of fre- 
quency parameter against a/b ratio for four 
modes are given for the C - 6 - S S S S  case in 
figure 9.5. 
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D y '  
Ds, 

_ _ _ _ _  
_ _ _ _ _  

B _ _ _ _ _ _  
2 _ _ _ _ _ _  

263 

% I %  1 2 3 
_--_______-- 

22. 848 24.706 29. 516 37. 239 43.652 
23. 796 25. 587 30. 261 37. 864 44. 162 
26. 361 27. 989 32. 328 39. 542 45. 576 
30. 786 32. 191 36. 031 42. 634 48. 330 

An integral-equation approach (ref. 9.23) 
gave numerical results for the fundamental 
frequency parameters of square plates having 
C-C-C-SS and C-C-SS-SS edges. These are 
listed in tables 9.14 and 9.15. 

3 _ _ _ _ _ _  1 34.604 35.891 39. 393 45.494 50.874 

TABLE 9.15.-Fundamental Frequency Param- 
eters w a 2 m y  j o r  C-C-SS-SS Orthotropic 
Square Plates 

% _ _ _ _ _  

i _ _ _ _ _ _  
2 _ _ _ _ _ _  
3 _ _ _ _ _ _  

_ _ _ _ _  

where 

20. 428 21.483 24.302 29.061 33.056 1 .  21. 483 22. 493 25. 194 29. 794 33. 749 s22-=- SIR' 
24,302 25. 194 27.647 31.910 35.599 Ez 

1 +- cos4 B 29. 061 29. 794 31. 910 35. 681 39. 064 
33.057 33.749 35.599 39.064 42. 184 Ell 
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where 0 is the angle measured from the x-axis. 
Because of the formidability of equation (9.61) 
it appears that no solutions to it exist in the 
literature. Nevertheless, it would appear that 
convergent solutions in the form of equation 
(1.15) are certainly possible. 

Experimental results were obtained in ref- 
erence 9.27 for a clamped circular plate of 
aluminum having longitudinal slots milled 
into it to  approximate an orthotropic plate. 
The cross section of the plate is shown in 
figure 9.16. Measured frequencies and nodal 
patterns are given in figure 9.17. It can be ex- 
pected that the frequencies for higher modes 
will be considerably different from those of a 
homogeneous, ortho tropic plate. 

A one-term Galerkin solution (ref. 9.16) 
gave the fundamental frequency for the clamped 
orthotropic circular plate as 

(see discussion of rectangular plate with two 
opposite sides simply supported (sec. 9.2.2)). 
The identical result was obtained in reference 
9.17 by using the Rayleigh-Ritz method. 

FZGURE S.IB.--Cross section of stiffened plate; dimen- 
sioris are in inches. (After ref. 9.27) 

Parallel Stiffeners 
Clamped Boundary 

Fundamental Mode Frequency = 710cps Frequency=1020 cps 
Frequency = 530cps  

Frequency=l380 cps Frequency=IB70 cps 

Frequency = 238Ocps Frequency.i?POO cps 

FIGURE 9.17.-Experimentally observed cyclic frequen- 
cies and nodal patterns for a clamped circular plate 
having stiffeners. (After ref. 9.27) 

9.2.6 EHipticai Plates aving Rectangular Orthot- 

In reference 9.16 the Galerkin method is 
ropy 

used with the one-term deflection function 

i 

(see fig. 3.1) to analyze the clamped ortho- 
tropic elliptical plate. The resulting frequency 
is 

w2=--- 41 52 ($+- D 2D2, -+F) D, 
P 3 a2b2 (9.65 ) 

In reference 9.27 experimental results were 
obtained for clamped elliptical plates of alumi- 
num having longitudinal slots milled into them 
parallel to the axes as shown in figure 9.18. A 
cross section showing slot dimensions is seen 
in figure 9.16. The afb ratio for the ellipses 
was apparently 2.0. Resulting frequencies 
and nodal patterns for the two plates are shown 
h figures 9.19 and 9.20. 
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F I G U R E  9.18.-Elliptical plate with slots milled parallel 
to  major and minor axes t o  simulate an orthotropic 
plate. (From ref. 9.27) 

w 
Clamped Boundary 

Fundamental Mode 
Frequency = 850 cps 

Frequency-1150 cps 

Frequency= 1490cps 

Frequency = 2630 cps 

------- 

Frequency = L960 cps 

------- 
Frequency =3320 cps 

FIGURE 9.19.-Experimentaily observed cyclic fi-equen- 
eies and nodal patterns for a clamped elliptical plate 
having stiffeners parallel to  the major axis. (After 
ref. 9.27) 
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Chapter 10 

es 

I n  this section the effects of forces acting in (see the appendix). It is emphasized that the 
the plane of the undeformed middle surface of inplane forces are generally found by first 
the plate d l  be considered. The differential solving the plane elasticity problem for known 
equation of motion expressed in rectangular boundary values of N,, N,, and ATzu. If these 
coordinates in this case becomes (see the quantities are constant around the boundary, 
appendix) : it is well known that they are also constant 

throughout the plate, and equation (1O.I) is 
a =+ b4W 2Dz, b4W + 0, -+ b4w P bt2 b2w further simplified to the case of constant 

by4 coefficients. I n  the special case of uniform 

equation for the isotropic plate simplifies to  

= ~ , - - + 2 i j ~ , , - + ~ ~ -  b2W b2W b2W (10.1) boundary tension (N,=N,=N; Nzy=O), the 
6 X 2  b x b y  b f  

where D,, D,, and D,, are the constants of 
rectangular orthotropy, as used extensively in 
the discussion of rectangular orthotropy of 
anisotropic plates (sec. 9.2). Because no pub- 
lished results are known for plate vibrations 
when both inplane forces and orthotropy are 
present, only the isotropic constant 13 mill 
appear in the remainder of this section. 

The inplane force intensities N,, A',, and N,, 
are assumed t o  be functions of on13 the spatial 
coordinates x, y or r ,  8. That is, they do not 

epend upon time nor upon the transverse 
deflection w. These assumptions ore required 
in order that- 

(1) The vibration be free, not forced 
(2) The equation of motion remains linear 

lnplane forces not depending upon 20 can be 
realized in one of the following two ways: 

(1) The boundary conditions provide no 
fixity in the plane of the plate 

( 2 )  Tbe deflection is sufficiently small relative 

b2W 
at2 

DV~w--NV2w+p--=@ (10.2) 

Assuming sinusoidal time response, equation 
(10.2) becomes 

where W is solely a function of the spatial co- 
ordinates. Furthermore, it can be seen Ghat 
equation (10.3) can be factored into 

* .  
(v" + 2) (V2- p* 1 w= 0 (10.4) '; 

(10.5) 

to the initial tension or compression in the 
plate so that the inplane forces are not signifi- 
eantly &ected. 

The normal forces N, an IV, aseFpositive in 
equation (10.1) if the pla is in tension; the 
shear force N,, is positive according to the 
accepted convention of the theory of elasticity 

10.1 CIRCULAR PLATES 
The main results arailable for circular plates 

for the case of hydrostatic inplane force. 
en v2 is expressed in terms of polar coordi- 

nates by means of equation (1.10) and Fourier 
components in e are assumed as in equation 

267 
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(1.15), equation (10.4) yields the two second- 
order equations 

) (10.6) 

respectively, where J,, Y,, I,, and K, are 
Bessel functions, as discussed in the section 
covering solutions of the classical equations 
(sec. 1.121, and A,, . . ., D, are undetermined 
constants. Thus, the general solution to  equa- 
tion (10.4) in polar coordinates is 

~ ( r ,  0>=2 IAnJn(m>+BnYn(m)+ QnIn(or1 
n=O 

+0,&(Pr)j COS d+Z I&Jn(m)+RYn(m) 
n= 1 

+C,*I,(Pr)+D*,K,(Pr)] sinno (10.8) 

10.1 .f Clamped Circular Plates 

defined by figure 2.1 and bo 
equations (2.2). Because all 
tion have symmetry with respect to  at least one 
diameter, the terms of equation (10.8) involving 
sin ne can be discarded. Furthermore, in 
order to  avoid singularities at  the center of the 
plate, B, and D, must be set equal to  zero. 
The deflection function therefore becomes 

The problem of ed circular plates is 

Substituting equation (10.9) into equations 
(2.2) yields, for a nontrivial solution (refs. 
10.1 to  10.4), the characteristic equation 

O F  PLATES 

and 2 nodal circles and nodal diameters for a 
range of inplane forces varying from tension to 
compression. These results are given in table 
10.1. Herein the quantity 4 is used as a 
multiple of the critical buckling load in com- 
pression ; that is, 

Na2 +=----- 
14.680 (10.1 1) 

Accordingly, the I vibration frequency of the 
fundamental mode goes to zero as 4 goes to  
- 1. Frequency parameter values for inter- 
mediate values of 4 not found in table 10.1 
may be obtained from figure 10.1 by using the 
last of equations (10.5). In  this figure, n identi- 
fies the number of nodal diameters and s, the 

TABLE lO.l.-Frequency Parameters oa2JplD 
j o r  a Clamped Circular P2ate Subjected to 
Inplane Force N 

Wah (ref. 10.1) determined the roots of 
equation (10.10) for mode shapes having 0, 1, 

2. 00 
1. 50 
1. 00 
.50  
.25  

0 
-. 25 
-. 50 

-1.00 
2. 00 
1. 50 
I. 00 
. 50 
.25 

-. 25 
-. 50 

-1.00 
2. 00 
1. 50 
1. 00 
. 50 
. 25 

0 

0 
-. 25 
-. 50 

-1.00 

oaZJrD for values of 
n of- 

0 

17.37 
15. 92 
14. 30 
12. 44 
11.39 
10.21 
8. 91 
7. 28 
0 

50. 60 
48. 17 
45.52 
42. 75 
41. 29 
39.77 
38. 19 
36.55 
33. 03 

101. 81 
98. 77 
95.44 
92.33 
90.59 
89. 09 
87.45 
85. 76 
82. 28 

I 

30. 61 
28.59 
26.41 
24. 00 
22. 81 
21. 25 
19. 61 
17.94 
14. 31 
71.87 
69.27 
66. 38 
63.47 
62.02 
60. 37 
58. 81 
57.21 
53. 79 

128. 52 
125. 20 
121. 99 
118. 89 
117. 39 
115. 78 
114. 16 
112. 48 
L08.82 

2 

45. 67 
43. 39 
40. 91 
38. 07 
36. 72 
35. 05 
33.53 
31.75 
28. 08 
97.11 
94.09 
91.31 
88.04 
86. 39 
84. 82 
83. 34 
81. 81 
78. 25 

166. 06 
162. 93 
159. 70 
156. 39 
154. 84 
153. 26 
151. 65 
150. 04 
146. 48 
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2 0  number of internal nodal circles. On this 
figure are also shown the limiting values of the 

1 5  membrane frequency parameter p, where 

10 p = w a d p  (10.12) 

These limiting values mould apply as the in- 
plane force becomes extremely large; in partic- 
ular, the plate frequency approaches that of 
the membrane as aa+p and if 

# 0 5  

0 ,  
3 

-0 5 (112) cr2D/N< < 1 (10.13) 

-I 0 Reference 80.1 is the most recent work on 
this problem which solves the exact character- 
istic equation (eq. (10.10)). However, much 
earlier work (refs. 10.2, 10.3, and 10.4) preceded 

2 0  this and also used equation (10.10). Bickley 
(ref. 10.3) in an early paper determined the 

I 5  frequencies for a clamped circular plate in ten- 
sion by means of equation (10.10). These are 

IO the exact values listed in table 10.2. Lower 
and upper bounds on the frequency parameter 
are calculated in reference 10.3 by means of the 
Southwell (ref. 10.5) and Rayleigh (ref. 10.6) 

0 5  methods, respectively. These &re also dis- 
t It is observed from table 

-0 5 10.2 that the Southwell method gives less per- 
cent error as the mode number is increased. 

- I  0 The Rayleigh method is well known. A de- 
flection function of the form 

( 0 )  

; played in table 10.2. 

(b) 

2 0 = ( a ~ - r ~ ) ~ r ~  cosn0 (10.14) 

was used in conjunction with the Rayleigh 
method. Equating maximum potential and 
kinetic energies of the system yields 

The Southwell method uses the inequality 

w:+w; 5 w2 (10.16) 

where w is the exact frequency of a system 
having two forms of strain energy and w1 and 
w2 are the frequencies of the system when each 
form of the strain energy is taken separately. 

FrGURE lQ.l.-Frequency parameters ana and fin. for a 
clamped circular plate subjected to inplane force N ;  
a2@2=pco2/D. (a) Zero nodal circles. ( b )  One nodal 
circle. (c) Two nodal circles. (After ref. 10.1) 
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TABLE 10.2.-Frequency Parameters wa2 Jm o j  a Clamped Circular Plate Subjected to Inplane 
Force N ~ _ I  

1 

n l s  

0 

1 

2 

I 

I --- 
2 1  0 

Naz 
D 

_- 

0 
1 
4 

25 
100 
400 

m 

0 
1 
4 

25 
100 
400 

m 

0 
1 
4 

25 
100 
400 

m 

0 
1 
4 

25 
100 
400 

m 

0 
1 
4 

25 
100 
400 

m 

0 
1 
4 

25 
100 
400 

m 

Exact method 
(ref. 10.3) 

10. 216 
10. 552 
11. 486 
16. 527 
27.483 
50.792 

39.772 
40. 190 
41.419 
49. 146 
69.916 

120.59 

89. 104 
89.550 
90. 875 
99. 648 

126.01 
198.53 

21. 260 
21.652 
22.783 
29.447 
45. 563 
82. 146 

- - - - - - - - - - - _ - _ _ _ _ _ _ _ _ _ _  

60. 828 
61.263 
62. 550 
70. 891 
94.733 

156.49 
- - - - - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

34.877 
35.296 
36. 529 
44.117 
63.994 

111.64 
- - - - - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

o a 2 m  derived by- 

Southwell method 
(ref. 10.5) 

10.216 
10.495 
11. 291 
15.778 
26. 128 
49. 169 

2. 4048-D 

Rayleigh method 
(ref. 10.6) 

10. 328 
10. 646 
11.547 
16. 533 
27.809 
52.662 

4 . 4 7 2 1 4 W D  

39.772 
40. 152 
41.272 
48.396 
67.996 

117.25 
5.5151dNFD 

89.104 
89.523 
90.770 
99.054 

124. 21 
194. 67 

8. 65374 i~wD 

21. 260 
21.603 
22. 600 
28. 619 
43. 820 
79.529 

3.83174NwD 

60.8284 
61.2307 
62.4259 
70.2182 
92.8547 

152.931 
'7. 0 1 5 5 5 m D  

34. 877 
35.253 
36.358 
43.310 
57. 043 

108.47 
5. 13574NTD 

21.909 
22.271 
23.324 
29.665 
45. 607 
82.946 

41/Na2/D 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

36. 661 
37. 040 
38. 158 
45.211 
64.374 

112.00 
5.2915-D 
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In  the present problem, w1 can be taken as the 
frequency of a clamped circular plate with no 
inplane force and w2, as the frequency of a 
circular membrane (no flexural stiff ness) having 
a fixed boundary and membrane tension T.  
Equation (10.16) then gives a lower bound on 
the exact fundamental frequency; for example: 

‘ > 0 [ 1 0 4 . 3 6 + 6 . 7 8 3 ~ ]  =pa4 (10.17) 

Federhofer (ref. 10.4) obtained solutions to 
equation (10.10) for a wide range of inplane 
forces. These are summarized in table 10.3. 
This table is more complete than table 10.1 in 
the sense that it utilizes a range of compressive 
forces up to the limiting buckling load for each 
axisymmetric mode, instead of the fundamental 
mode only. Reference 10.4 gives the radii of 
the nodal circles for s>O, and these are also 
presented in table 10.3. A plot of the variation 
of the frequency parameter as a function of the 
inplane force is shown in figure 10.2 for the 
first three axisymmetric modes. 

A perturbation technique was developed for 
the problem in references 10.7 and 10.8. The 
parameter NID mas used as a. perturbation 
parameter, and the plate with no inplane force 
was the starting point upon which the pertur- 
bation was based. In  addition to obtaining 
frequency parameters which compared reason- 
ably well with the exact vahes given earlier in 

u l a = m  

+2 *I 0 - 1  -2 

a f i  

FIGURE 10.2.--Frequency parameter wa2JpjD for n 
clamped circular plate subjected to inplane force N. 
(After ref. 10.4) 

TABLE 10.3-Frequency Parameters wa24pm 
and Nodal Circle Radii f o r  a Clamped Circular 
Plate Subjected to Inplane Force N 

Na2]D 

____ 

16 
9 
4 
1 
0 

--I 
- 4  
- 9  
- 14. 682 

16 
9 
4 
1 
0 

-4 
- 16 
- 36 
-49. 219 

26 
9 
4 
1 
0 

- 9  
- 36 
- 81 
- 103.50 

0 
-1 
-4 
- 9  
- 16 
-26.368 

0 
-4 
- 16 
- 36 
-70. 846 

-__ 

0 
-9 
- 36 
- 81 
- 135. 02 

0 
- 4  
- 16 
- 36 
-40. 692 

14. 6028 
12. 8851 
11.4855 
10. 5478 
10. 2150 
9. 8712 
8.7460 
6. 4129 
0 

45.9954 
43. 3848 
41. 4179 
40. 1909 
39. 7707 
38. 053 
32. 350 
19. 663 
0 

95. 9824 
93. 0392 
90. 8766 
89. 5514 
89. 1042 
84. 985 
71. 226 
39. 222 

0 
21.261 
20. 862 
19. 611 
47. 321 
13.427 

60. 829 
59. 056 
53. 390 
42. 295 

120. 078 
116. 476 
102. 418 
74. 775 

0 

0 

0 
34. 876 
33. 148 
27. 267 
11. 972 
0 

Nodal circle radii, 
ria 

0, 38550 
. 38297 
. 38086 
.37947 
I 37900 
. 37690 
. 36952 
. 33830 
. 26634 

,42228 
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this section, the modes having 3, 4, 5 ,  and 6 nodal diameters were also investigated, but the per- 
turbation technique did not give accurate results. The Rayleigh and Southwell techniques were 
also employed, thereby obtaining bounds. Resulting frequency parameters are given in table 
10.4. 

A method 
for including translational and rotational springs acting at discrete points within the interior of 
the plate was proposed and demonstrated for the case of a translational spring of stiffness k a t  
the center. In  addition to  the 
boundary condition equations (2.2) , the conditions of transverse force equilibrium and null slope 
at  the center are enforced. For the axisymmetric modes, the resulting characteristic determinant 
takes the form 

The problem was also discussed from a variational standpoint in reference 10.2. 

All terms applying to cos n6 are retained in equation (10.8). 

1 

(10.18) 

where 

Na2 Na2 
2 0  

ka2 p=- 
2nD 

(10.19) 

x2= w a 2 q D  

TABLE 10.4.-Frequency Parameters ma2 Jpl 
for the Higher Mode Shapes (Hawing no Nodal 
Circles) of a Clamped Circular Plate Sub- 
jected to Inplane Force N 

m 2 G D  derived by- 

Southwell 
method 

51.02 
51.42 
81. 68 
69. 72 
70. 13 

103.03 
90.71 
91.13 

126. 24 
115. 13 
115. 56 
152. 12 

Rayleigh 
method 

51.20 
51.64 
83. 82 
70. 06 
70. 50 

105.49 
91.47 
91.90 

128.71 
115. 00 
115.79 
155. 79 

Frequency parameters ( ~ ~ a ’ p / D ) ” ~  obtained 
as the lowest roots of equation (10.18) are 
plotted in figure 10.3 as functions of the inplane 
loading parameter Na2/D and the spring con- 
stant parameter { (ref. 10.2). The inplane 
forces are entirely in the compressive range, 
as indicated. The broken curve indicates fre- 
quency parameters for the mode having one 
nodal diameter. Hence, for a given inplane 
compressive force, as the spring constant is 
increased the fundamental mode of 
d l  abruptly change from axisymmetric to 
antisymmetric. It is obvious that a transla- 
tional spring at the center affects only the 
axisymmetric modes of the plate. 

10.1.9 Simply Supported Circular Plates 

The problem of simply supported circular 
plates is defined by figure 2.2 and boundary 
condition equations (2.9). 

The only known solution to the problem 
was derived by Wah (ref. 10.1). Using the 
deflection function in - the form given by 
equation (10.9) and substituting it into equa- 
tions (2.9) and (1.11) yields the characteristic 
equation 
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(w'a'p/D ) "' 
5 

4 

3 

2 

I 

0 
0 -10 -20 -30 - 40 

FIGURE 10.3.-Frequency parameter A= (o2a4p/D) +i as 
a function of the spring constant parameter {=ku*/ 
2rD for a clamped circular plate having a transla- 
tional spring a t  the center and subjected to inplane 
force M. (After ref. 15.2) 

The roots of equation (10.20) were determined 
in. reference 10.1 for mode shapes having 0, 1, 
and 2 nodal circles and nodal diameters for a 
range of inplane forces varying from tension 
t o  compression. These results are given in 
table 10.5 for v=0.3. Herein the quantity 4 
is used as a multiple of the critical buckling 
load in compression; that is, 

Na2 
+=4.20 (10.21) 

Frequency parameter values for intermediate 
values of 4 not found in table 10.5 may be 
obtained from figure 10.4. For an explanation 
of the method of using this figure, see the 
preceding section. 

. I  .3  
The problem of completely free plates is 

defined by figure 2.3 and the boundary COR- 

ditions 

Completely Free Circular Plates 

M,(,>=O 
bw (10.22) VT(a)SN,(a) - (aj=0 br" 

TABLE 10.5.-Frequency Parameters a a 2 m  
for  a Simply Supported Circular Plate Sub- 
jected to Inplane Force N; v=O.S 

Number 
of nodal 
circles, s 

Nu2 ,$=- 
4.20 

2. 00 
1. 50 
1. 00 
. 50 
. 25 

0 
-. 25 
-. 50 

-1.00 
2. 00 
1. 50 
1. 00 
. 50 
. 25 

0 
-. 25 
-. 50 
- 1.00 

2. 00 
1. 50 
1. 00 
. 50 
. 2 5  

-. 25 
-. 50 
-1. 50 

0 

ou2JTD for values of 
n of- 

0 

8. 55 
7. 81 
6. 99 
6. 05 
5. 52 
4. 94 
4. 27 
3. 46 
0 

33.75 
32. 79 
31.80 
30.78 
30. 25 
29.72 
29. 17 
28. 62 
27.49 
78. 28 
77. 27 
76. 24 
75. 21 
74. 69 
74. 15 
73.62 
73.09 
72. 00 

1 

17.47 
16. 55 
15. 57 
14.55 
13. 98 
13.47 
12. 86 
12. 23 
10.95 
52. 05 
51. 07 
49. 94 
48.92 
48.41 
47.89 
47.36 
46. 78 
45. 60 

107. 54 
106. 52 
105. 50 
104. 49 
103. 94 
103.43 
102.90 
102.37 
101.30 

2 
__- 

29. 55 
28. 62 
27. 62 
26. 64 
26. 12 
25. 60 
25. 07 
24. 53 
23. 41 
72. 97 
71.97 
70. 96 
69.93 
69. 39 
68. 89 
68. 36 
67. 83 
67. 76 

138. 62 
137. 67 
136. 65 
135. 60 
135.02 
134. 56 
134.16 
133. 52 
132. 36 

~ 

with M ,  and V, as given in equations (1.11) 
and (1.131, and N ,  is the radial, inplane tensile 
f5orce. 

Although the concept of a completely free 
plate subjected to  inplane forces may be 
difficult to visualize a t  first, there exist a t  
least four distinct types of problems where 
this phenomenon may arise: 

(1) A boundary having a strip around it 
which is prestressed into tension 

(2) Spin about an axis (not necessarily 
normal to  the plate) causing centrifugal fields 

(3) Thermal gradients in the r- and 6-di- 
sections 

(4) Internal residual stresses 
working or heat treatment 
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Indeed, the preceding discussion is not limited 
to circular plates, but can apply to plates of 
arbitrary shape. In  the case of the circular 
plate, results exist for loadings of the second 
and third types. 

Lamb and Southwell (ref. 10.5) examined 
the problem of the completely free circular 
plate spinning about its cylindrical axis with 
uniform angular velocity Q. If the terms in 
the differential equation (10.1) which represent 
the restoring forces due to flexural rigidity are 
neglected, equation (10.1) becomes, in polar 
coordinates, 

where N, and NO are axisyrnmetric radial and 
circumferential forces, respectively, determined 
by first solving the uncoupled plane elasticity 
problem 

N,.=%(~+v) 1 p02(a2-r2) 

(10.24) 
N8=-p02 P j(3+~)a~-(1+3v)r~] 

8 

The problem is solved by assuming a series 
solution 

20 

IS 

10 

0 

-0 5 

-I 0 
( C )  

FIGURE 10.4.-Frequency parameters an* and Pn. ior a 
simply supported circular plate subjected to  inpiane 
force N; a 2 / 3 ’ = p ~ 2 / 1 ) ;  r=0.3.  (a)  Zero nodaI circles. 
(b)  One nodal circle. (6)  Two nodal circles. (After 
X f .  10.1) 

w = R  9 Cz,(~)cosnO cos(&++) (10.25) 
n=o t = O  

The frequency’ of the mode having n nodal 
diameters and s nodal circles is given by 
(ref. 10.9) 

Q2 

8 
m2=-[(n+2s+2) (n+&> ( 3 $ - v )  -n*(1+3~)] 

(10.26) 

and the mode shapes are determined from 

- .. . cos& (10.27) 
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In  references 10.5 and 10.9 an approximate 
method is formulated for solving the problem 
when the terms including the flexural rigidity of 
the plate are included within the differential 
equation of motion. 

Massa (ref. 10.10) analyzed the problem of 
a completely free circular plate subjected to 
the thermal gradient 

This gives rise to  inplane forces of the form 

(10.29) 

where LY is the coefficient of thermal expansion. 
The problem is solved by the Rayleigh- 

Ritz technique. Poisson's ratio is taken to 
be 0.3. For the axisymmetric modes a deflec- 
tion function 

1-2.6161 - $1.1090 - (3' (3 

is taken, where A and B are undetermined 
constants. This function satisfies not only the 
boundary conditions of the problem but also 
the condition that the total momentum of the 
plate be null. The first two axisymmetric 
frequencies can be found from 

F65.54 

(10.31) 

there the subscripts of wns identify the number 
of nodal diameters and circles, respectively. 
The first ~ x ~ s y ~ m e ~ ~ ~ c  mode shape is 

4 

~ . 3 5 3 0 ( ~ ) ~ + 0 . 0 2 8 0 ( ~  a 

275 

(10.32) 

and has a nodal circle at  r=0.6790a and an 
amplitude at  the boundary of W,, (a) = 
-0.7423C1. The second axisymmetric mode 
shape is 

and has nodal circles at r=0.4013a and 
r=0.8472a and an amplitude at  the boundary 
of WO2(a)=0.5336Cz. 

a deflection function 
For the modes having two no 

is taken, which satisfies the boundary condi- 
tions. Employing the Rayleigh-Ritz procedure 
gives for the squares of the frequencies 

59.1 1-1.249 

i56 .48  

(10.35) 

The corresponding mode shapes are 
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Nodal diameters 
___ 

3 I 
I 0 1 2 

and that for rectangular plates results are available 
for other types of elementary inplane stress 
fields, in addition to hydrostatic. 

For the isotropic plate, when sinusoidal time 
(10.37) response is assumed, 

and have a nodal circle at r=0.8279a. 

1Q.i.4 Rotating Disk, Clamped at Center, Outer 
Edge Free becomes 

Southwell (ref. 10.11) analyzed the problem 
of a circular disk which is clamped at  its center, 
is free a t  its outer edge, and is rotating with 
constant angular velocity 8. He again used the (10.40) 
method for finding lower bounds on the fre- 

The frequencies are given by 

w ( x , ~ , t ) = W ( ~ , y )  sin (ut++) (10.39) 

The differential equation of motion (eq. (10.1)) 

N b2w N a2w N b2w v4W-k4W=--4:-+2"U-+>- D bx' D bx b y  D by2 

d u x e  
(10.41) 

D N ,  are constants, say Nl and Nz,  
W~=KIQ'+KZ - respectively, and N,,=O, equation (10.40) Pa4 

quencies which was discussed in section 10.1.1. k"-% w2 

becomes 
where Kl and K2 are given in table 10.6 and 
v=0.3.  

N a2w N a2w 

D ax2 D by2 V4W- k 4 W - L  - +2 - (10.42) 

which is of a form particularly amenable to 
solution. 

10.2 RECTANGULAR PLATES 
As described in the chapter entitled "Rec- 

tangular Plates" (ch. 41, there exist 21 pos- 
10.2.1 Plates Having Alf Sides Simply Supported sible combinations of simple boundary con- 

ditions for rectangular plates. Results were The boundary conditions for the problem of 
found in the literature for all 21 cases for plates having all sides simply supported are 
isotropic plates not having inplane forces. As defined by equations (4.18) and figure 10.5. In 

be Seen in the fo]lowing discussion, pub- figure 10.5, the positive Senses Of the inplane 
Bished results exist for very few cases when forces N,, N,, and N,, are shown for the special 
inplane forces are present. Also, it will be seen case when each is constant throughout the plate. 

TABLE 10.G.--Constants f o r  Eq. (10.58) To Determine the Frequencies of a ~ o t u t i n ~  Disk Which 
I s  Clamped at Its Center and Free on Its Outer Edge 

K1= 1 
Kz= 0 
KI= 5.95 
Kz= 421.2 
K1= 14.2 
Kz= 3336 
Ka= 25.75 
Kz= 14380 

K1= 4.05 
Kz= 155.3 
K1= 12.3 
Kz=2839 
K I =  23.85 
Kz= 11700 
K1= 38.7 
Kz= 36274 
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FIGURE 10.5.-Simply supported rectsnguiar plate hav- 
ing uniform inplane forces. 

For Nz=Nl, N,=N,, and Nzy=O, an ele- 
mentary solution exists. Letting W(z,  y) be 
given by 

0) max . nsy kt / ' (~ ,y)= &,sin-- s i n 7  (10.43) 
m, n = l  a 

clearly satisfies the boundary conditions of the 
problem. Substituting equation (10.43) into 
(10.42) yields the frequency equation 

If equation (10.44) is multiplied through by 
a4/D, there results the dimensionless form: 

Simplifications that result in equations (10.44) 
and (10.45) when, for example, Nl=N2 or Nz 
= O  are clearly evident. It is also obvious that 
if either Nl or N2, or a combination of them, 
beco mes sufficiently large in a negative sense 
(ie.,  compression), the frequency can be re- 
duc ed to  zero, which yields the combinations 
of N I  and N z  which are critical buckling loads 
for the problem. For example, let N2=0.  
Then the critical buckling load is given by 

f 10.46) 

If Nl and N z  are compressive (i.e., negative), 
then it can be seen from equation (10.44) that 
the fundamental mode does not necessarily 
occur when m=n=l  but depends upon N,, N,, 
and the alb ratio. Thiswasshown by Herrmann 
in reference 10.12 for the special case when Nz 
=O. For this case, substituting equation 
(10.46) into equation (10.44) gives 

where (Nl)cr is clearly a negative quantity. 
Thus, the fundamental frequency for this 
loading will always occur when n=l, but not 
necessarily when m = l .  This phenomenon is 
illustrated in figure 10.6 (from ref. 10.12) 
where the frequency ratio (w/wJ2 is plotted as 
a function of the ratios NI/ (NJcr  and a/b. The 
quantity w S  is defined by 

(10.48) 

and is the square of the fundamentd frequency 
of an unloaded, simply supported square plate. 

Fraction of Critical Loading N, 
( N , ) C ,  

FIGURE 10.6.--Pnfiuence of inplane force N,=NI on 
the fundamental frequency of a SS-SS-SS-SS rec- 
tangular plate for various plate aspect ratios. (After 
ref. 10.12) 
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The influence of a body force is also con- 
sidered in reference 10.12. The body'force is 
assumed to be acting in the x-direction and 
may be due to  the weight of the plate (if it is 
in a vertical position), or it may arise from 
acceleration in the negative x-direction. Thus, 
in this case, all the inplane forces are not 
constant but are given by 

N,= Ni - yb 2 

N, = N,, = 0 
(10.49) 

where Nl is the inplane tension at  the end 
x=O, and y is the body force (force per unit 
area). The Rayleigh method was used to 
solve the problem, with the first term (m=n= 1) 
of the sine series expansion for deflection (eq. 
(10.43)) being kept. This yielded the frequency 
parameter 

(I 0.50) 

The frequency ratio ( W / W ~ ) ~  is plotted in figure 
10.7 as a function of the ratio Nl/(Nl)cr and a 
parameter E defined by 

(10.51 ) 

for the particular aspect ratio alb=3. The 
quantity w, is defined by equation (10.48). 

Frequency parameters for this problem were 
computed in reference 10.13 for use in deter- 
mining lower bounds for completely clamped 
square plates subjected to  hydrostatic tension. 
These are listed in tabIe 10.7. 

Some experimental results are reported in 
reference 10.14. A 24S-T duralumin plate, 12 
inches by 12 inches by 0.040 inch thick, was 
simply supported along all edges and subjected 
to the constant inplane load N,=N, and 
Ny=Nzy=O. It was found that the experi- 
mentally measured frequency does not decrease 
as rapidly as that predicted by theory when the 
compressive loading is increased. This is 
shown in figure 10.8. In reference 10.14 this 
effect is attributed to the possibility of slight 
initial curvature in the plate. 

6 

5 

4 

$ 3  
% 

2 

I 

0 
0 0 25 0 50 0 75 

FIGURE IO.?.-hfluence of end loading N1 and body 
force ratio 5 on the fundamental frequency of a 
SS-SS-SS-SS rectangular plate for aib= 3. wi= 
4Lh4/paZba; E =  rab2/9D. (After ref. 10.12) 
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FIGURE HO.B.--Deviation of experimentally measured 
frequencies from those predicted by theory for a 
SS-SS-SS-SS square plate loaded in one direction. 
(After ref. 10.14) 
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Nu2 
8 2 0  
- 

TABLE 10.7.-Frequeney Parameters for a Square 
Plate Subjected to Hydrostatic Tension and 
Hauing Clamped Boundaries Compared With 

Frequency parameter? 
for simply supported 

plate 

wrla2-\lrD 012a2dplD 

__ 

Those -for a Plate With 
Boundaries 

Lower 
bound 

Simply Supported 

Upper 
bound 

49. 580 
59. 922 
68. 580 
76. 124 
89. 268 

110. 60 
148.26 
207. 79 

I I 

49. 847 
60.392 
69. 271 
77.088 
90.656 

112. 90 
154.98 
215.69 

10 _ _ _ _ _ _ _  
15 _ _ _ _ _ _ -  
20 _ _ _ _ _ _ _  
30 _ _ _ _ _  - -  
50 _ _ _ _ _ _ _  
100 _ _ _ _ _ _  
200 _ _ _ _ _ _  

69. 788 
85.473 
98. 696 

110. 34 
130. 56 
163.67 
226. 14 
315.98 

48. 350 
57.549 
65.467 
78. 96 

100.65 
140.96 
198.38 

Frequency param- 
eter w a 2 d J B  for 

clamped plate 

The perturbation technique is demonstrated 
in reference 10.15 for the case of hydrostatic 
tension. The basic problem used is that of the 
unloaded plate. One perturbation gives the 
exact solution for the loaded plate. 

I n  reference 10.16 the finite difference method 
is applied to the problem. The problem is also 
discussed in reference 10.17. 

10.2.2 Rectangular Plates aving Two Opposite 

In  addition to  the case described in the pre- 
ceding section, there exist five other cases of 
rectangular plates having two opposite edges 
simply supported and simple boundary condi- 
tions on the other edges. These have been 
given previously in the discussion of simply 
supported rectangular plates (see. 4.2). 

For uniform inplane forces, equation (10.42) 
applies. When the edges x = O  and x=a are 
simply supported (as in fig. 10.5), a deflection 
function which satisfies the boundary condi- 
tions of zero deflection and bending moment 
along these edges is given by 

Sides Simply Supported 

(2, y > = g Y , ( y )  s i n m  (10.52) 
m = l  

where a=mz-/a. Substituting equation (10.52) 
into equation (10.42) yields 

+ ( a 4 - - k 4 + g a 2 ) ~ , = ~  (m=l, 2 , .  . .> 
(10.53) 

which has a general solution 

Y,=A, sin+,y+B, cos+,y 

where 
+C,sinhhy+D, c o s h ~ # ~ ~ y  (10.54) 

- (a2+$)} 

( cy2+ gy- ( a4 - k4 + 

+(ff2+2) 
(10.55) 

It is seen that equations (18.52) and (10.54) 
are of exactly the same form as equation (4.21) 
€or isotropic plates, the only difference being 
in the definitions of the frequency parameters 

The standard procedure to  satisfy the bound- 
ary conditions along the sides y=O and y=b, 
whatever they may be, is the substitution of 
equation (10.54) into these conditions. The 
determinant of the resulting four homogeneous 
equations in A,, B,, C,, and D, is then set 
equal to  zero for a nontrivial solution. This 
yields an exact solution for the frequencies. 

Apparently the foregoing straightforward 
procedure has not been thoroughly followed in 
the literature, as d l  be seen by the paucity 
of numerical results to  be presented. 

Boundary conditions of plates having loads 
acting on free edges are different than those of 
unloaded plates because of the component of 
inplane force which acts normal to  the deflected 
middle surface of the plate. That is, the trans- 
verse edge reaction is given by 

#m and Qm. 

v , = & , , + ~ + ~ , , *  bn (10.56) 
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By looking at equation (10.55) , it can be seen 
that +, and cpm can be positive real, zero, 
imaginary, or complex. The solution form of 
equation (10.54) is based upon the assumption 
that +m and cp, are positive real numbers; 
otherwise, the form would change. No study 
is known in which the character and range of 
applicability of the separate forms of solution 
have been investigated. 

The Xayleigh method is used in reference 
10.12 to obtain an approximation for the funda- 
mental frequency of a rectangular plate having 
the edge y=b free and the others simply 
supported. The loading is N,=N, and N,  
=Nzy=O. A deflection function 

T X  W(z, y)=ysin- a ( 10.57) 

was used. The resulting expression for the 
frequency is 

In  reference 10.18 the case is considered when 
three sides are simply supported, the other is 
damped, and two concentrated, collinear, com- 
pressive forces Po act upon the two opposite 
simply supported edges. No numerical results 
are given. 

Experimental results are given in reference 
10.14 for the case when two opposite edges are 
damped. A disagreement with theoretical re- 
sults was found, similar to that discussed 
previously in the discussion of plates with all 
sides simply supported (sec. 10.2.1). 

10.1.3 Rectangular Pfates aving AH Sides 

The problem of plates with all sides clamped 
is defined by figure 10.5 with boundary condi- 
tions w=dwlbn=O on dl edges. 

Weinstein and Chien (ref. 10.13) used a rari- 
ational technique to obtain lower bounds for 
the fundamental frequency of a square plate 
under the hydrostatic tension N,= N,= N and 
N,,=O. Results are listed in table 10.7 for 
varying degrees of inplane tension. Upper 
bounds were also obtained by the Rayleig'h- 
Xitz method using the deaection function 

Clamped 

W(z, g )  =A cos2 z cos2 g +  
(10.59) 

where and are coordinates having their 
origin at the center of the plate. (See fig. 4.18.) 
For purposes of comparison, the easily deter- 
mined frequency parameters when all sides are 
simply supported were computed in reference 
10.13 and are also given in table 10.7. Also, a 
plot was made which compares the frequencies 
of a clamped square plate with those of clamped 
circular plates having area and circumference 
equal to those of the given square plate. The 
circular-plate results mere obtained from refer- 
ence 10.3, as discussed previously for clamped 
circular plates (sec. 10.1.1). These curves are 
shown in figure 10.9. 

In reference 10.19 the Kato-Temple method 
(refs. 10.20 and 10.21) was used to derive an 
extremely accurate lower bound for the funda- 
mental frequency of a clamped square plate 
subjected to hydrostatic tension N= 10srzD/u2. 
Accurate upper bounds were obtained by using 
the Rayleigh-Ritz method with beam func- 
tions (see discussion of the C-C-C-C rec- 
tangular plate (sec. 4.3.1)), keeping both 6 and 
36 terms in the series. These results are com- 
pared with those of reference 10.13 in table 
10.8. 

The perturbation technique is used in refer- 
ence 10.15 to obtain fundamental frequency 

I I I I I 
20 40 60 ao IC0 120 

NO' 

9 D  
- 

FIGURE IO.g.-Frequency parameter variations of 
clamped plates as functions of inplane hydrostatic 
tension. (After ref. 10.13) 
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Lower bounds 

TABLE 10.8.-Cmparison of Lower and Upper 
Bounds for the Fundamental Frequency Param- 
eter u a 2 4 m  of a Clamped Square Plate 
Subjected to the Inplane Tension Parameter 
N a2/?r2D = 10 

Upper bounds 

wa2JplD 

Ref. 10.19 

10.13 
Ref. 

6 terms 

59. 922 59. 98389 59.98488 59. 98498 60. 392 1 ! i l  
parameters for the problem previously discussed. 
Results are summarized in table 10.9. 

10.3 PLATES HAVING OTHER SHAPES 
Lurie (ref. 10.14) showed that for a plate of 

any polygonal shape, with all its boundaries 
simply supported and subjected t o  hydrostatic 
pressure N,=N,=N=-p rtnd Nz,=Ol the 
vibration mode shapes are independent of the 
btensity of p .  Hence, the mode shapes are 
identical to the buckling modes of the plate and 
also identical to  the vibration modes of a stretched 
membrane having the same shape. Further- 
more, the frequency of the loaded plate can be 
expressed as 

(10.60) 

'HIABLE 1 ~ . 9 ~ - F ~ n ~ m e n ~ ~  ~ r e ~ ~ e n c y  h m m -  
eter w a 2 m  Derived From the Perturbation 
Method for a Clumped Square BEate Subjected 
to Hydrostatic Tension 

35.989 
49. 62% 
60. 019 
68. 566 

where is the frequency of the unloaded 
plate in the particular mode identified by the 
subscripts m, n and (p,,),, is the critical 
buckling pressure in the same mode. 

Schaefer and Havers (ref. 10.22) showed that 
frequencies of an equilateral triangular plate 
simply supported on all sides and subjected to  
hydrostatic pressure p can be calculated from 
the equation 

where a is the altitude of the triangle (see 
fig. 7.15) and h t  are the eigenvalues of the 
membrane vibration problem determined from 

2 
3 xi==- 7T2(Z2$ m2+ 2) 

(10.62) E+mSn=O 
I , m , n = & t ,  & 2 , & 3 ,  . . .  

The first six values of (Z2+m2+n2) are given in 
table 10.10. A plot of the first six plate €re- 
quency parameters as functions of the inplane 
compression appears as figure 10.10. 

Kaczkowski (ref. 10.23) utilized the fact that 
the superposition of certain vibration modes 
(having the same frequency) of a simply sup- 
ported square plate will give a combined mode 
which has a nodal line on the diagonal of the 
square. In this way the frequencies and modo 
shapes of a plate in the form of an isosceles right 
triangle with all edges simply supported caa be 

FIGXIRE IO.lO.-Frequency parameters w2a4plD as func- 
tions of inplane hydrostatic pressure for a simply 
supported, equilateral, triangular plate. (After ref. 
10.22) 
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1 
1 
2 
1 
2 
P 

TABLE 10.10.-Temzs for Computing the First 
Six Eigenvalues for the Equilateral Triangular 
Membrane 

1 
2 
2 
3 
3 
4 

i n 

-2  
-3 
-4 
-4  
-5 
-5  

P+m2 + n2 

6 
14 
24 
26 
38 
42 

found. 
are given by 

The frequencies for N,=N,=N, N,,=O 

(m, n=1, 2, 3 . .  .) (10.63) 

and the fundamental frequency occurs when 
m=n= 1 : 

WlI -Ex( - a2 l+m "> (10.64) 

The mode shapes of the triangular plate are 
(in terms of fig. 10.5): 

n m .  mny --(-l)m*nsin-ssln--- a a 

(m,n=l, 2 , 3 . .  .> (10.65) 

Isosceles right triangular plates having 
hydrostatic inplane forces and several other 
types of boundary conditions are discussed in 
reference 10.23. No numerical results are 
given for these problems, but the character- 
istic determinants yielding the frequencies are 
carefully shown. The determinants are of 
infinite order and contain terms having infinite 
series. Thus, the accuracy of a solution would 
depend upon the numbers of terms kept. 
Specific problems set up in detail in reference 
10.23 are: 

(1) The side x=O clamped, the others 
simply supported 

(2) The sides clamped, the hypotenuse 
simply supported 

(3) The side x = O  free, the others simply 
supported 

(4) Two sides free, the hypotenuse simply 
supported, and the point (0, 0) sup- 
ported 

(5) One side clamped, one side free, the 
hypotenuse simply supported 

(6) Two sides simply supported, the hy- 
potenuse clamped 

(7) Two sides simply supported, the hy- 
potenuse free 

Pan (ref. 10.24) used the method of images 
to show that the square of the fundamental 
frequency of a 30"-60"-90" triangular plate 
simply supported on all sides (see fig. 7.17) 
and subjected to hydrostatic tension N is 

and the mode shape is 

. ?Fx . 3ry . 4*x . ~ ( x ,  y) =sin ----sin - +sin ~ s i n 2 2  
a43 a a& a 
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Chapter 11 

es Varia ess 

I n  the case of plates With variable thickness, 
the governing differential equation of motion is 
found to have variable coefficients, and this 
fact increases the difficulty of solution. This 
added complexity will be demonstrated below 
in both polar and rectangular coordinates. 
Results are available only 
having no inplane forces. 

1 i .i CIRCULAR PLATES 
If inplane forces and 

disregarded, the equations 
coordinates are 

for isotropic plates 

rotary inertia are 
of motion in polar 

Equations (11 .l) correspond to equations (A.2) 
and (A.8) of the appendix which were derived 
in rectangular coordinates and can be obtained 
from them by direct transformation; or they 
can be derived by summing forces and moments 
OR a typical, infinitesimal, sectorial area. In  
equations (11.1), y is taken to be the mass 

ensity per unit slolume of plate, unlike the 
constant p used elsewhere throughout this 
work: 

For an isotropic plate, equations (A.35) 
become 

I 

where D=Eh3/12(l - 2) ; that is, D is a function 
of the thickness. 

To obtain a fourth-order differential equation 
corresponding to equation (1.11, it is only 
necessary to substitute equations (11.2) into 
the last two of equations (11.1) and, in turn, 
substitute these into the first of equations 
(11.1). However, if the thickness is a function 
of r and/or e, the resulting differential equation 
will be quite lengthy and will have variable 
coefficients (i.e~, functions of r and/or e). This 
expanded equation will not be presented here. 
Needless to say, very little has been done 
toward obtaining solutions to  this differential 
equation in all its generality. 

Timoshenko and Woinowsky-Krieger (ref. 
11.1) and Conway (ref. 11.2) showed that, for 
the axisymmetric problem (no variation with 
e), the equation of motion becomes 

Conway (ref. 11.2) gave some special solutions 
of equation (41.3) when the flexural rigidity 
varied according to 

D=Dorm 
where 

(11.4) 

(11.5) 

en the boundary of the circular plate is 
clamped. Poisson’s ratio was restricted to 

(11.6) 
1 
9 

y - -  (2m--3) 

which simplXied the solution of equation (11.3) 
considerably. 

In  reference 11.2 exact solutions to equation 
(13.3) were obtaine for several values of m in 

285 
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equation (11.4). 
plate, the solution takes the form 

For m=2, v=1/9, and a solid 

= T -  213 C J ,  (u) + CJ,  (u) 1 I 1.7) 
where 

u =br2J3 1 
(11.8) 

and J1 and Il are the regular and modified 
Bessel functions of the first kind of order one. 
Applying the boundary conditions (eqs. (2.2)) 
gives the characteristic equation 

(11.9) 

where the primes indicate differentiation with 
respect to the argument u and 

ug= b d J 3  (1 1 .IO) 

where a is the boundary radius. The first 
10 roots of equation (11.9) were given in 
table 2.1 (n=l), the lowest root being 

I ' 4  a2J3 = (2 1.2 6) /' ( 1 1.1 1 ) u o = ( x )  

Consider u clamped circular plate having a 
constant thickness equal to the maximum 
thickness (at the boundary) of the variable 
thickness plate previously described (m= 2,  
v = l / 9 ) .  Then, according to reference 11.2, 
Lhe ratio of the fundamental frequency of the 
constant-thickness plate to that of the variable- 
thickness plate is 1.08. 

For m=18/7 and v=5/21, the frequency 
equation 

uo(tanu,+tanhuo)=2 tanu, tanhuo (11.12) 

was given, where now 

The first root of equation (11.12) was given 
as u0=5.27. The ratio of the fundamental. 
frequency of the constant-thickness plate to 
that of the variable-thickness plate having 
the sane thickness at the boundary was 
found to be 1.13. 

For m=3 and v = 1 / 3 ,  there is the important 
case of linearly varying thickness, which is 
discussed in reference 11.3 as well as in refer- 
ence 11.2. The characteristic equation for a 
solid circular plate is found to be 

Jz(uo)Ii(~o)= Ji(uo)lz(~o) (11.14) 
with 

Equation (11.14) is also the characteristic 
equation for the transverse vibrations of a 
cantilever beam having a circular cross section 
and linear taper. Thus, by analogy with 
results for beams, the first three roots o€ 
equation (11.14) are found to be u,=5.906, 
9.197, and 12.402. 

The ratios of the first three axisymmetric 
frequencies of the constant-thickness plate 
to those of the variable-thickness plate having 
the same thickness a t  the boundary are found 
to be 1.17, 1.88, and 2.31. 

The case when m=6 and v is arbitrary is 
also discussed in reference 11.2, but no numer- 
ical results are given. 

It is interesting to observe that in the case 
of variable-thickness plates the frequency pa- 
rameter depends upon Poisson's ratio for 
clamped as well as for other boundary conditions. 

In reference 11.4 the work just described 
was extended to annular plates of linearly 
varying thickness which are clamped on both 
the inner and outer boundaries (fig. 11.1). 
The solution €or the linearly tapered beam 
again applies when Poisson's ratio for the 
plate is 113. The characteristic determinant 
yielding the frequencies is 

where 

(11.17) 
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FIGURE 1’8.1.-Annular plate with linearly varying 
thickness and both boundaries clamped. (After ref. 
11.4) 

TABLE 11. I .-Axisymmetric Frequency Param- 
eters (wa2/H) (2~/3E)~’’ f o r  an Annular Plate 
Hawing Linearly Varying Thickness and 
Clamped o n  Both Boundaries; v =  1 /S 

T 
1 
H 

FIGURE 11.2.--Circular plate with both constant and 
linearly varying thickness and clamped on the 
boundary. (After ref. 11.4) 

Frequency parameters for various ratios of 
b/a are listed in table 11.1 ~ 

Also examined in reference 11.4 was the solid 
circular plate which has a linearly varying 
thickness in the interval b s r  s a  and a constant 
thickness in the interval 0 srsb (see fig. 11.2) 
and is clamped along its edge. Using the 
separate solutions for the variable- and con- 
stant-thickness regions and enforcing two 

oundary conditions a t  r=a and four con- 
tinuity conditions a t  r=b Lead to the chsrae- 
teristic determinant: 

(11 .IS> 



Y *- 

112 

3. 97 
14.21 
28.00 
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113 
______ 

6. 33 
17.03 
37. 70 
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where 

32 w27b4 +-- 
3 Eh2 

(1 1.19) 
K=a/b 

Again, Poisson’s ratio is restricted to a value of 
1/3. Frequency parameters for various alb 
ratios are given in table 11.2. 

Thurston and Tsui (ref. 11.5) investigated 
the problem of a linearly tapered circular 
plate which is supported elastically on a central 
supporting area as shown. in figure 11.3. The 
Rayleigh-Ritz method was used with a deflec- 
tion function of the form 

W(r> =A+ Br2+ C?3 (1 1.20) 

TABLE 11.2.-Axisymmetric Frequency Param- 
eters ( wa2/h) (27lSE) *” for Clamped Circular 
Plate Having Linearly Varying Thickness in 
Interval b 5 r  5 a and Constant Thickness h 
in Intervat 8 6 r 5 b ; v= 113 

( w G / h )  (2y/3E) ‘2 for values of 
bla of- 

12(l-v2)wZy 
2%; 

={  -(pp’-2a’X-2aXUx’) 

8. 81 
20. 89 
44. 89 

FIGURE 11.3.-Linearly tapered circular plate supported 
elastically on a central supporting area. (After ref. 
11.5) 

for axisymmetric vibrations. Equation (1 1.20) 
satisfies the condition of zero slope at  the 
origin; in addition, the condition 

b 

W ( r ) r  dr=O (11.21) 

was imposed. This latter condition is designed 
to relax the co~dition of rigid clamping along 
the central core and replace it by one of “no 
net volume flow back and forth” across the 
surface of attachment. Equation (11.21) leads 
to  the relationship 

ai -2b2 (;+? (11.22) 

and reduces the system do two degrees of 
freedom. The Rayleigh-Ritz procedure yields 
the two frequencies given by 
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where a, a', p, p', x, and x' are given by 

b2 k2+3 ~ k+6- b 
(a-ay (a- b)3  

a5-b5 k3 a6-b6 _ _ - _ _ _ ~  
5 (a-b)3 6 

b b2 3 - k + 3 -  a-b (a--b)* 
3 b - -k+6-  a--b (a--b)* 

(a2-b2)h5 (a4-b4)b3 (a5-b5)b2 , 2(a7-b7) 
5 5 + 7  

- - 

2(a3-b3)b5 - 4ja5-b5)b3 - (a6-b6)bz 
15 25 6 

2(aZ-bz)b6 - 4(u5-b5)b3 
25 

and where the thickness is defined by 

289 

(11.24) 

(1 4.25) 
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Detailed calculations were made for an 
aluminum disk having the following constants : 
a= 1.00 inch, b=0.375 inch, E= 10.6X lo6 psi, 
and v=0.33. These results are plotted in figures 
11.4 and 11.5 for various tapers k and are 
compared with experimental results for k=4/5. 
In figure 11.4 the theoretical values are plotted 
directly as they arise in the computations. 
In figure 11.5 the values are adjusted to  account 
for additional cement and a barium titanate 
element used in the experiment. 

Kovalenko (ref. 11.6) made a study of the 
annular plate having thickness varying accord- 
ing t o  the equation 

h= ho (1 -i) (11.26) 

X 

16 X 

" 0 

c 12 

- 8  

U 

c 

4 0 Computed Valve 
X Computed Valve for k =$ 

0 10 0 15 0 20 0 25 
h, in inches 

FIGURE 11.4.--Uncorrected cyclic frequencies f for a 
linearly tapered, circular aluminum plate. (After 
ref. 11.5) 

X 

4 0 Computed Value 
x Measured value for k = 3 

0 IO 015 0 20 0 25 
h, In tnches 

FIGURE 11.5.-Adjusted cyclic frequencies f for a 
linearly tapered, eircular aluminum piate. (After 
ref. 11.5) 

(see fig. 11.6). His primary work was a direct 
attack upon the differential equation by assum- 
ing a series form of solution. Boundary con- 
ditions led to an infinite characteristic determi- 
nant, which was truncated for an approximate 
solution. Detailed numerical results were given 
for the special configuration where the boundary 
r=b=O.lro was clamped and the boundary 
r=a=0.5ro was completely free. A Poisson's 
ratio of 113 was used. By use of the series method 
the lowest axisymmetric frequency parameter 
was found to be 

(1 I .27) 

where Do is as defined in equation (11.5). The 
lowest antisymmetric frequency (ie., cos ne 
mode, with n=1) was found to be 

When equations (11.27) and (11.28) are com- 
pared it can be observed that, as in the 
case of certain b/a ratios for Constant-thickness 
annular plates (see discussion for annular 
plates (sec. 2.2.7)), the fundamental mode is 
antisymmetric. In table 11.3 are given the 
mode shapes corresponding to these two fre- 
quencies and the ratios of bending moments. 

Rayleigh-Ritz sohtions were also obtained 
in reference 11.6 by using the radial variation 
in deflection 

W(T) = A ~ ( T - ~ ) ' + A ~ ( T -  b)3 (1 1.29) 

giving the frequencies 

h t---.O----l 
t - 

FIGURE 1 1.6.-A.nnular plate with thickness variation 
k=  hoIl- (T /Tg)  I. 
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TABLE 1 1 .3.-Mode Shapes and Batios of Bending Moment for First d Modes o j  Linearly Tapered 
Annular Plate Shown in Fig. 11.6; a=0.5r0; b=O.lro 

j Antisymmetric (n= 1) 
1 

1' j Symmetric (n= 0) 
I - 

0 

. 362 

.677 j 

I 

1 
. 362 
. 149 

I 
.968 
. 5 5 2  
. 245 
. 094 

0 
. 112 
,359 ' 

1 
. 3 1 9  
. I 20  

0 1  
. 025  , 

1 
, 7 1 3  
. 334 
. 121 
. 035 

An integral-equation approach to the problem 
of circular plates of variable thickness is 
presented in reference 11.7, but no numerical 
results are given. 

A method of handling variable-thickness 
circular or annular plates is discussed in 
reference 11.8 whereby the plate is represented 
by circumferential strips of constant thickness 
and lumped mass. A demonstration of the 
method on a constant-thickness plate is given, 
but no numerical results for variable-thickness 
plates are included. 

11.9 RECTANGULAR PLATES 
In  the case of rectangular coordinates it is 

shown in the appendix that the governing 
differential equation of motion for an isotropic 
plate of variable thickness having no inplane 
forces is 
V2(DV2W)--(l--v) 

where the mass density per unit volume y has 
been substituted in place of p. 

Very little has been done in solving equation 
(11.31) as it stands because of the variable 
coefficients arising when D is not constant. 
Appl  and Byers (ref. 11.9) studied the ease 
when the thickness varied only in one direction, 
say 2. I n  that case, equation (1 1.29) simplifies to  

d2W +yh- =o 
at2 

(11.32) 

Furthermore, for B plate having pardel  edges 
simply supported, a solution in the form of 
equation (1.33) can be taken, thereby exactly 
satisfying the boundary conditions along the 
parallel edges and reducing equation (11.32) to  
an ordinary differential equation having variable 
coefficients. 

I n  reference 11.9 extensive calculations were 
made for the rectangular plate having all sides 
simply supported and a linear thickness varia- 
tion in the x-direction given by 

h= ho (1 +CY i) (1 1.33) 

where x is measured from one edge, the length 
of the plate is a (cf. fig. 4.41, and CY is a constant 
determining the rate of taper. A special tech- 
nique (ref. Il.lO) was used for obtaining both 
upper and lower bounds for fundamental fre- 
quency parameters. Results thus obtained are 
presented as table 11.4 for v=O.3 and for various 
aspect ratios. In  this table, in addition to  upper 
and lower bounds, a mean value is computed 
along with a maximum possible error in this 
mean value. For purposes of comparison, an 
upper bound was also determined by the 
Rayleiglr method by using a deflection function 
of the form 

A representative fundamental mode shape is 
depicted in figure 11.7 for a/b=l.O and cr=O.8. 
The sine curve for the case of uniform thickness 
(a=O) is also shown for purposes of comparison. 
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TABLE 11.4.--Fundamental Frequency Parameters da4yho/Do for Linearly Tupered Rectangular 
Plates Simply Supported on All Edges; v=O.Q 

~ 2 a * y h ~ / D ~  

Mean 
value 

a 
b 
- 

CY 

Upper 
bound 

Lower 
bound 

Maximum 
error, percent 

Rayleigh 
method 

0. 25 0. 1 
. 2  
. 3  
. 4  
. 5  
. 6  
. 7  
. 8  

121.112 
132. 437 
144. 144 
155. 899 
167. 925 
180. 243 
192. 857 
206. 045 

121. 067 
132. 434 
143. 792 
155. 828 
167.891 
180. 145 
192. 586 
204. 949 

121.089 
132. 436 
143.968 
155.863 
167. 908 
180.194 
192. 721 
205.497 

0. 0187 
. 00103 
. 122 
. 0228 
. 0102 
. 0273 
,0705 
. 267 

0. 50 167. 657 
183. 585 
199.979 
217. 902 
234. 463 
252. 126 
270. 394 
289. 317 

167. 656 
183. 577 
199. 964 
216. 262 
233. 968 
251. 763 
269. 883 
288. 256 

167.657 
183.581 
199.972 
217. 082 
234. 215 
251. 944 
270. 139 
288. 786 

0. 0000596 
. 00234 
.00382 
.379 
. 106 
. 0723 
. 0946 
. 184 

0. 1 
. 2  
. 3  
. 4  
. 5  
. 6  
. 7  
. 8  

0. 1 
. 2  
. 3  
. 4  
. 5  
. 6  
. 7  
. 8  

0. 75 262.003 
287. 098 
312. 989 
339. 718 
367. 591 
395. 625 
425. 125 
454. 239 

262. 027 
287. 149 
313. 157 
340.053 
367. 650 
396. 066 
425. 593 
455.818 

0. 00921 
. 0178 
. 0538 
,0986 
. 0160 
. 111 
. 110 
. 348 

262.036 
287. 132 
313. 103 
339.941 
367. 703 

_ _ _ _ _ _ _ _ _ - - - - - - -  
._.______------- 

262. 051 
287. 200 
313. 325 
340. 388 
367. 708 
396. 506 
426. 062 
457.397 

429. 349 
470. 556 
513. 379 
557.816 
603. 180 
650. 563 
699. 732 
751.416 

704. 866 
773.000 
842. 034 
914. 608 
988. 921 

1066. 211 
1146. 985 
1229. 929 

I. 00 0. 1 
. 2  
. 3  
..a 
. 5  
. 6  
. 7  
. 8  

429. 339 
470. 521 
512. 930 
556. 573 
602. 841 
649. 540 
697.235 
745. 011 

429. 344 
470. 539 
513. 154 
557.195 
603. 011 
650. 051 
698.483 
748.214 

0. 00124 
. 00372 
. 0437 
. 112 
. 0281 
. 0788 
. 179 
~ 430 

I. 25 0. 1 
. 2  
. 3  
. 4  
. 5  
. 6  
. ?  
. 8  

704. 696 
771. 784 
841. 884 
913.618 
987. 612 

1063. 428 
1139. 781 
1218. 858 

704.781 
772. 392 
841. 959 
914. 113 
988. 267 

1064. 819 
1143. 383 
9224. 393 

0.0120 
. 0787 
. 00892 
. 0542 
. 0663 
. 131 
. 316 
,454 

704. 752 
7.72. 191 
842. 013 
913.759 
988. 424 

~ 

1. 50 0. 1 
. 2  
. 3  
. 4  
. 5  
. 6  
. 7  

1133. 669 
1242.578 
1353. 687 
1468. 157 
1586 689 
1709. 603 
1837. 799 
1967. 569 

1133. 338 
1239. 000 
1350. 576 
1465. 250 
1583. 145 
1701. 686 
1820. 621 ' 
1948. 622 ~ 

1133. 504 
1240. 789 

0. Of46 
. 144 

1133.456 
1241. 395 
1352. 379 
1467. 138 

1352. 131 ~ . 115 
1466. 703 ~ . 0992 

. 112 

. 233 

. 472 

. 486 

1584. 917 
1705. 645 
1829. 210 
1958. 095 
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TABLE 11.4.-Fundarnental Frequency Parameters ~ ~ a ~ 7 h ~ l D ~  for Linearly Tapered Rectangular 
Plates Simply Supported on All Edges; v=0.3--Continued 

~ 1771.579 
1939. 753 
2110. 977 
2288. 368 
2471. 362 
2660. 680 
2850. 204 
3054. 910 

1. 75 1 0. 1 
. 2  
. 3  
. 4  
. 5  
. 6  
. 7  
. 8  

2. 00 0. 1 
. 2  
. 3  
. 4  

. 6  

. 7  

. 8  

. a  

~~ 

2685. 834 
2935. 362 
3193. 446 
3458. 506 
3734.808 
4012. 388 
4283. 839 
4556. 204 

Lower 
bound 

1770. 158 
1934. 993 
2108. 915 
2284. 341 
2461. 928 
2641. 065 
2831. 734 
3031. 066 

2679. 248 
2930. 935 
3187. 392 
3446.658 
3702. 730 
3979. 820 
4266. 413 
4539.970 

10 

0 8  

6 06 

2 0 4  

- 
u - 

0 2  

0 
0 0 2  0 4  0 6  0 8  IO 

FIGURE 11.7.--Fundamental mode of a simply sup- 
ported square plate having linear thickness variation 
in the z-direction; v=0.3. (After ref. 11.9) 

Gumeniuk (ref. 11.11) used the finite-diff er- 
ence method to derive a formula for the fun- 
damental frequency of a simply supported 

ation. This work was extended by Gontkevich 
(ref. 11.12) to plates having other boundary 

undamental frequencies ttre de- 
termined from the formula 

I rectangular plate having linear thickness vari- 

(11.35) 

da'rho/& 

Mean 
value 

1770.869 
1937.373 
2109.946 
2286. 354 
2466. 645 
2650. 873 
2840. 969 
3042. 988 

2682. 541 
2933. 149 
3190.419 
3452. 582 
3718. 769 
3996.104 
4275. 126 
4556. 204 

Maximum 
error, percent 

0. 0401 
. 123 
. 0489 
.0882 
. 192 
. 371 
. 326 
. 393 

0. 123 
. 0755 
. 0950 
. 172 
.433 
.409 
. 204 
. 358 

Rayleigh 
method 

1770. 631 
1938. 224 
2109. 667 
2288. 320 

- _ _ _ _ _ _ _ _ _ _ _ _ _ _  

2681. 525 
2935. 547 
3203. 400 
3489. 606 

where the constants A, B, C, and D are given 
in table 11.5 for the types of boundary condi- 
tions depicted in the table. The thickness 
parameter is defined by 

(11.36) 

where the thicknesses ho and hi are as shown 
in table 11.5. 

Runkett and w&on (refs. 11.13 and 11.14) 
measured the frequencies of linearly tapered 
steel cantilever plates, with the taper o ~ c u ~ ~ i n g  
between the free edges as shown in figure 11.8. 
Figure 11.8 shows the variation in the frequency 
parameter 

(11.37) E 

with the wedge angle 8, where ho is the greatest 
thickness and a is the span of the plate ( 5  inches, 
in fig. 11.8). The values shown for zero wedge 
angle (constant thickness) were computed by 
elementary beam theory. Fundamental fre- 
quency parameters for the various wedge 
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Complete Wedge I 
zoo$ 

Wedge Angle 8 -degrees 

FIGURE 11 .$.--Experimentally measured fundamental 
frequency parameters for different values of wedge 
angle 0 for linearly tapered, rectangular cantilever 
plates; material, steel; numbers indicate modes. 
(After ref. 11.13) 

angles are tabulated in table 11.6. The effect 
of changing aspect ratio is shown in figure 11.9. 
In  this figure alb is varied by removing ma- 
terial from the thin side of the plate, so that 
the cross section becomes trapezoidal. The 
wedge angle 8 remains a constant 2.4'. Fun- 
damental frequency parameters for this case 
are presented in table P 1.7. 

400 

I I I  
2 3 4 5 6 7 8  

o/b 

FIGURE 11.9.-Experimenlally measured fundamental 
frequency parameters for different values of a/b for 
linearly tapered, rectangular cantilever plates; ma- 
terial, steel; 0=2.4"; numbers indicate modes. 
(After ref. 11.13) 

Methods for solving the free vibration 
problem for rectangular variable-thickness 
plates are also presented in references 11.15 
to 11.18, but no numerkal resizlts are included. 
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a/b 1 2.00 1 2.22 1 2.86 

(b (eq. (11.37)) _.__ ~ 2. 57 1 2. 57 1 2. 71 
__- 

TABLE 11,6.-Experhentally Measured J;’unda- 
mental Frequency Parameters f o r  Linear&/ 
Tapered, Rectangular Cantilever Plates; 
Material, Steel 

Wedge angle, e, O 1 1.35 ~ 2.4 1 3.7 I 5.9 ~ 11.8 

C#I (eq. (11.37)) .___ 2. 52 2. 57 1 2. 47 2. 32 2. 28 
---~- 

4.00 1 6.67 

2. 91 3. 15 I--- 

TABLE 11.7.-Variation in Fundamental Fre- 
quency Parameter With Aspect Ratio for  Line- 
arly Tapered, Rectangular Cantilever Plates; 
Material, Steel 

11.3 OTHER SHAPES 
Except for the work in references 11.19 and 

11.20, virtually nothing‘ has been done for 
variable-thickness plates when their shapes are 
other than circular or rectangular. A method 
is presented in reference 11.19 for analyzing 
cantilever variable-thickness plates having an 
arbitrary quadrilateral shape. Reference 11 2 0  
gives 8 method for analyzing clamped variable- 
thickness plates of arbitrary shape. 
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The effects of the folBowing complications will 

(I) Surrounding media 
(2) Large deflections 
(3)  Shear deformation an6 ro~ary  inertia 
(4) Sonhomogeneity 

be considered in the present chapter: 

Generally, because of the complexity of the 
resulting theory, there are not many numerical 
results showing the effects of these complica- 
tions. Indeed, in many cases the technical iit- 
erature deals mainly with the development of 
the needed theory~ Nevertheless, it wi l l  not be 
the purpose of this chapter to  repeat those deri- 
vations ; the reader is referred to the references 
LheEselves for this. The primary purpose of 
this chapter, as of the preceding ones. is zhe 
pmsentstioz 0 2  ii Uluericd resints, where avail- 
able, with explanatory material as necessary for 
ars understanding of their significance. 

I t  d l  be assumed in this chapter that the 
reader d l  already be reasonably familiar with 
the coordinate systems, notation, boundary 
conditions, and SO forth, used in the preceding 
chapters and so mucb tedions redefiiritigz dl 
be omitted. 

F suww@ru 
geceral. 4: has been the prac;ice in  his 

work to discuss plates in bending which are 

mass. 7r, th is  way o d y  a single differential 
equmior; of motion--that of the plate-is 
involved. Pe t  it is apparent that practical 
experiments are conducted in air, and that the 
.;?ass cf the ar i k ~ s  moved has the effect sf 
decreasing the vibration frequencies of the 
system The diEerence S&rneeE experircental 
arid theoretical results for this reason Las beeri 
alluded to iii many places in the preceding 
chapters and, indeed, corrections of one or %e 
ather tti obtain comparabie vaims were evez 
made in a few places (and so identified; in 

srL;cou$ei “0x1 0 Aer e1:IELstic St;ructllles havzng 

the present section some of the papers that 
deal primarily with this problem %ill be sum- 
marized. The topic is generalized to include 
other media in addition to air-notably, water. 

I2. i  -1 Circular P l ~ t e ~  
In  an early paper Lamb (ref. 12.1) considered 

a damped circular plate which i s  in contact; on 
one side with an infinite expanse of water. The 
Rayleigh method is used with EL deflection 
* L i l G t i O r ,  2+-- 

w= Ci; - (r/a)232 012~:; 

The kinetic energy is computed on the assramp- 
&ion that the water i s  incompressible The 
resulting formula for  the fundaniental fre- 
quency parameter is 

where y,/y is the dimensiodaess ratio of the mass 
density of water to that  of the plate and a h  
!E iE,e radiils-thickness ratio. 
tion (12.2) can be applied ~ U Q  any incompressible 
f h i d  If both sides sre ;a Sa exposed tc the 
m3nite fluid, &en the 0.6689 in equation (12.2‘ 
is replaced by 2XO.6689. 

The frequeocy of she second mlodo, {hmiag 
one sodal diameter) was also ~akcu1ated in 
:.efesence 32.1 -ql_tla the zse of 

Hescs. the eEeet ~i toe vir~:er’s zrrertia is less 
u p n  the second mom than upon the &st 
In order to  check the accrasacy of she foregoing 

299 
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results, a two-term Ritz solution was carried 
out in reference 12.1 for the first and second 
modes of a particular iron plate; this calcula- 
tion yielded results which differed from those 
calculated from equations (12.2) and (12.4) by 
less than I percent. The effects of damping 
due to the water are also discussed. 

Experimental results for the preceding prob- 
lem are given in reference 12.2. 

McLachlan (ref. 12.3) extended Lamb's 
work to the case of a circular plate having 
a free boundary. For a plate having both sides 
immersed in an infinite fluid, 'ne shows that the 
ratio of the frequency of the system w to the 
frequency of the plate in a vacuum wo can be 
determined from the formula 

where, for the case of one nodal circle, 

MI=- 16 yf a 3 

35 

(12.5) 

(12.6) 

and, for the case of a point support a t  the 
center, 

(12.7) 

and, in both cases, 

(12.8) 
7r M, = ya2h 

where yf is now the mass density of the 
surrounding fluid. In  reference 12.3, equation 
(12.5) is applied to  the problems of an aluminum 
plate vibrating in either air or water. 

The previous work was extended further by 
Peake and Thurston (ref. 12.4), who applied 
the Rayleigh method to the problem of the 
simply supported circular plate having water 
loading on one side. A deflection function 

20 = 1 - 1. 245 (ria) '+ 0.245 (ria) (1 2.9) 

was used; the result is the frequency parameter 
f ormda 

(12.10) 
- 4.94 wa2.Jp/D = 

Bycroft (ref. 12.5) studied the problem of 
transverse vibration of a circular plate which 

is perfectly attached to a massless, elastic, i d -  
nite half space. The Rayleigh-Ritz approach is 
used, with the potential energy of the half space 
being added to that of the plate. Clamped, 
free, and simply supported edge conditions are 
considered for the plate. For the clamped case 
a deflection function for the plate is taken in 
the form of equation (12.1). The square of the 
fundamental frequency parameter is found to 
be : 

(12.11) 4.378( 1 -T') a3 
D 

w"a4p= 3$Jj.7+ 
D 

where 
G 

+2,- 
x+2G 

(12.12) 

and X and G are Love's (ref. 12.6) elastic 
constants for the half space: 

(12.13) 

For the free plate, a two-term solution function 
is assumed as a constant plus the first term 
of a Dini series; that is, 

w=Ao+A~ J0h Wa>3 (12.14) 

whereXlis thefistroot of Jo(X) =O. By applying 
the Ritz method, the two resulting fqequencies 
are determined from 

(12.16) 

and the amplitude constants .Ao and AI are 
related by 

$= - [(4.61+2.3%4-0.255@) f (21.2+5.68v2 

+ 0.298f12+ 2 2 ~ +  4.?6@+ 2.48P~)"~l 
+-(3.98+2.07v+0.383P) (12.17) 
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Finally, the simply supported plate is analyzed 
by using equation (12.14) with Ao=O. The 
square of the fundamental frequency parameter 
is found to be 

__ W2a4p- __ 21.70+ 11.25,,+ 7.4608 ( P 2.18) D 

72.1.2 Rectangular Plates 

An interesting experimentd and theoretical 
study of the vibration frequencies of rectangular 
cantilever plates (see fig. 4.40) immersed in 
water was reported by Lindholm, Kana, Chu, 
and Abramson (ref. 12.7). cyclic frequencies 
are listed in table 12.1 for 15 plates made of type 
1080 cold-rolled steel having various aspect 
ratios and ratios of thickness to width. Theo- 
retical values are based upon Barton’s work 
(see discussion of rectangular cantilever beams 
(sec. 4.3.12)), where applicable, and elementary 
beam theory. These pertain, of course, to the 
case of a vacuum. Frequencies are measured 
both in air and in water. 

A correction formula of the form given in 
equation (12.5) was derived in reference 12.7 by 
means of hydrodynamic strip theory to account 
for the added “apparent mass” of the surround- 
ing fluid. The ratios MJM,  to be used in 
equation (12.5) are given in table 12.2 for six 
modes of the cantilever plate (see definition 
of modes in table 12.1). 

A further correction is suggested in reference 
12.7 to  account for the effect of plate thickness 
on the apparent mass of the air. In  this case 
equation (12.5) becomes 

w 
(12.19) _- - 

W o  

where 

( 12.20) 

and R is obtained from figure 12.1 for modes I, 
3, and 6. 

A comparison of theoretical and experi- 
mental results for frequency parameters is 
made in figure 12.2 for the six modes. The 
eiects of corrections for aspect ratio AB, afb and 
thickness ratio blh are clearly seen. 

8.6 8 
h Thickness Ratio 5 

FIGURE 12.l.--Thickness correction factor of a rectan- 
gular cantilever plate for modes 1, 5, and 6. (-4fter 
ref. 12.7) 

The variation of node-line location in going 
from air to water is shown in figure 12.3. 
Frequency variation with depth below the sur- 
face is set forth in figure 12.4 for plate I1 of 
table 12.1. Finally, the effect on frequency 
due to partial immersion is shown in figure 12.5 
for plate 8. It is stated in reference 12.7 that  
the angle of inclination of the plate to the sur- 
face seems to have an effect only for very 
shallow angles. 

Greenspon (refs. 12.8 and 12.9) has proposed 
a correction formula to account for the effects 
of water on one side of rectangular plate for 
all boundary conditions. The frequency ratio is 
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Mode 

i i  j 
-- 

303 

GC-C-C ss-ss-ss-ss 

Aii Bii Aij 1 B,i i- l- 

TABLE 12.2.-Mass Correction Faetors for Ea. 
(12.6) 

Mode 

wheref is a “virtual mass function” for plates 
of rectangular shape and is plotted as a function 
of a/b in figure 12.6. The coefficients .Aij and 
Big are determined from the formulas 

(12.22) 

where the wij  are mode shapes which are the 
products of beam functions (see discussion of 
rectangular plates (ch. 4)) ; that is, 

(12.23) 

and the dimensions of the plate in the x- and 
y-directions are a and b, respectively. The 
integrals given by equations (12.22) are readily 
evaluated by means of the tables of reference 
12.10. The coefficients for seven modes of rec- 
tangular plates having all edges clamped or 
spPnply supported are given in table 12.3. 

In reference 12.8, equation (12.21) was shown 
to become 

0 
( 12.24) L- - 

WQ 

0.6904 
0 
.3023 
. 1924 
.3023 

. 1324 
0 

0. 4053 
0 
. 1351 
.0810 
. 1351 

.0450 
0 

0. 25 
. 2 5  
. 2 5  
. 2 5  

25 
. 25 
. 25 

for the case of a rectangular plate having the 
sidesx=O, a simply supported and the sides 
y=O, ZI clamped. 

12.2 EFFECTS OF LARGE DEFLECTIONS 
The term “large deflections” when applied 

to plate theory is somewhat misleading, for 
the deflections involved are generally not 
large relative to the inplane dimensions of the 
plate; indeed, they are u s u d y  of a smaller 
order of magnitude. Use of this term usually 
implies that the transverse deflection is suffi- 
ciently large to cause further stiffening of the 
plate because of membrane forces gen 
by the deflection. 
tion required for this effect to be significant .: 
depends upon, for one thing, the precise 
boundary conditions of the plate. Thus, for 
example, the tern ‘(simply supported” is no 
longer completely definitive, for the degree of 
restraint placed upon the two inplane 60111- 

ponents of displacement must also be specified. 
In deriving the equations of equilibrium in 

the appendix the assumption is made that the 
slope of the middle surface relative to its 
undeflected plane remains small in order that 
the sines of the angles between the normals 
of the deformed and undeformed middle sur- 
faces can be replaced by their tangents bw/bx 
and bwfby and the cosines can be replaced by 

This assumption is usually retained in 
large deflection theory of plates and 

gives equiTlibsiuan equations (AS),  (A.6), and 
(A.8) found in the appendix. However, strain- 

The magnitude of 

i 

‘ty. 
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FIGWRE 12.2.-Experimental and theoretical frequency 
parameters in water, air, and a vacuum. (a) hfode 1. 
( 6 )  Mode 2. ( c )  Mode 3. (d) Mode 5. ( e )  Modes 
4 and 6. (A4ffter ref. 12.7) 

displacement equations (A. 11) are generalized 
to include terms of the next order; that is 

( 12.25 1 

b2w bwbw 22-+-- 
=u- ax  by axby  a ~ a y  

- - o * o -  bv au 

Equations (12.25) are then substituted into 
equations (A.18) or (A.19) and then into 
equations (A.6). It is found that the additional 
terms in equations (12.25) which are even in 
z drop out in the bending moment integrations, 
namely, equations (A.20(d)), (A.2Q(e)), and 
(8.20(f)), leaving the fourth-order equilibrium 
equation (A.27) unchanged. 

65 

60 

55 

50 

45 

40 

35 

30 

25 

20 

2 3 

4 5 

Air - 
Water ----- 

FIGURE 12.3.--Comparison of node-line locations in air 
and water. Plate 10; a/b=l;  h/b=0.0131. (After 
ref. 12.7) 

Another equation is obtained from the equa- 
tion of compatibility of strains for the middle 
surface. By using equations (12.251, this is 
found to be: 

The formulation is simplified when an Airy 
stress function + 9  defined by 

(12.27) 

is introduced. This guarantees that the inplane 
equations of motion (eqs. (A.5)) are identica 
satisfied. Substituting equations (12.2'5) into 
equation (12.26), using equations (A.19)) 
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Depth Rotio d/o 

FIGURE 12.4.-Frequency variation with depth of total 
immersion in water. (After ref. 12.7) 

60 
0 8.25 0.50 0.75 Loo0 

Depth Rotio S/a 

FIGURE 12.5.-Frequency change for surface-piercing 
plates. Plate 8; a/b=5; h/b=0.0238. (After ref. 
12.7) 

0 0.2 0.4 0.6 0.8 1.0 

a/b 

FJGURE 12.6.-Virtual mass function for rectangular 
plates. (After ref. 12.8) 

(A.20(a)), (A.20@)), and (A.20(c)), gives for the 
isotropic plate: 

3. 

(12.29) b2W -2- a x  ay 

It is observed that equations (12.28) and (12.29) 
are both nonlinear. 

Equations (12.28) and (12.29) were derived 
for the static case by Von Ki8rm&n (ref. 12.11). 
They were extended to the dynamic case and 
generalized further by Rerrmann (ref. 12.12). 

19.9.1 Circular Plates 

Wah (ref. 12.13) used the Berger (ref. 12.14) 
simplieation of the Von E&rm&n equations to 
study the problem of the circular plate having 
either a clamped or simply supported boundary. 
The pfate is constrained against inplane dis- 
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placement a t  the boundary in both cases. 
differential equation to be solved is 

The 

a2w DV4w-NV2w+p ----0 (12.30) at2 - 

where, for the axisymmetric modes, N is defined 
bV 

Y 

(12.31) 

For the solution of equations (12.30) and 
(12.31), a Galerkin procedure is proposed that 
uses a deflection function 

where the terms Rt are the normal modes of 
the linearized, small-deflection problem (cf. 
ch. 2). For the nonlinear problem, the 
T i  will not, in general, be sinusoidal functions 
of time. By taking only the first term of equa- 
tion (12.32), the following nonlinear differen- 
tial equation in time is found: 

where p is the small-deflection frequency as- 
sociated with R1 and 

The solution of equation (12.33) is k terns of 
elliptic integrals. The resulting ratio of h e a r  
frequency to nonlinear frequency as a function 
of the ratio of center deflection to  plate thich- 
ness is shown in figure 12.7. 

Further information is given in reference 
12.13 for estimating stresses during vibration. 
A nondimensional radial bending stress is 
plotted in figure 12.8 as a function of the 
amplitude-thickness ratio. Similarly, a non- 
dimensional radial membrane stress F;' is 
plotted in figure 12.9. Superposition of these 
stresses gives the total stress. 

Yamaki (ref. 12.15) applied the Galerlrin 
method to the Von K h 4 n  equations (12.28) 
snd (12.29) themselves. ody axisynunetriic 

I I I I 
0 0.2 0.4 0.6 0.8 1.0 

Amplitude 
Thickness 

F~GIJRE 12.7.--Ratio of linear (small-deflection) fre- 
quency to nonlinear (large-deflection) frequency as a 
function of amplitude-thickness ratio for circular 
plates; v=0.3. (After ref. 12.13) 

3 

deformatims in polar coordinates ' are qon- 
sidered, they become: I 

Altogether, four sets of boundary conditions 
were considered; the particular ones used de- 
pended upon the degree of restraint placed 
upon both the transverse and inplane displace- 
ments. The cases considered were 

Case P(a>: w=M,=N,=O 

(on boundary) 
Case IX(a): w=bw/br=N,=O 
Case Tl(b) :  w=bw/dr=u=Q 

(12.36) 
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FIGURE 12.8.-Nondmensional bending strew in large- 
amplitude vibrations of circular plates. (After ref. 
12.13) 

0.2 0.4 0.6 0.8 I 

Ampii tude 
Thickness 

FIGURE 12.9.-Nondimensional membrane stress 

0 

in 
large-amplitude vibrations of circular pkates. (After 
ref. 12.13) 

Deflection functions were taken in the form 

where C, and C2 were chosen to satisfy the 
transverse boundary conditions exactly; that is, 

Case H : 

(12.38) IS-v G,=- 
5+v 

Case 11: c;=--2 
C,=l 

Substituting equation (12.37) into the first of 
equations (12.35) and letting 

4 = A T >  .i-2 @> (12.39) 
give " 

(12.48) 

where C, is a constant determined from the 
inplane boundary conditions of equations 
(12.36); that is, 

Cases I(a) and II(a): I 
i C,=-,(3C~+4Q~C~+2C~) 

Gases I(b) and HI(6): 

c,= - 13 (3 - Y > c: 1 
24( 1 -v) 

+4( 5- Y )  c, C,+2( 7 -v)Q;1 
(12.41) 

Finally, the Galerkin technique is applied to  
approximate the second of equations (12.35) ; 
the result is the ordinary differential equation 

(1 2.42) e+& + 0 2  7 3  = 0 
dt2 
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where and p2 are given in table 12.4 for the 
four cases defined by equations (12.36). The 
solution of equation (12.42) results in figure 
12.10, which shows the effect of amplitude- 
thickness ratio upon the ratio of linear-to- 
nonlinear frequency for the four cases for v=0.3. 

TABLE 12.4.--Coe$cients f o r  Eq. (12.42) for the 
4 Cases DeJined by Eqs. (12.36) 

Value for case- 
Coefficient 

l--l---- I 

Further discussion of the application of the 
Galerkin method to the problems just described 
was given in reference 12.16. 

The nonlinear case of the completely free 
circular plate having inplane forces caused by 
the thermal gradient 

(12.43) 

was examined by Massa (ref. 12.17) as an 
extension of his previous work (see discussion 
of completely free circular plates (sec. 10.1.3)) 
for the linear problem. A deflection function 

0.2 
0 0.4 0.8 1.2 1.6 2.0 

Amplitude 
Thickness 

F'ncnm I2.lO.--Ratio of linear to  ::onlinear frequency 
as a function of amplitude/thiekness ratio for  eircuiar 
plates having b O U ~ d a T Y  conditions defined by 
equations (12.36); v=0.3. (After ref. 12.15) 

W ( T ,  t>=R(r)+(t) (12.44) 

is taken for the first axisymmetric mode, 
where R(r )  is the mode shape of the linear 
problem; that is, 

R(~)=1-2.6161 - +1.1090 - -0.2464 - CY (3 (3 
(12.45) 

and T ( t )  is an unknown function of time. An 
energy formulation of the problem is made by 
means of Hamilton's principle for v=0.3. 
Solutions for the nonlinear frequencies are in 
terms of elliptic integrals, but approximate 
expressions of a more useful type are also 
found. 

For a Toa2/h2 I ( Q Toa2/h2) cr, or for aToa2/h2 
2 (aTOa2/h2),,, in the range Wo, Zt/Z Wo, the 
square of the nonlinear frequency can be 
approximated by 

1 - (0.27590iTo~~/h~) 

where a is the coefficient of thermal expansion, 
and ( ~ T ~ a ~ / l h ~ ) ~ , ,  is the critical value of the 
parameter aT0a2/h2 at which buckling occurs, 
according to the linear theory; that is, 

(aToa2/h2) ,,=3.62 (12.47) .,. 
I "  

The term W,, defines the nonlinear deflection 
amplitude measured at  the center, and Wo is a 
parameter defined by 

%v, E I. 0524h-JO. 2759 (aT0a2/h2) - 1 ( 12.48) 

or aToa2/h21 (aToa2/h2>,, and Wo< 
JZW,, the corresponding expression is 

(12.49) 

In figures 12.11 and 12.12 the square of the 
ratio of the nonlinear frequency to the iso- 
thermal linear frequency (Gi1=7.42?3Eh3/pd, 
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FIGURE 12.11.-Effect of temperature upon the non- 
linear frequency of a completely free circular plate 
for various amplitude/thickness ratios; Y= 0.3; one 
nodal circle. 

FIGURE 12.12.--Effect of arnplitude/thickness ratio 
upon the nonlinear frequency of a completely free 
circular plate for various temperature parameters; 
v = 0 . 3 ;  one nodal circle. 

with one nodal circle) is plotted against the 
parameters crToa2/h and Wol/h, respectively. 

The first mode having two nodal diameters 
is also studied in reference 12.17 for the same 
thermal gradient given by equation (12.43). A 
deflection function 

is chosen, where 

(12.51) 

For aToa2/h2 6 (aT0a2/h2),,=3.62, the square of 
the nonlinear frequency is approximated by 

aT,d 1+0.3772--3-0.3164 h2 
(12.52) 

and for crToa2/h2> (crToaz/hz) cr there results 

The variation in the square of the ratio of the 
nonlinear frequency to the isothermal linear 
frequency (%i=2.6294Eh3/pa4, with two nodal 
diameters) iS depicted in figures 12.13 and 
12.14. 

12.9.2 Rectangular Plates 

The earliest paper dealing with large-ampli- 
tude vibrations of rectangular plates was pub- 
lished by Chu and Herrmann (ref. 12.18) in 
1956. In this paper the general equations 
derived in reference 12.12 were specialized to  
the Von K&rm&n form of equations (12.28) 
and (12.29) and were approached by means of 
the perturbation technique. The problem of 
all edges simply supported was studied in 
deta3. For this problem, the boundary con- 
ditions iAvolving 20 are given in equations 
(4.18). 

P 
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Partly in accordance with the later work by 
Yamaki (ref. 12.15), four cases of inplane 
restraint will be defined (see fig. 10.5) : 

Case (a): N,=N,,=O on x=O, a 
N,=N,,=O on y=O, b 

Case (b): u=Nzv=O on x=O, a 
v=Nzu=O on y=O, b 

Case (c): P,=N,,=O, u=Constant on x=O, a 
P,=N,,=O, v=Constant on y=O, b 

Case (d): u=v=O on x=O, a 
u=v=O on y=O, b 

3.0 

2.5 

2 .o 
-0 No *rl IJ" 

1.5 

(12.54) 
I .o 

where P, and P, are defined by 

""i l 
a Too 

b 

Thus in case (c) there Ere edges which we kept 
straight by a distribution of normal stresses, 
the resultant of which is zero. 

- aT,o* 
hL 

In reference 12.18, case (b) was treated. A 
FIGURE 12.13.-Effect of temperature upon the non- 

linear frequency of a completely free circular plate, transverse deflection function 
- .  

for various amplitude/thickness ratios; Y= 0.3; 
(12.56) 7m TZ 

two nodal diameters. O 7 ( t )  sin-sin- a b  

0 .I 

'0 02 0.4 0.6 0.8 1.0 1.2 

- W I O  
h 

FIGURE 12.14.--Effect of amplitude/thickness ratio 
upon the nonlinear frequency of a completely free 
circular plate for various temperature paramet,ers ; 
~ = 0 . 3 ;  two nodal diameters. 

was taken; the result is a nonlinear equation for 
T in the form of equation (12.42). The ratio of 
h e a r  frequency to nonlinear frequency is given 
by 

J .  

2 

(1 2.57) 

where K=K(k) is the complete elliptic integral 
of the first kind and 

2E1+ (a/bI2l2 (12.58) I -=2+ r% (Y2) (1 + $)+ Y 
Equation (12.57) is plotted in figure 12.15 for 
~=0.318.  The maximum membrane stress is 
given by 
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FrGURE 12.15.-Effect of large amplitudes on the 
frequency of a SS-SS-SS-SS rectangular plate; 
~"0.318. (After ref. 12.18) 

and the maximum bending stress by 

That is, the membrane stress increases with the 
square of the amplitude, whereas the bending 
stress increases only linearly. The problem was 
also formulated in reference (12.18) by the 
principle of conservation of energy. 

Yamaki (ref. 12.15) extended the work to 
include the first three cases of inplane restraint 
given in equations (12.54). A deflection func- 
tion like that of equation (12.56) was used, and 
the stress function was obtained from equation 
(12.28). Equation (12.29) was approximated 

by the Galerkin method. The equation in 
time which results for a/b=l is 

where LY takes on the values 0.06492, ( 3 - v ) l  
8(1+v), and 1/8 for cases (a), ( b ) ,  and (e), 
respectively. The ratio of linear to  nonlinear 
frequency for the square plate is plotted in 
figure 12.16 for the three cases. For case ( a )  
the results are identical with those of reference 
12.18. 

In. reference 12.15, the problem of all edges 
transversely clamped (cf. eq. (4.25)) was also 
analyzed. A deflection function 

7 5  w(x, y9 t)=hr(t)  cos2- a b  cos2Q (12.62) 

(see fig. 4.18) was used. 
which results is 

The equation in time 

es on the values 0.14903, 0.166564- 
(0.14063)/(1-v), and 0.16656 for cases (a), 
( b ) ,  and (e), respectively. The ratio of linear 
t o  nonlinear frequency is plotted in figure 12.17 
for the three cases when a/b=l. 

I .0 

".L 

8 0.4 0.8 1.2 1.6 2.0 
Ampi itude 
Thickness 

FIGURE 12.PG.--EEeet of large amplitude on the 
frequency of a SS-SS-SS-SS square plate for three 
cases of inplane edge restraint; ~ = 0 . 3 .  (After ref. 
12.15) 
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Nash and Modeer (ref. 12.19) and Wah (ref. 
12.20) extended the Berger (ref. 12.14) simpli- 
fied formulation for the large-amplitude static 
deflection of plates to  the nonlinear vibration 
problem. The first paper used an energy for- 
mulation with Hamilton’s principle; the second 
used a modified form of the Galerkin method. 
Both papers solved the problem of the rectan- 
gular plate having simply supported edges of 
the type given by case ( d )  of equations (12.54). 
Both obtained results for frequency ratio versus 
amplitude ratio which were in substantial 
quantitative agreement and, in contrast with 
those of reference 12.18, these results do not 
depend upon the aspect ratio a/b of the plate. 
These results are shown in figure 12.18 (from 
ref. 12.20). In this figure a curve is also 
plotted for the infinite strip, in accordance 
with elementary beam theory. 

In  reference 12.20 the problems of the 
SS-C-SSSS and SS-C-SS-C plates were also 
studied. Deflection functions for 20 were 
taken which are the fundamental mode shapes 
of the linear problem (see secs. 4.2.2 and 
4.2.1). The effect of amplitude upon fre- 
quency is shown in figures 12.19 and 12.20 €or 
these two problems. 

The existence of normal modes for the non- 
linear problem of the SS-SS-SS-SS plate is 
discussed in reference 12.21. Large-amplitude 

B .o 
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FIGURE 12.17.--Effect of large amplitude on the 
frequency of a GC-C-6 square plate for t h e e  
cases of inplane contraint; u = O . 3 .  (After ref. 12.25) 
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FIGURE 22.18.-Ratio of linear t o  nonlinear frequency 
as a function of amplitude/thickness ratio for SS-Ss- 
SS-SS plates; v=0.3.  (After ref. 12.20) 
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FIGWRE 12.19.-Eff ect of amplitude upon frequency €or 
SS-GSS-SS rectangular plates; u= 0.3. (After ref. 
12.20) 
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FIGURE 12.2Q.-Effect of amplitude upon frequency 
for SS-6-SS-6 rectangular plates; Y= 0.3. (After ref. 
12.20) 

vibration of rectangular plates is also discussed 
in references 12.22 and 12.23. 

12.3 EFFECTS OF SHEAR DEFORMATlO 
AND ROTARY INERTIA 

In  1877 Lord Rayleigh (ref. 12.24) showed 
how the addition of “rotatory” (in 
of his day) inertia effects to  thos 
transitional inertia affected the flexural vibra- 
tion frequencies of beams. Timoshenko (ref. 
12.25) in 1921 showed that the effects of shear 
deformation, previou 
equally important. It 
effects serve to de 
quencies because of 
bility of the system. 

An extension of plate theory to account for 
shear deformation was proposed by Reissner 
(ref. 12.26) for the static deflection of plates, 
and a significant number of papers by others 
have followed this approach. A first presenta- 
tion of a consistent theory for the dynamic 
behavior of plates, including the effects of 
shear deformation and rotary inertia, was made 
by UAyand (ref. 12.27). However, Mindlin’s 
1951 paper (ref. 12.28) unquestionably made 
the most profound impact upon the subject. 

I n  this paper a consistent set of equations re- 
lating moments and transverse shears to 
transverse deflection and bending rotations was 
presented. The basic sixth-order system of 
partial differential equations of motion was 
derived, along with potential and kinetic 
energy functions. A part of this paper will be 
summarized below. 

In addition to exposing the theory, Mindlin 
and his colleagues have done much to apply 
the theory and to develop it further, as observed 
by references 12.29 to 12.46. I n  references 
12.29 through 12.32 the theory is applied to the 
cylindrical bending of AT-cut quartz crystal 
plates. The crystal plates are idealized as an 
anisotropic material having constants defined 
by equation (A.12) of the appendix in which 

and the thickness is taken in the z-direction. 
Crystal plates are also discussed in references 
12.36 to 12.46. Because of the highly special- 
ized form of anisotropy involved, the numerous 
results reported in these papers will not be dis- 
cussed here. The only results from references 
12.28 to  12.46 which will be discussed in this 
section will be those dealing with isotropic 
plates. 

The essential features of Mindlin’s theory 
(ref. 12.28) will now be discussed. The discus- 
sion will be limited to  the bending (with no 
inplane forces) of isotropic plates. When the 
effects of shear deformat are included, the 
kinematic relationships en in equations 
(A. 9) become 

u=-zJ.z(z, y, t> 

w=w(x1 Y, t> 
2)=-&2b,  Y, t> (12.64) 

where J., and #v are the local rotations (changes 
of slope) in the x- and y-directions, respectively, 
of lines originally normal to  the midplane 
before deformations. That is, the rotations 
$z and $, are due to bending. The deflection 
of the middle surface w is then composed of 
two parts-one due to  bending and the other 
due to shear deformation. These modes of 
deformation are shown in f?gure 12.21. Equa- 
tions (12.64) are substituted into strain- 
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Before Deformation 

Bending Deformation 

Shear Deformation 

FIGURE 12.21.--Modes of bending and shear 
deformation. 

displacement. equations (A.10), then into stress- 
strain equations (A.191, and the bending mo- 
ments are integrated by means of equations 
(A.aO(d)),  (A.20(e)), and (A.20(f)), giving 

The transverse shearing forces are obtained 
by integrating the transverse shearing stress 
over the thickness; that is, 

(12.66) 

Substituting the stress-strain reIationships 

and the strain-displacement equations 

b w  bv y =-+- 
y L  ay 

into equations (12.66) and using 
(12.64) gives 

(12.68) 

equations 

(12.69) 

where K~ is a constant which is introduced t o  
account for the fact that the shear stresses 
T~~ and T~~ are clearly not constant over the 
thickness -h/2<z<h/2 as the simple kinematic 
relationships, equations (l2.64), would lead 
one to believe. I n  Reissner’s static theory 
(ref. 12.26) K~ was taken as 5/6. Mindlin 
(ref. 12.28) chose K so as to make the dynamic 
theory consistent with the known exact fre- 
quency for the fundamental “thickness shear” 
mode of vibration. More will be said about 
this in the fonowing discussion. 

The right-hand sides of -momeat equilibrium 
equations (A.8) are made consistent with 
the present theory; they become 

{ 

bM! Ph2 3% 
ax ay 12 at2 

_---___I 

When inplane forces and transverse external 
loading or body forces are neglected, equation 
(A.6) becomes 

bQ, bQ, b2w -++-=p- 
ax ay bt2 (12.71 1 



310 VIBRATION 

Substituting equations (12.65) and (12.69) 
into equations (12.70) and (12.71) yields the 
fundamental set of equations for the system 

(12.72) 

where V2 is the usual Laplacian operator. It 
is observed that the system of equations 
(12.72) is of the sixth order in the three de- 
pendent variables +z, +,,, and w. Thus, with 
this higher order plate theory, three boundary 
conditions are enforced along each edge. 

In  reference 12.28, equations (12.72) are re- 
written into a form much more amenable to 
solution by the introduction of three potential 
functions. I t  is from this form that many of 
the useful results obtained from references 
12.33 to  12.37 and given later in this section 
were derived. The reader is referred to  the 
individual papers for the details of these ma- 
nipulations and solutions. Similarly, the exten- 
sions of the theory to  include inplane forces, 
large deformations, and thermal effects (refs. 
12.12, 12.40, 12.41, and 12.48) d nod be 
discussed here. 

modes of the form (ref. 12.29) 
Thkkness-shear vibration is define 

u=f(z)eiot  
v=w=o (12.73) 

It can be shown (ref. 12.29) that, for a plate 
having infinite dimensions in the 2- and y- 
directions, the exact frequency of the first 
antisymmetric mode of thickness-shear vibra- 
tion is 

(12.74) 

It can be farther shown (ref. 12.28) that, for 
equations (12.72) t o  give results consistent 
with equation (12.74), K~ must be chosen for 
an isotropic plate to be 

(12.75) 2 ?=- 
12 

Further theoretical discussion of the effects of 
shear deformation and rotary inertia upon the 
vibration of plates can be found in references 
12.49 to  12.61. For the most part, these ref- 
erences give alternative derivations of sys- 
tems of governing equations, in some cases 
concluding with Mindlin’s equations and in 
other cases obtaining substantially different 
formulations. 

12.3.1 Circular Plates 

Consider first a circular plate having a 
clamped boundary. (See fig. 2.1.) For axi- 
symmetric modes of vibration the sixth-order 
system of differential equations (12.72) (when 
converted to polar coordinates) reduces to a 
fourth-order system. The boundary condi- 
tions are 

w(a) =*,(a) =o (12. 16) 

That is, the change in slope due to bending 
is zero at  the boundary. Applying equation 
(12.76) to the solutions of the differential 
equations, which are in terms of Bessel func- 

‘0 4 8 12 16 20 24 28 32 

2 a / h  

FIGURE 12.22.--Ratio of plate frequency ‘Go thickness- 
shear frequency for a clamped circular plate derived 
from classical theory; v=0.312. (After ref. 12.35) 
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tions (see refs. 12.33, 12.34, and 12.62), yields 
a set of characteristic equations for the 
frequencies. 

Results for the axisymmetric modes were 
presented by Deresiewicz (ref. 12.35). The fre- 
quency ratio w / Z  derived from the classical 
theory of plates is plotted in figure 12.22. With 
the use of the notation of the chapter entitled 
“Circular Plates” (ch. 2), the circular fre- 
quencies of the plate can be obtained from 

W & ~ = A ?  ( i= l ,  2, .  . . )  (12.77) 

where Xi are the eigenvalues determined from 
the characteristic equation. By using equa- 
tions (12.74) and (12.77), it is easily seen that 
the ratio of the plate flexural frequency to the 
thickness-shear frequency E is 

0.43365 5. 4403 
I. 44326 4.96242 
2.53474 4. 38426 
3. 49852 3. 86308 

I 

(12.78) 
W 

where the subscript i on w and X has been 
dropped but is implied. Figure 12.22 is conse- 
quently a plot of equation (12.78) for a par- 
ticular value of Poisson’s ratio v=0.312. 

Figure 12.23 is a corresponding plot with the 
plate frequencies w obtained by the theory of 
this section, although this figure is plotted over 
a smaller range of w / Z ,  thereby emphasizing 
the region in the vicinity of w / Z =  1. In com- 
paring figures 12.22 and 12.23, it is obvious that 
consideration of shear deformation and rotary 
inertia has the effects of- 

0 4 8 12 16 20 24 28 32 

2 d h  

FIGURE 12.23.-Ratio of plate frequency to  thickness- 
shear frequency for a clamped circular plate derived 
from the MindIin theory; v=0.312. (After ref. 12.35) 

(1) Lowering the fundamental frequency for 
a given diameter-thickness ratio 

(2) Rendering more frequencies in a given 
range of w j Z  for a particular plate 

(3) Completely altering the curves in the 
high-frequency range WE> 1 

The case when the circular boundary is 
simply supported was attempted by Tomar (ref. 
12.63). Again, when only the axisymmetric 
modes are sought, only two boundary condi- 
tions are required; namely, 

w(a)=M,(u)=O (12.79) 

In reference 12.63 the equations of motion (eqs. 
(12.72)) are retained in rectangular coordinates, 
and their finite-difference equivalents are writ- 
ten. Because of the choice of coordinate 
system, a rectangular finite-difference grid must 
be fitted to  a sector of the circular plate. This 
is accomplished by using nine mesh points 
within one octant obtained from a square grid 
having elements of dimension 4 4 .  Fundamental 
frequency parameters 4w2a2p/Eh for various 
thickness-radius ratios given in table 12.5 and 
figwe 12.24 for v=O.3 are taken directly from 
reference 12.63. In addition, the frequency 
parameter w u 2 J m  is presented in table 12.5 
for direct comparison with the classical result 
wa2JplD=4.977 (see sec. 2.1.2) which applied 
for very small values of h/a. From this com- 
parison it appears that the accuracy of the 
results given in table 12.5 and figwre 12.24 is 
highly questionable. 

Numerical results for the completely free cir- 
cular plate were found by Mindlin and Deresie- 

TABLE 12.5.-Fundamentrcl Frequency Param- 
eters for a Simply Supported Circular Plate 
According to the Mindlin Theory; v=0.3 
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h 
20 
- 

FIGURE P2.24.-Fundamental frequency parameters 
for a simply supported circular plate; ~'0.3.  (After 
ref. 12.63) 

wicz (refs. 12.33 and 12.34). 
boundary conditions are 

In this case the 

M, (a) =M,e (a) = &, (a) = 0 (1 2.80) 

The twisting-moment condition is identically 
satisfied by symmetry for the axi 
modes. In reference 12.34 frequency param- 
eters for axisymmetric modes were deduced 
when v=0.312. Plots of the frequency ratios 
w/W discussed earlier in this section are depicted 
in figures 12.25 and 12.26 for the classical 
theory and the Mindlin theory, respectively. 
Results for the antisymmetric modes (having 
one nodal diameter) were computed h refer- 
ence 12.33 and are presented in figure 12.27, 
again for v=0.312. 

In reference 12.64, C ~ ~ ~ h a n  used the MindIin 
theory t o  derive characteristic determinants 
corresponding to eight separate sets of con- 
tinuous boundary conditions for circular plates. 

*r 

All sets are presented in forms conducive to 
computer programing and for general vibration 
modes. 

12.3.2 Rectangular Plates 

It was shown in reference 12.28 that equations 
(12.72) can be uncoupled (after the time is 
taken out by assuming harmonic response) by 
defining three potentials wl, w2, and H by the 
eauations : 

No numerical results were given. 

w=wl+wz f 
where 

A,=2[1$g- (- I)'B,]--l ( j = h  2) 

g = K y  1 - v)/2 
B 1 = [ ( 1 -g) + 49 (;/a,) 2]1'2 ( j = 1, 2) 

and where afZ is the ratio of plate frequency 
to thickness-shear frequency used earlier in this 
chapter (W is defined by eq. (12.74)), K is 
given by equation (12.75), and v is Poisson's 
ratio. Substituting equations (12.81) and 
(12.82) into equations (12.72) results in the 
three uncoupled equations 

(V2+6gw1=0 

(V2 4- ,/2)H= 0 
(V2+6t) wz=o (12.83) 

2 o/h 

FIGURE 12.25.-Ratio of plate frequency t o  thickness- 
shear frequency for the axisymmetric modes of a 
completely free circular plate derived from classical 
theory; u=Q,312.  (After ref. 12.34) 
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2o /h  
F m u R E  12.26.-Ratio of plate frequency to thickness-shear frequency for the axisymmetric modes of a completely 

free circular plate derived from the Mindlin theory; v=O.312. (After ref. 12.34) 

2 a/h 
FIGURE 12.27.-Ratio of plate frequency to thickness-shear frequency for the antisymmetric modes of a completely 

free circular plate derived from the Mindlin theory; v=0.312. (After ref. 12.33) 

Thus the potentials wl: w2, and H may be 
regarded as uncoupled vibration modes having 
the frequencies wl,  w2,  and w3,  respectively. 

The problem of the rectangular plate simply 
suppoded 0% d l  edges was solved by ~~~~, 

(12.84) Schacknow, and Deresiewicz (ref. 12.36) by 

6; = 6 (Uj/Z);>"[ 1 +g - ( - I) 

y2=?2[(03/Z)~- 1 p - 2  
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means of the approach just given. In terms of 
a coordinate system Z ,  ?/having its origin at the 
center of the plate (cf. fig. 4.4), the boundary 
conditions are : 

w=Mz=I),,=O (on 5=fa/2)  

W=M,,=J/~=O (on y= f b/2) 
(12.85) 

It is easily seen that 

Substituting equations (12.86) into equations 
(12.85) gives 

cuj=rjn/a 

&=sp/b (j=l, 2, 3) 
(12.88) 

where r3 and s5 are even integers. The modes 
given by equation (12.86) are then odd in both 

BS even in x sin a,x a 

(12.86) and the r5 are odd integers. Similady, 
for modes even in y, sin &y and cos &y are 
interchanged, and the s, are odd integers. 

Substituting equations (12.88) into equations 
(12.87) and solving for the frequency ratios 
give 

2 

=I+@ 

(12.89) 
where 

(12.90) 

In figure 12.28 (taken from ref. 12.36) the 
three sets of frequency ratios given by equations 
(12.89) are plotted against the length-thickness 
ratio as a function of the parameter r&, where 

~$~=[ry+ ( s ~ ~ ~ / b ~ ) ] ” ~  (j= 1, 2, 3) (12.91) 

and where v=0.312. From figure 12.28 it  can 
be seen that for a given plate and for a given 
mode number j the frequencies are ordered 
according to w1<wa<w2 and that w2 and w3 are 
much greater than w1 except for very thick 
plates. 

In figure 12.29 (taken from ref. 12.36) a 
more detailed plot of the frequency ratios is 
indicated in the vicinity of w / Z  = 1  for a fixed 
ratio s,h/b=0.2 and for v=0.312. This cor- 
responds to the particular case when the dis- 
tance in the y-direction between node lines 
(including the boundaries) is five times the 
plate thickness. In this figure ~ ~ = m ,  Ta=n, 

and r3=p; that is, the curves m, n, q=constant 
give the frequencies of the wl, w2, and H modes, 
respectively. In this case, each mode has a 
low-frequency cutoff given by 

=l+(I)y+(-l)’aT (j=19 2) 

(12.92) 

d h  

FIGGRE 12.28.--Ratio of plate frequency t o  thickness- 
shear frequency for a SSSS-SS-SS rectangular plate 
derived from the MindHin theory; v=0.312. (After 
ref. 12.36) 
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e 
3 

1.20 

1.15 

1.10 

-n=m 

1.0704 

i .05 

1.0198 
0 2 4 6 8 IO 12 14 16 18 20 22 24 26 28 30 32 34 36 

O/h 
FIGURE 12.29.-Ratio of plate frequency to thickness-shear frequency for a SS-SS-SSSS rectangular plate when 

the distance between nodes along the width is five times the thickness; ~ = 0 . 3 1 2 .  (After ref. 12.56) 

where +: and Q: are given by equations 
(12.90) with r,h/a=O. These formulas give 
the values 1.0198 and 1.0704 shown in figure 
12.29. 

The mode shapes corresponding to wl,  wz, 
and H are depicted in figure 12.30 (taken from 
ref. 12.36). The mode shape corresponding to 
classical theory is shown in figure 12.31, which 
is also from reference 12.36. Of the three 
modes, the w1 mode most closely resembles the 
classical mode; heme, it is called a “ffexuraJ” 
mode. As a/h+m, this mode approaches the 
classical mode, and its frequency approaches 
the classical frequency given by equation 
(4.20). For the wz mode the thickness-shear 
deformation predominates. The N mode shape 
(fig. 12.30(c)) contains no average deflection, 
but twists the plate; hence, i t  is called a “thick- 
ness twist” mode. 

In  references 12.65 and 12.66 the problem of 
the simply supported plate is attacked by the 
finite-difference method. Mindlin’s equations 
are the basis for this method in reference 12.65, 
whereas in reference 12.66 an alternate set is 
used. Numerical results for frequencies are 
given in both papers, but they are inconsistent 

with classical theory and will not be repeated 
here. 

A stiffened plate was treated as an ortho- 
tropic plate for purposes of analysis in refer- 
ence 12.67. The effects of rotary inertia were 
considered, but shear deformation was ignored. 
In this case the system of governing differential ~ . 
equations remains fourth order. Equation 
(9.22) is generalized t o  

where 1, and I, are the moments of inertia of 
the stiffened plate about axes parallel to the 
y- and z-directions, respectively. 

For a rectangular plate simply supported 
along the edges x=0, a and y=O, b, it is appar- 
ent that the boundary conditions will be 
satisfied by the deflection function 

W ( Z , ~ J ) = S ~  a2 ,@y (12.94) 

where ( ~ = m ~ / a ,  P=n~lb ,  and m and n are 
integers. Substituting equation (12.94) into 



322 VIBRATION OF PLATES 

7 c 
A 

B FIGURE 12.30.-~Mode shapes for a SS-SS-SS-SS 
rectangular plate with consideration of shear de- 
formation and rotary inertia. (a) wl mode. (b )  2u2 

mode. (c) H mode. (After ref. 12.36) 

equation (12.93) and assuming harmonic time 
response give the frequency equation 

at  the effects of rotary inertia enter 
as terms in the denominator of equation (12.95) 
with a resultant decrease in frequency from 
the classical theory. 

In reference 12.67, theoretical results were 
obtained from equation (12.95) and compared 
with experimental data for an aluminum square 
plate having the cross section and dimensions 

FIGURE 12.31.-Mode shape for a SS-SS-SS-SS 
rectangular plate, derived from classical theory. 
(After ref. 12.36) 

o = b = I l "  
hs= 0.275'' 
h< 0.065" 
a; 0.063" 
a; 0.625'' 

-l ' y e -  

FIGURE 12.32.-Dimensions of stiffened plate. (After 
ref. 12.67) 

shown in figure 12.32. A comparison of 
theoretical and experimental results for this 
plate is given in table 12.6. 

The problem of the SS-FSS-F rectangular 
plate was also analyzed in reference 12.36. 
The boundary conditions are: 

M,=M,,=Q,=Q (on%=ka/2> 
W=M~=$~=O (on fj= i b / 2 )  

} (12.96) 

It should be noted that here the simply sup- 
ported edges are along y= +b/2; this is unlike 
the previous convention used in section 4.2.5. 
Solution functions in the form of equations 
(12.86), which exactly satisfy the simply 
supported edge conditions, were again used. It 
is most interesting to note that the free edge 
conditions are also satisfied exmtly (unlike in 
the classical theory) by this simple solution 
set upon substituting equations (12.86) into 
the first three of equations (12.96). This yields 
a characteristic determinant of the third order 
which is solved for the frequencies. Thus the 
modes wl, wz: and H do not remain uncoupled 
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TABLE 12.6.-Thoretical and Experimental Cyclic Frequencies for a SS-SS-SS-SS Stijened 

4 

800 
831 
793 

1268 
1344 
1282 
2110 
2349 
2238 

Mode no. n 

5 

1152 
1220 
1135 
1580 
1689 
1570 
2340 
2638 
2451 

Rectangular Plat e 

cyclic frequency, cps, for values of mode 
no. m of- 

Derivation 

1 1 1 2  

244 
238 
237 
794 
880 
877 

1700 
1950 
1940 

340 
336 
332 
940 
954 
941 

1800 
2020 
1983 

3 

538 
534 
520 

1020 
1100 
1070 
1840 
2150 
2090 

as in the SS-SS-SS-SS case discussed previ- 19.3.3 Other Shapes 
ously in this section. Callahan (refs. 12.64 and 12.68) treated the 

The ratio of plate frequency t o  thickness- problem of the elliptic plate, including the 
shear frequency is plotted in figure 12.33 for the effects of shear deformation and rotary inertia. 
particular ratio s,h/b=0.2 (as in fig. 12.29). Mindlin's equations were transformed into 
The broken and solid curves are for modes odd elliptic coordinates, and series solutions t o  the 
and even, respectively, in x .  differential equations were found in terms of 

Q /h 
FIGURE 12.33.-Ratio of plate frequency to thickness-shear frequency for a SS-F-SS-F rectangular plate when the 

distance between nodes along the direction parallel t o  the free edges is five time the thickness; v=0.312. 
(After ref. 12.36) 
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Mathieu functions. The boundary conditions 
are satisfied by finding the roots of an infinite 
determinant, each element of the determinant 
being an infinite series of Mathieu functions 
containing the frequency within their argu- 
ments. In reference 12.68 the infinite charac- 
teristic determinants are displayed for eight 
types of boundary conditions, but no numerical 
results are given. 

12.4 EFFECTS OF NONHOMOGENEITY 
A brief survey of the literature dealing with 

the vibration of nonhomogeneous plates will 
now be given. Nonhomogeneity may arise 
in many ways. Overall material properties 
themselves may vary in a continuous manner 
(e.g., a continuum representation of a fibrous 
composite plate). Inclusions or holes may 
occur within the plate. As can be seen from 
earlier chapters, the effect of a “classical1’ @.e., 
cylindrical) hole, even if small, can cause a 
significant effect upon the vibration frequencies 
of a plate. 

Some practical and commonly used types of 
sandwich plates 

beyond the scope of this work. Even with 
these assumptions, the complexity of the 
results and the number of parameters required 
to  describe the sandwich make it impractical 
to  report detailed numerical results in this 
see tion. 

In  the most simple case, a layered plate is 
made up of several layers bonded together, each 
layer being homogeneous and isotropic, and the 
KirchhoB hypothesis of normds to the mid 
surface remaining straight and normal is as- 
sumed valid. In  this case the mathematical 
complication of the plate theory is minimal. 

The necessary modifications of the theory are 
discussed in the section of the appendix entitled 
“Force and Moment Integrals” (sec. A.5). This 
is the type of nonhomogeneity discussed in 
reference 12.69. 

Bolotin (ref. 12.70) generalized the model 
for the layered plate by assuming that the plate 
is composed of both “hard” and “soft” layers. 
The hard layers obey the Kirchhoff hypothesis 
while slippage occurs in the soft layers. In  the 
soft layers the inplane stresses oz, uu, and T , ~  

are assumed to be zero, while the transverse 
shear stresses ruz and rz2 are constant within 
the layer. On the basis of these assumptions, 
a complete plate theory is developed in refer- 
ence 12.70. Another formulation, based upon 
the three-dimensional equations of elasticity, is 
given in reference 12.71. 

(refs. 12.72 through 12.83) is particula 
nificant. This effort is primarily devoted to the 
incorporation of shear deformation and rotary 
inertia effects into the layered-plate theory. 
It is shown that these effects, particularly shear 
deformation, are especially important when one 
de& with conventional sandwich plates com- 
posed of a relatively e material con- 
tained between two r 
sheets. The statemen 
shear-deformation effects 
tant for a sandwich pl 
which may be only 1 pe 
corresponding solid, hom 
shown furthermore that, 
plates, the shear effe 
inertia of the faces a 
and the flexural rigidity o 
ble; of importance 
core, the rotary and translatory inertias of the 
core, the translatory inertia of the faces (in- 
cluding the rotary effect of the faces about the 
midplane of the sandwich plate), and the flex- 
ural and extensional rigidities of the faces (ref. 
12.75). 

A one-dimensional theory was developed in 
references 12.72 to  12.76, which is applicable 
to the vibration of plates in modes of plane 
strain. The transverse displacement w, as in 
the Mindlin theory, was assumed to be con- 
stant through the plate thickness. The dis- 

The theoretical work of Yu on layered 
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placements in the plane of the plate are assumed 
to vary linearly through the thickness, with the 
slope in the face sheets not necessarily the 
same as the variation in the core. 

The theory is generalized to  a two-dimen- 
sional variation in 20 in references 12.77 and 
12.78 and is applied to the problem of a rec- 
tangular plate simply supported on all edges. 
In references 12.78 and 12.83, sets of formulas 
are presented for the calculation of natural 
frequencies of the simply supported rectangular 
plate. Those formulas will not be reproduced 
here because of their inherent complexity 
(arising from the relatively complicated geom- 
etry and material properties of the sandwich 
plate) and the amount of explanation which 
would be required. 

The theory is extended to the nonlinear 
(large-deformation) domain in references 12.80 
to 12.82. It is shown that the basic behavior 
is the same as that for homogeneous plates; 
that is, the membrane stiffening due to large 
deformations causes the overall stiffness of the 
system to be like a “hard” spring, thus causing 
an increase in frequency with increase in ampli- 
tude. (See section 12.2 of this work for back- 
ground information.) I n  particular, the non- 
linear theory is applied to a rectangular plate 
having immovable, hinged edges. 

Further theoretical derivations of equations 
for the vibrational behavior of layered plates 
are made in references 12.84 to 12.86. In  
both references 12.84 and 12.85 the analyses 
are generalized to include orthotropic core 
ma terids, and explicit frequency equations 
are developed for the case of a plate simply 
supported on all edges. 

Experimental results for sandwich plates 
Having honeycomb and Styrofoam cores are 
given in reference 12.87. Experiments were 
conducted in a vacuum and data were compared 
with analytical frequencies obtained from a 
finite-difference solution of the classical plate 
equations. It was found that the classical theory 
is adequate for obtaining frequencies and mode 
shapes, except in cases of extremely low core 
stiffness. 

Circular sandwich plates with linearly vary- 
ing thickness were examined in reference 12.88. 
Experimental frequencies were compared with 

theoretical values obtained by a simple analysis 
by using the Rayleigh method. 

In  reference 12.89 radial nonhomogeneity in 
circular plates is accommodated by treating the 
plate as a composite of homogeneous, isotropic 
annuli and enforcing continuity conditions 
across the internal junctions. 

The plate consisting of a thin face sheet 
stiffened by corrugated sheet (see fig. 12.34) is 
analyzed in reference 12.90. It is shown that 
this configuration cannot be treated as ortho- 
tropic plate because the twisting-moment rela- 
tion M,,=M,, is no longer applicable. A 
theory for this case is derived. 

In reference 12.91 an inJEatable plate is 
analyzed. This plate consists of two woven 
cover membranes joined to each other by 
closely spaced perpendicular filaments. The 
space between the covers is pressurized, and the 
filaments hold the cover membranes together 
(see fig. 12.35). A variable-thickness plate is 
obtained by using variable-length connecting 
filaments. The theory developed in reference 
12.91 was applied in reference 12.92 to  obtain 
natural frequencies of square plates havbg 
simply supported edges. Results were com- 
pared with experimental ones. 

FIGURE 12.34.--A corrugation-stiffened plate. 

WOVEN COVERS7 

CONNECTING 
FILAMENTS 

FiGTJRE 12.35.--TypicaI inflatable plate construction. 
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APPENDIX 

e ions 

The purpose of this appendix is to present 
the notation, conventions, assumptions, and 
fundamental equations upon which the main 
past of this work is based. The effects of 

(1) Anisotropy 
(2) Inplane forces 
(3) Variable thickness 

will be explicitly included. Where other com- 
plicating effects (e.g., large deflections) enter 
the formulation, they will be pointed out. 
Basic derivations are, for the sake of simplicity, 
carried out in rectangular coordinates. 

A.l NOTATION 
A notation will be developed which is con- 

sistent with that of elasticity theory; that is, a t  
a point the directions of positive stress 
taken as shown on the element of figure A.1. 
Positive normal stresses are tensile. Positive 
shear stresses are directed in the positive x-, y-> 
and z-directions if they lie on “positive faces” 
of the element; that is, those faces of the three 
parallel sets whose 2-, y-, and z-coordinates are 
the largest. The three well-known (ref. A.1) 

i 

FIGURE A. I.-Notation and positive directions of stress. 

moment equilibrium equations 7zy= TU3? ryr= 
T , ~ ,  and T,,= T,, (neglecting couple stresses) have 
already been introduced in figure A. 1. 

Figure A.2 shows a plate element of thickness 
h and incremental dimensions dx and dy. The 
x- and y-axes are chosen to contain the unde- 
formed middle surface of the plate. This plane 
is called the “neutral plane.” More will be 
said later about its location when layered 
plates are discussed. For a plate homogeneous 
through its thickness, the neutral plane lies 
midway through its thickness. The z-axis is 
normal to the undeformed middle surface. 
The z-axis is shown, for convenience only, 
as acting along one edge of the element. Thus, 
it  is noted that the xyz coordinate system i s  
space $xed. The transverse shearing force 
intensities Qz and Q,, the inplane normal 
and shearing force intensities N,, N,, and 
N,, and their incremental changes are shown 
acting on the sides of the element, with positive 
forces acting in positive directions on positive 
faces. These quantities have dimensions of 
force per unit length. As will be seen later, 
fhese forces arise from the integrals of the 
even componen!~ of positive normal and shear- 
ing stresses. The shearing forces N,, are 
identical on the faces z=O and y=O because 
the shear stresses causing them are equal. 

so shown is the transverse external force 
p=p(x, y) which has the dimension of force 
per unit area and arises from, for example, a 
gravitational field or an external pressure. It 
will be understood that, as the plate deforms, 
all the forces shown in figure A.2 will be 
measured in directions tangent to  or normal to  
(as the case may be) the deformed middle 
surface of the plate. 

Figure A.3 shows the same element with 
bending moment intensities M,  and Mu, 
twisting moment intensities Mzu, and their 
incremental changes; all these are indicated as 

331 
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FIGURE A.2.-For0ea (intensities) acting on a plate element. 

FIQURE A.3.-Moments (intensities) acting on a plate element. 

right-hand vectors in the figure. These quan- 
tities have dimensions of moment per unit 
length. As it will be seen later, these moments 
arise from the integrals of the odd components 
of positive normal and shearing stresses. These 
stress variations are depicted typically on 
two faces of the element. The twisting moments 
Mz, are identical on the faces x=O and y=O 

because the shear stresses causing them are 
identical. 

The middle surface of the element after 
deformation is shown in figure A.4. The origin 
of the space-fixed coordinate system is taken 
at  one corner of the element for convenience 
only. The displacemedt in the z-direction i s  
taken as w. Slopes, along with their incre- 
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Z,W 

a y  [b+d a y  a x  a y  dx] dy 

FIGURE A.4.--Deformed middle surface of a plate element showing slopes and their changes. 

mental changes, are shown at all corners of 
the element, with positive changes assumed in 
positive directions. For small displacements 
it will be assumed later that the slope (tangent 
of the angle) and the sine of the angle are 
equivalent. 
A.2 EQUILIBR~UM EQUATIONS 

Considering small deflections (or, more 
precisely, small slopes), summing forces in the 
z-direction yield the equation (refer to  figs. 
A.2 and A.4) 

where p is mass density per unit area and 
b2w/dt2 is the acceleration in the z-direction. 
The technique of generalizing the above equa- 
tion to account for large deformations (slopes) 
is self-evident. Expanding the terms involving 
products, discarding resulting third-order differ- 
ential terms, dividing through the equation by 
the area dx dy, and simplifying yield: 

Equation (A.2) can be simplified by consid- 
ering the well-known equilibrium equations 
of the three-dimensional theory of elasticity 
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where u, v, and w are displacements in the 
5-, y-, and z-directions, respectively, and p* is 
mass density per unit volume. When the 
inplane inertia forces within the plite are 
neglected and the transverse shearing stresses 
T , ~  and T,, are small relative to the other 
stresses, the first two of equations (A.3) become: 

Because these equations must be satisfied for 
every infinitesimal thickness (dz) of the plate 
element, their integrals over the thickness must 
also be satisfied. That is, 

By use of equations (A.51, equation (A.2) now 
simplifies to 

If one were to sum forces in the 2- and y- 
directions, he would arrive a t  the following 
equations : 

bA-7) 

Sane inertia forces will be considered t o  
small, as before. If the transverse shearing 
forces are small relative to the inplane forces, 
and the slopes are d s o  considerably less than 
unity, then terns of the type Q,(dwfdz) cac 
certainly be considered negligible compared 
with terms of the type N,, for example. Equa- 
tions (A.7) are thus seen to reduce to  equations 
(A.5), which was obtained previously. 

In  summing moments about the space-fixed 
2- and y-axes, it is found that terms containing 
N,, IVY, and Nsv yield differentials of higher 

order than the others and the equations 
simplify t o  

where the terms on the right-hand sides ac- 
count for the rotary inertia of the plate element 
and are customarily considered small relative 
t o  the remaining terms in the equations. 

The moment equation about the z-axis is 
iden tically satisfied. 

A.3 KINEMATICS OF DEFORMATION 
The assumption of elementary beam theory 

that “plane cross sections remain plane” is 
generalized to apply to  a plate as follows: 
Normals to the midplane of the undeformed plate 
remain straight and normal t o  the midplane during 
deformation. 

An edge View of a portion of a plate is shown 
in figure A.5. The undeformed position of the 
plate is shown in solid lines, while the deformed 
shapeis shownin broken lines. The longitudinal 
elastic displacement (due to  inplane forces) of 
a point I‘ on the midplane is depicted as uo. 
Points such as 0 not falling on the midplane 
will also have, in general, displacement due to  
rotation of the normal Thus, the longitudinal 
components of displacement of points within 
the plate will be characterized by 

E 

i f  
I L-4 

FIGURE A.5.--P(inernatics of plate deformation. 
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where u and v are measured in the x-and y- 
directions, respectively. 

The linearized strain-displacement equations 
(obtained by  assuming strains much less than 
unity) €or a continuum are well known: 

bU 
ex=% 

av 
v-ay e -- (A.10) 

av au ?xv=&+G 
where yzv is engineering strain as differentiated 
from the tensorial strain required €or tensorial 
manipulations. Subs ti tu ting equations (A .9) 
into equations (A.lO) gives 

bu b=W e -LzL.- 
"-ax a22 

(A.11) 

.4  TRESS-~TRAI ~ ~ L A T I O ~ S ~ I P S  
For a general, anisotropic, elastic body the 

stress-strain relationships may be written in 
matrix form as: 

where the coefficient matrix [ai,] can be 
to be symmetric as shown. Thermal 

(A.12) 

proven 
strains 

will not be  considered here, for it can be shown 
that they do not directly influence the free 
vibration problem. In the case of the plate 
the transverse stresses cz, ryr, and rzz  are as- 
sumed to be small relative to  the inplane stresses, 
and SO equation (A.12) is reduced to 

Inverting equation (A.13) gives %he stresses in 
terms of the strains 

where 

and where la/ is the determinant 

(A. 16) 

In the case when the material properties are 
orthotropic, with z and y lying in the 
of orthotropy, equations (A.13) and (A.14) 
are simplified, with a14=a24=b14=b24=0. Then 
equation (A.13) can be written more meaning- 
fully in terms of the "technicd constants" of the 
material. In detail, 

e -- (az-vzuv> z-Ez 
I 

(A.17) 

?ZV' TZdG 

with v,/Ez=v,lEv because of the required sym- 
metry of the stress-strain equations. Thus, for 
an orthotropic plate, there are four independent 
elastic constants. Inverting and substituting 
in equations (A.17) yield 
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For an isotropic material, equations (A.17) 
further Simplify t o  

1 1 
e, =E ( cT*- VG,) 

OF PLATES 

(A.19) 

2(1+v) 
% u = ~  Tzu 

A.5 FORCE AND MOMENT INTEGRALS 
The inplane forces and the bending moments 

are obtained by integrating the inplane stresses 
over the plate thickness. In the case of a 
homogeneous plate, these integrals are 

The detailed integrations will be carried out for 
the bending and twisting moments in an ortho- 
tropic plate. 

When equations (A.l l )  and (A.18) are sub- 
stituted into equations (A.20(d)), (A.2O(e)), 
and (A.20(f)), it becomes clear that  terms con- 
taining u,, and zlo disappear during the integra- 
tion between symmetric b i t s ,  whereas those 
containing w remain. Similarly, the odd func- 
tions of z in equation (A.11) disappear in the 
integrations of equations (A.20(a)), (A.20(6)), 
and (A.20(c)). The moment integrals become: 

(A.21) 

where 
E 3  D- P 2( 1 -v*v,) 

E,h3 a= 12 ( 1 -vzvv) 
(A.22) 

Gh3 

In  the isotropic case, Ez=E,=E, v , = v ~ = v ,  
and G= E/2( 1 $. v) , and these equations simplify 
to  

where 
Eh3 

12(1 -v2)  
D= 

The generalization of equations (A.21) to  
the case of anisotropy is straightforward when 
equations (A.13) and (A.14) are used instead 
of equations (A.17), but it will not be carried 
out here. 

It must be pointed out here that in the case 
of homogeneous plates of variable thickness, 
the limits of integration in equations (A.20) 
simply become variables h=h(z,  y), and equa- 
tions (A.21), (A.22), and (A.23) still apply. 

Finally, consider the layered plate shown in 
figure A.6. The plate is constructed of two or 
more laminas having thicknesses hl, hz, . . . 
which are bonded together at  their interfaces. 
The material properties of each lamina will, in 
general, be different. Consequently, the neutral 
plane will not, in general, occur midway be- 
tween the two outer faces. Its distance from 

PIGUEE A.6.---layered plate. 
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the upper surface is denoted by c. As before, 
the transverse coordinate z wi l l  be measured 
from this neutral plane. 

The force and moment integrals will be 
formulated for the layered plate of figure A.6, 
which has three layers. Extension of this 
formulation to  other numbers of layers is 
straightforward and obvious. Because the 
stress variation in each layer will, in general, 
be different, it  is necessary to perform these 
integrations in a piecewise manner; for example, 

where (rzt is the normal skess in the x-direction 
in the layer having thickness hi. 

Now the location of the neutral plane will be 
determined. Consider a plate bent by pure 
moments (Le., no inplane forces). The neutral 
plane is that plane having no bending stresses 
&e., a,=a,=O). Then the location of the 
neutral plane is such that inplane force integrals 
vanish when only the bending components of 
stress @e., the odd functions of z> are used. 
Thus, for example, the distance G can be 
determined by setting the first of equations 
(A.24) equal t o  zero and using equations 
(A.11) and (A.181, with buo/dx=O in equations 
(A.11). 

ESlS OF EQUATIO~S 
Consider ks t  a homogeneous plate having 

rectangular orthotropy and subjected to inplane 
forces, but let its thickness be constant. Sub- 
stituting equations (A.21) into equation (A.8) 
gives the transverse shearing forces in terms 
of the plate deflection (neglecting rotary 
inertia) : 

(A.25) 

where 
D,,=v@z+2D, (A.26) 

Combining equations (8.25) with equation 
(A.6) gives the equation of plate bending 

a4w iYW a4w a2w Dx baP ~ +2Dzu h x g  +O,-+p* a$ 

where the transverse loading p has been omitted 
from the free vibration em. 

The inplane forces are generally functions ob 
z and y. For the linear problem, they are 
determined first from solving the plane elasticity 
problem, which involves equations (A.5) and 
an equation of compatibility. Thus, in this 
case the bending and stretching effects are 
uncoupled from each other. When inplane con- 
straints (e.g., u=O and/or v=O) are introduced 
into the problem, the inplane forces that will 
be generated will vary with w, and equation 
(A.27) becomes nonlinear. 

In the case of variable thickness, when equa- 
tions (A.21) or (A.23) and (A.8) are substituted 
into equation (A.6), the thickness is simply 
regarded as a variable h=h(z, y) when carrying 
out the differentiations. The resulting differ- 
ential equation, which is a generalization of 
equation (A.27) , is relatively complicated. For 
example, in the most simple case (isotropic, 
homogeneous, no inplane forces, etc.) equation 
(A.6) becomes : 

with 
v2= (@/a$) + (b2/by2) 
DARY CONDITIONS 

Because the differential equation governing 
plate deflection (e.g., eq. (A.27)) is of the 
fourth order, two boundary conditions are 
required along each edge. AU possible bound- 
ary conditions on an edge can be obtained 
from the case of elastic constraints; hence, 
these general conditions d be discussed h t .  
An infinitesimal width taken front the edge of 
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a plate normal t o  the x-direction is shown in 
figure A.7. Translational and rotational 
springs having stiff nesses K,  and K+ , 
respectively, are attached t o  the edge. The 
force K,w required to  deflect the translational 
spring in the positive direction and the moment 
K*&w/dx required t o  cause a positive rotation 
are shown, along with their reactions on the 
edge of the plate. The “edge reaction” V,  
and the bending moment M ,  occur at  an in- 
finitesimal distance within the plate (the “edge 
reaction” is discussed later). By summing 
forces and moments on the infinitesimal ele- 
ment and neglecting higher order terms such 
as those arising from forces and moments 
acting on the two planes parallel to the plane 
of the paper, the following equations are found 
to hold on the boundary: 

V,=-K,w> 
(A.29) 

The inplane force component N ,  does not enter 
this equation, for it was defined to  be taken 
always in; the deformed neutral plane. The 
generalization of equations (A.29) to arbitrary 
edge directions is accomplished by using n in 
place of x, where n is the direction of the outer 
normal t o  the edge. 

Special cases arise when the spring constants 
K, and/or K+ are zero or infinity. When 
K,=K+=O, the edge is completely free. When 
both K, and K+ approach infinity, the edge 
becomes clamped. When K#=O and K, ap- 
proaches infinity, the edge becomes simply 
supported. The last possible ease is %hat in 

7 
h 

iMX 

FIGURE A.T.-Elastic edge constraints. 

which K,=O and K,J, approaches infinity. This 
last condition is physically possible but receives 
virtually no treatment in the literature on 
plates. 

The meaning of the “edge reaction” will now 
be discussed. I t  would appear that for a free 
edge normal to the y-direction all three quanti- 
ties Mu, M,,, and &, would be zero. However, 
as discussed previously, only two boundary 
conditions are admissible per edge. It is found 
that Q, and M,, combine into a single edge 
condition as wiyill be described now. Figure A.8 
depicts a free edge parallel to the 2-direction. 
The twisting moment Mzu=MZu(x) along the 
edge can be represented by pairs of vertical 
forces having intensities M,, and infinitesimal 
changes, as shown. The vertical force resultant 
from the opposing forces is t,hus bM,,/dx in 
intensity. When this is added to the trans- 
versing shearing force, the total edge reaction is 

(A.30) 

In terms of arbitrary directions normal and 
tangent to the boundary (n and t ) ,  equation 
(A.30) is generalized to  

X 

X 

FXGURE A.g.--Twisting moments along an edge. 
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For further discussion of the free edge con- 
dition, seereferencesA.1 (p. 84) and A.2 (p. 17). 

A,$ POLAR ORTHOTROPY 
A development parallel t o  that of the pre- 

ceding sections may be carried out for the case 
of polar orthotropy. That is, if the stresses 
associated with plane polar coordinates (see 
fig. 1.1) are ur7 ue, and T,@ and the corresponding 
strains are er, Ee, and Yre, the stress-strain 
relations are given by the equae' m n s  

1 
t -- (ur-Yru@) 

-- Er 

(A.32) 

Yro=Tle/G 

which are analogous to equations (A.17). The 
kinematic relationships between displacements 
are 

dW u=uo-z - br 
z bw 

O ra t?  

(A.33) 
v=2) --- 

where zd and v now identify the radial and 
circumferential displacements. The strain- 
displacement equations become 

dU 
'- br e -- 

Using moment integrals corresponding to 
those of equations (A.20) with equations 
(A.32), (A.331, and (A.34) gives the moment- 
curvature relations (ref. A.3) 

( 8 . 3 5 )  

where the flexural rigidities are defined by 

When moment equilibrium equations equiv- 
alent to equations (A.8) are used and rotary 
inertia is neglected, the transverse shearing 
forces are found to be (ref. A.3) 

De -(--+--)*- d I ~ w  1 b2w Dre d3w 
T be r br r2 be2 r d r 2 e  

(8.37) 

(A.38) 
where 

Finally, the transverse force equilibrium 
equation gives the governing differential equa- 
$ion of motion 

.9 SI ENERGY 
It is often useful to  know the strain energy 

stored in a plate due to deformation. One such 
instance occurs when the Rayleigh-Ritz method 
is applied iaa order to obtain approximate 
solutions. 

The strain energy stored in any elastic bo 
uring aeformat~on is given by 
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where the integral is taken over the volume of 
the body. Restatement of anearlier assumption 
that the transverse stresses u, ,ryr ,  and I,, are 
small relative to the others in the case of a 
plate allows equation (8.40) to reduce to 

Now the stresses are expressed in terms of the 
strains by means of appropriate stress-strain 
relationships, the strains are expressed in terms 
of the displacements by means of equations 
(A.ll) ,  and the integration over the thickness 
is carried out. 

For a plate possessing rectangular orthotropy, 
equations (A.18) are used; and the strain 
energy due to bending alone becomes 

where the remaining integral is yet to be taken 
over the plate area, and where D,, D,, D,,, and 
D, are as defined previously in equations (A.22) 
and (A.26). For an isotropic plate, equation 
(A.42) simplifies to  
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Accelerometers, parallelogram plates, 171 
Added mass, rectangular plates, 141-151 
Admissible functions, rectangular plates, 77 
Air, effects of surrounding media, 170, 299, 301 
Airy stress function, large deflections, 305 
Aluminum parallelogram plates, 171, 172, 180, 181, 186 
Aluminum rectangular plates, 83, 86, 89, 126, 133, 143, 

Analog computer, 77 
Anisotropic elastic body, stress-strain relationship, 333 
Anisotropic plates, 245-266 

added concentrated mass, circular plate, 246 
all sides clamped, rectangular, 260-262 
all sides simply supported, rectangular, 251 
annular plate, 248 
Bessel function, 249 
Boobnov-Galerkin method, 248 
circular plates, clamped, 245-246, 264 
circular plates having rectangular orthotropy, 

elliptical plates having rectangular orthotropy, 

Galerkin method, 261, 264 
grain of veneer, 252 
infinite series, 246 
longitudinal slots, 264 
maple-plywood plate, 256,260 
other shapes, 248 
Poisson’s ratio, 259 
polar orthotropy, 245-249 
Rayleigh method, 250, 256, 258, 259, 261, 262 
Rayleigh-Rita method, 252, 261, 264 
rectangular orthotropy, 250-266 
Ritz method, 261 

148 

263-264 

264-265 

SS-C-SS-C, 256 
SS-C-SS-F, 258 
SS-C-SS-SS, 257 
SS-ES-SS-ES, 259 
SS-F-SS-F, 258 
SS-SS-SS-F, 258 
SS-SS-SS-SS, 251-254 
simply supported circular plates, 246-248 
spacing of grooves, 253 
square plates 

GGC-SS, 263 
C-C-SS-SS, 263 

stiffeners, 265 
strain energy, rectangular coordinates, 250 
two opposite sides SS, 254-260 
veneer, grain of, 252 

anisotropic plates, 248 
Bessel functions, 21, 29 
clamped outside and inside, 20-21 

lhnnular plates, 19-33 

Annular plates-Continued 
clamped outside, free inside, 22-24, 26-27 
clamped outside, rigid mass inside, 32 
clamped outside, simply supported inside, 21-22 
free outside and inside, 30 
free outside, clamped inside, 28-29 
free outside, simply supported inside, 29-30 
Rayleigh-Rite method, 20 
simply supported outside and inside, 25-26 
simply supported outside, clamped inside, 24-25 
simply supported outside, free inside, 26-27 
variable thickness, 286 

Annulus. See Annular plates. 
Anticlastic bending effects on rectangular plates, 89 
Apparent mass, surrounding media, 301 
Arbitrarily shaped triangular plates, 227 
Area integrals, replaced by double summations, 86 
Asymptotic-expansion estimate, 17-19 
Axes, of ellipse, 37 

Beam functions 
parallelogram plates, 161, 168 
rectangular plates, 58, 65, 76, 81, 87, 104 
surrounding medium, effects of, 303 
trapezoidal plates, 195 
triangular plates, 212 

Beam theory, elementary, kinematics of deformation, 
332 

ending and twisting moments 
elliptical coordinates, 3 
polar coordinates, 2 
rectangular coordinates, 4 
skew coordinates, 5 

Bending moment intensities, 329 
Bending moments, shear deformation, 315 
Bending, strain energy of. 
Bending stress, large deformations, 312 
Bessel functions 

See Strain energy. 

anisotropic plates, 249 
annular plates, 20, 29 
circular plates, 7 
plates with inplane forces, 268 
recursion formulas for derivatives of, 32 
variable thickness, 286 

Bessel’s equation, 2 
Biharmonic singular function, rectangular plates, 151 
Boobnov-Galerkin method, anisotropic plates, 248 
Boundaries as nodal lines, 42 
Boundary conditions, 335-337 

elastically Supported circular plate, 14 
mixed, 14-15 
rotary inertia, 324 
shear deformation, 324 

Brass plate, 11-13, 38-39, 108, 116 

345 
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Buckling 
large deformations, 309 
parallelogram plates, 168 
polygonal plates, 237 
rectangular plates, 117 

plates with inplane forces, 277 
polygonal plates, 237 

Buckling loads, critical 

Cantilever 
beam, triangular plates, 213 
parallelogram plates, 168-184 
rectangular plates, 76-87, 301 
trapezoids, 194-196 
triangles, 212-228 

Centrifugal fields, plates with inplane forces, 273 
Chain rule of differentiation, right triangular coordi- 

Characteristic determinant equation, sixth order, 17 
Characteristic determinant, unbounded order, 37 
Circular edge, sectorial plates, 239 
Circular frequency, 1 
Circular holes, rectangular plates, 152 
Circular membrane plates with inplane forces, 271 
Circular plates, 7-33 

nates, 194 

anisotropic, 245-248 
annular. See Annular plates. 
Bessel functions, 7 
central mass, 17-19 
clamped (see also Clamped circular plates), 7-8 
clamped at center, 15-17 
clamped partially, and supported, 14-15 
clamped, simply supported, 14-15 
coordinate system, polar, 7 
elastically supported, 13-14 
free, 10-13, 16 
Harvard tables, 7 
inplane forces, 267-276 
internal holes, 7 
large deflections, 306-310 
mass concentrated at center, 17-19 
mixed boundary conditions, 14-15 
polar coordinates, 7 
radii of nodal circles, 8, 9, 11 
Rayleigh-Ritz method, 20 
rotary inertia, 316-318 
shear deformation, 3 16-3 18 
simply supported (see also Simply supported 

simply supported and clamped, 14-15 
solid, 7-19 
supported on internal circle, 17 
surrounding media effects, 299-301 

Circular plates having rectangular orthotropy, 263-264 
Circular plates of variable thickness, 285-291 
Circular plates with inplane forces, 267-276 
CircaIar sandwich plates, nonhomogeneity, 325 
clamped circular plates, 7-8 

plates), 8-10 

anisotropic plates, 245-246, 264 

Clamped circular plates-Continued 
effects of Poisson’s ratio, 18 
plates with inplane forces, 268-272 

Clamped/supported circular plates, 14-15 
Classical plate equations, anisotropic plates, 249 
Classical plate theory, 1-5 
Coarse finite-difference grids, 47 
Collocation method 

trapezoids, 193 
triangular plates, 207, 209, 210 

Confocal ellipses, 37 
Constraint of zero deflection, rectangular plates, 130 
Continuity conditions 

circular plate, supported on ring, 17 
for transverse shear, rectangular plates, 145 

elliptical. See Elliptical coordinates. 
polar. See Polar coordinates. 
rectangular. See Rectangular eoordinates. 
skew. See Skew coordinates. 

Corrugated core, nonhomogeneity, 324 
Corrugation-stiff ened piate, nonhomogeneity, 325 
Critical buckling loads, plates with inplane forces, 277 
Cutouts, rectangular plates, 151-154 
Cylindrical masses, rectangular plates, 148 

Deflections, infinite, circular plates, 7 
Deflections, small equilibrium equations, 331 
Deformation, strain energy, 337 
Deformed middle surface, notation, 329 
Dependence upon time, inplane forces, 267 
Derivatives 

Coordinates 

in strain energy, 220 
replaced by finite differences, 86 

Dini series, surrounding media, 300 
Dirac delta function, rectangular plates, 147 
Discontinuous edge conditions, 123-130 
Displacement, transverse, 1 
Distributed stiffness, 13 
Double Fourier sine series, 63 
Double-precision arithmetic, 77 
Double surnnmtions replace area integrals, 86 

Eccentricity, elliptical, 37 
Edge constraint, 14 
Edge reactions 

polar coordinates, 2 
rectangular coordinates, 4 
skew Coordinates, 5 

Edge rotation, 13 
Elastic constants, 300 
Elastic, discontinuous, and point supports, rectangular 

plates, 114-141 
Elastic edge supports, 114-123 
Elastic foundation, 1 
Elasticity theory 

notation, 329 
three-dimensional, 331-332 

Elasticity, uncoupled plane, 274 
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Elastic moment edge constraint, 14 
Electric analog computer, 77 
Electrical analogies, 77 
Electrical analogies, development of, 77 
Ellipse 

axes, 37 
eccentricity, 37 

Ellipses, confocal, 37 
Elliptical coordinates, 2-3 

bending and twisting moments, 3 
interfocal distance, 2 
Laplacian operator, 2 
rectangular coordinates, relation to, 2 
shearing forces, transverse, 3 

clamped, 37 
free, 38 
Galerkin method, 38 
Rayleigh method, 37, 38 
Rayleigh-Ritz method, 38 
rotary inertia, 322 
shear deformation, 322 

Elliptical plates, 37-39 

Elliptical plates having rectangular orthotropy, 264-265 
Epicycloidal shape, 244 
Epicycloidal transcendental function, 38 
Equal slope restraint, 122 
Equation of motion remains linear, inplane forces, 261 
Equilateral triangular plates, 212 
Equilibrium equations, 331-332 

deflections, small, 331 
elasticity, 3-dimensional theory, 331-332 
inplane inertia, 332 
slopes, small, 331 
transverse shearing forces, 332 

Euler’s constant, 16 

Piling down edges of rectangular plates, 108 
Finite-difference method 

inplane forces, 279 
rectangular plates, 58, 86, 130, 131, 136 
shear deformation and rotary inertia, 314 
triangular plates, 205, 220 
variable thickness, 293 

Finite summation replaces integraI equation, 129 
Five-ply maple-plywood plate, 256 
Flexural rigidity 

defined, isotropic plate, I 
polar orthotropy, 337 
rectangular orthotropy, 250 
variable thickness, 285 

Flexural stiffness, no, 271 
Force and moment integrals, 334-335 
Foundation 

elastic, 1 
plate supported by, I 
stiffness, I 

Fourier components, 2, 267 
Fourier sine series, 139, 145 
Free membrane mode shapes, 104 

Free regular pentagons, 238 
Free vibrations, 1 
Frequency, circular, 1 
Frequency in vacuum, parallelogram plates, 110 

Galerkin method 
anisotropic plates, 261, 264 
elliptical plates, 38 
large deflections, 307, 308, 312, 313 
rectangular plates, 61, 71, 88 

General rectangle, rectangular plates, 89 
Grain of veneer, anisotropic plates, 252 
Green’s function, rectangular plates, 129 

Half-sine waves, rectangular plates, 47 
Hamilton’s principle, 309, 313 
Hard spring, nonhomogeneity, 324 
Harvard tables, 7 
Hexagons 

completely free, 238 
simply supported, 238 

Holes, internal, 7 
Hub-pin plates, rectangular, 140 
Hub-pin supports, 223 
Hydrostatic pressure 

parallelogram plates, 168 
plates with inplane forces, 281 
polygonal plates, 237 

Hydrostatic tension, 280 

Impeller blade, 240, 241 
Inertia 

inplane, 331-332 
rotary, 314-324 
rotational, added mass, 147 
translational, added mass, 147 

Infinite series, anisotropic plates, 246 
Inflatable plate, nonhomogeneity, 325 
Pnplane forces, 267-284 

all sides SS, rectangular plates, 276-219 
assumptions, 267 
Bessel functions, 268 
body force, 278 
buckling loads, critical, 277, 281 
centrifugal fields, 273 
circular membrane, 271 
circular plates, 267-276 
circular plates, clamped, 268-272 
circular plates, completely free, 273-276 
circular plates, simply supported, 272-273 
concentrated forces, 280 
critical buckling loads, 277 
dependence of forces upon time, 267 
elasticity, uncoupled plane, 274 
equation of motion remains linear, 267 
finite difference method, 279 
flexural stiffness, no, 271 
Fourier components, 267 



348 VIBRATION 

Inplane f orces-Continued 
hydrostatic pressure, 281 
hydrostatic tension, 280 
internal residual stresses, 273 
isotropic plates, 279 
Kato-Temple method, 195, 280 
membrane tension, 271 
method of images, 282 
perturbation technique, 271, 279, 281 
plates having other shapes, 281 
Poisson’s ratio, 275 
prestressed boundary, 273 
Rayleigh method, 269, 270, 272 
Rayleigh-Ritz method, 269, 271, 275, 277, 279 
rectangular orthotropy, 267 
rectangular plates, 276-281 
rectangular plates, all sides clamped, 280-281 
rectangular plates, all sides SS, 276-279 
rectangular plates, two opposite sides SS, 279-280 
rotating disk, clamped a t  center, outer edge free, 

rotating disk, free, 273 
Southwell method, 269, 270, 272 
strain energy, 269 
thermal gradients, 273, 275 
two opposite sides SS, rectangular plates, 279-280 
uniform inplane forces, 279 
variational method, 271 

276 

Inplane restraint, large deformations, 311 
Integral equation, replaced by finite summation, 129 
Interfocal distance, 2 
Internal cutouts, rectangular plates, 151-154 
Internal holes, circular plates, 7 
Internal residual stresses, 273 
Isosceles trapezoidal plate, 193, 194 
Isosceles triangle, C-C-C, 205 
Isotropic plates, inplane forces, 279 

Kato-Temple method 
parallelogram plates, 161-162 
plates with inplane forces, 280 
trapezoids, 195 

Kinematic relationships, 337 
Kinematics of deformation, 332-333 

beam theory, elementary, 332 
plane cross sections, 332 
strain-displacement equations, 333 
tensorial manipulations, 333 
tensorial strain, 333 

Kirchhoff hypothesis, 324 

Lagrange’s equation, 148 
Laplace transform, 17 
Laplacian operator 

elliptical components, 2 
polar coordinates, 2 
rectangular coordinates, 4 
skew coordinates, 5 

Large-amplitude vibrations, 310 

OF PLATES 

Large deflections, 303-314 
Airy stress function, 305 
assumption for magnitude of deflection, 303 
bending stress, 312 
Berger simplified equations, 306, 313 
boundary conditions, 303 
buckling, 309 
circular plates, 306-310 
compatibility of strain, 305 
Galerkin method, 307, 308, 312, 313 
Hamilton’s principle, 309, 313 
inplane restraint, 311 
membrane stress, 312 
nonhomogeneous plates, 325 
perturbation method, 310 
rectangular plates, 310-314 
static case, 306 
strain-displacement equations, 303-304 
thermal gradient, 309 
Von KArm6n equations, 306, 310 

Large error, frequency of, 73 
Layers, hard and soft, 324 
Legendre functions, rectangular plates, 77, 104 
Longitudinal slots, 264 

Magnesium, parallelogram plates, 187-189 
Maple-plywood plate, five-ply, anisotropic, 256, 260 
Marine propeller blades, 240, 242 
Mass density ratios, critical, 33 
Mathieu functions, 3, 38, 324 
Membrane stress, large deformations, 312 
Membrane tension, plates with inplane forces, 271 
Membrane vibration, analogies, 237 
Mesh widths, rectangular plates, 130 
Method of images 

plates with inplane forces, 282 
triangular plates, 212 

Mindlin theory, 318, 319, 323, 324 
nonhomogeneity, 324 
rotary inertia, 318, 319 
shear deformation, 318, 319 

Mode of vibration, shear deform 
Mode shape, polar coordinates, 2 
Moment-curvature equations, polar orthotropy, 337 
Moment integrals, 334 
LMoments, bending and twisting. See Bending and 

twisting moments. 

Neutral plane, 329 
Nonhomogeneity, 324-325 

circular sandwich plates, 325 
composite material, 324 
corrugated core, 324 
corrugated-stiffened plate, 325 
hard spring, 325 
honeycomb core, 324 
inflatable plate, 325 
Kirchhoff hypothesis, 324 
large deflections, 325 
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Nonhomogeneity-Continued 

layers, hard and soft, 324 
Mindlin theory, 324 
shear deformation and rotary inertia, 324 
Styrofoam core, 324, 325 

Nonsquare cantilever, 77 
Notation, 329-331 

bending moment intensities, 329 
deformed middle surface, 329 
elasticity theory, 329 
neutral plane, 329 
positive faces, 329 
positive shear stresses, 329 
transverse shearing force intensities, 329 
twisting moment intensities, 329 

Octagon 
free, 239 
simply supported, 238 

One-g method, parallelogram plates, 184 
Orthotropy 

polar, 245 
rectangular, 245, 250-266 
stress-strain relationships, 333 

Parallelogram plates, 161-192 
accelerometers, 171, 184 
accuracies of solutions, 161, 164, 165 
added mass, 185, 186 
aerodynamic lifting surface, 161 
air mass, effect of, 170 
aluminum, 171, 172, 180, 181, 186 
beam functions, 161, 168 
buckling analogy, 168 
cantilevered, 161, 168-184 
G G G C ,  161-164 
GGC-SS, 164 

GF-F-F, 168-184 

F-F-F-F, 184 

C-GSS-SS, 164-165 

exact solutions, 161, 166 

FORTRAN program statement listing fox 
GF-F-F plates, 170 

frequency in vacuum, 170 
influence functions, statically determined, 171 
Kat@--Temple method, 161-162 
magnesium, 187-189 
membrane vibration analogy, 168 
one-g experimental method, 184 
perturbation method, 165 
point-matching method, 163, 167 
Rayleigh method, 164 
Rayleigh-Rite method, 161, 164, 168 
rhombic, compared to square, 163 
simple edge conditions, 161-184 
SS-SS-SS-SS, 168 
stabiiizing surface, 161 
steel plates, 163 
transition curves, 170 
tr&nsition points, 171 

Parallelogram plates-Continued 
Trefftz method, 161 
unlike rectangle, 161 
variational method, 170, 171 

Passive element analog computer, 77 
Pentagons, 237-238 

completely free, 238 
polygonal plates, 237-238 
simply supported, 237 

Perturbation techniques, 165, 271, 279, 281, 310 
Plane cross sections, kinematics of deformation, 332 
Planform dimensions 

trapezoids, 196 
triangular plates, 227, 228 

Plate equations, 329-338 
Plates 

anisotropic. See Anisotropic plates. 
annular. See Annular plates. 
circular. See Circular plates. 
clamped circular. 
elliptical. See Elliptical plates. 
free circular. 
free elliptical. See Free elliptical plates. 
parallelogram. See parallelogram plates. 
polygonal. See Polygonal plates. 
quadrilateral. See Quadrilateral plates. 
rectangular. See Rectangular plates. 
square steel. See Square steel plates. 
triangular. See Triangular plates. 

See Clamped circular plates. 

See Free circular plates. 

Plate theory, classical, 1-5 
Point masses, rectangular plates, 145-151 
Point-matching method 

parallelogram plates, 163, 167 
polygonal plates, 238 
rectangular plates, 151 
triangular plates, 210, 212 

Point supports, rectangular plates, 130-141 
Poisson’s ratio, 1 

anisotropic plates, 259 
annular plates, 19 
circular plates, clamped, 8 
circular plates, elastically supported, 14 
plates with inplane forces, 275 
rectangular plates, 41, 54, 74, 79, 86, 87, 89, 131, 

shear deformation, 317 
triangular plates, 213 
variable thickness, 285, 286, 288, 290 

beoding moments, 2 
boundary conditions, 2 
circular plates, 7 
edge reactions, 2 
Kelvin-KirchhoE edge reactions, 2 
Laplacian operator, 2 
mode shape, 2 
shearing forces, 2 
strain energy, 2 
twisting moments, 2 

132, 133 

Polar coordinates, 1-2 
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Polar orthotropic plate, transverse bending, 245 
Polar orthotropy, 245-250, 337 

flexural rigidities, 337 
kinematic relationships, 337 
moment curvature, 337 
rotary inertia, 337 
strain displacement, 337 
transverse force equilibrium, 337 
transverse shearing forces, 337 

Polygonal plates, 237-239 
buckling analogy, 237 
hexagons, 238 
membrane vibration analogy, 237 
octagons, 238 
parallelogram plates, 161-192 
pentagons, 237-238 
point-matching method, 238 
rectangular plates, 41-154 
simply supported, all edges, 237, 238 
trapezoidal plates, 193-196 
triangular plates, 205-235 

Positive faces, notation, 
Positive shear stresses, notation, 329 
Prestressed boundary, planes with inplane forces, 273 
Prestretched membrane, polygonal plates, 237 
Propeller blades, marine, 240, 242 

Quadrilateral plates 
of general shape, 196 
parallelogram, 161-192 
rectangular, 41-154 

Radial sides simply supported, sectorial plates, 239 
Rate of taper, variable thickness, 291 
Rayleigh method 

anisotropic plates, 250, 256, 258, 259, 261, 262 
elliptical plates, 37, 38 
inplane forces, 269, 270, 272 
parallelogram plates, 164 
rectangular plates, 41, 43, 58, 118, 132 
sectorial plates, 239, 240 
surrounding media, 299, 300 

Rayleigh-Ritz method, 20 
anisotropic plates, 252, 261, 264 
circular plates, 20 
inplane forces, 275-280 
parallelogram plates, 161, 162, 168 
rectangular plates, 58, 59, 61, 65, 69, 72, 73, 76, 

surrounding media, 300 
trapezoidal plates, 194, 195 
triangiilar plates, 212, 213, 215, 216 
variable thickness, 288, 290 

77,79,81,86,103,119,122,131-133,141,151,152 

Rectangular cantilever plates, 301 
Rectangular coordinates, 4 

bending and twisting moments, 4 
edge reactions, 4 
Laplacian operator, 4 
shearing forces, transverse, 4 
strain energy, 4 

Rectangular orthotropy, 250, 266 
circular plates having, 263-264 
elliptical plates having, 264-265 
plates with inplane forces, 267 
rectangular plates having, 250-263 

added mass, 141-151 
admissible functions, 77 
aluminum, 83, 86, 89, 126, 133, 143, 148 
anisotropic, 250-266 
anticlastic bending effects, 89 
area integrals replaced by double summations, 86 
beam functions, 58, 71, 76, 81, 87, 104 
behavior like beam, 54, 86 
biharmonic singular function, 151 
boundaries as nodal lines, 42 
boundary Conditions, possible combinations, 41 
brass, 108, 116 
buckling, 45, 46, 117 
cantilever, 76-87 
C-C beam, 60 

C-C-C-C square plate, 60 

Rectangular plates, 41-154 

6-C-C-C, 58-65, 280-281 

C-C-C-F, 65 
C-C-C-SS, 65 
C-C-F-F, 72 
C-C-SS-F, 71 
6-6-SS-SS, 65-71 
C-F-C-F, 74-75 
C-F-F-F, 76-87 
C-F-SS-F, 75-76 
circular holes, 152 
coarse finite difference grids, 47 
constraint of zero deflection, 130 
continuity condition for transverse shear, 145 
C-SS-C-F, 73 
C-SS-F-F, 74 
6-SS-SS-F, 74 
cutouts, other, 152 
cylindrical masses, 148 
deflection functions, 77, 81, 119, 131, 136, 140 
Dirac delta function, 147 
discontinuous edge conditions, 123-130 
double-precision arithmetic, 77 
elastic edge supports, 114-123 
electrical analogies, development of, 77 
electronic analog computer, 77 
equal slope restraint, 122 
extrapolation formula for finite difference method, 

130, 136 
F-F-F-F, 87-115 
finite-difference equations, 71, 86, 130 
finite-difference mesh, 86 
finite-difference method, 58, 131, 136, 220 
finite differences replace derivatives, 86 
finite summation replaces integral equation, 129 
flexural rigidity, 86 
Fourier sine series, 139, 145 
Galerkin method, 61, 72, 88 
general rectangle, 89 
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Rectangular plates-Continued 
Green’s function, 129 
half-sine waves, 47 
high-frequency parameters, 51 
hub-pin plate, 140 
inplane forces, 276-281 
integral equation, replaced by finite summation, 

internal cutouts, 151-154 
Lagrange’s equation, 148 
large deflections, 310-314 
large error, frequency of, 73 
Legendre functions, 77, 104 
mesh widths, 130 
modulus of elasticity, 86 
narrow internal slit, 154 
nonsquare, 47 
nonsquare cantilever, 77 
orthotropic, 250-266 
plates with inplane forces, 276 
principle of stationary total energy, 123 
point masses, 145-151 
point-matching method, 151 
point supports, 130-141 
Poisson’s ratio, 41, 54, 74, 79, 87, 89, 131, 132, 133 
Rayleigh method, 41, 43, 58, 118, 132 
Rayleigh-Ritz method, 58, 59, 61, 65, 69, 72, 73, 

76, 77, 79, 81, 86, 103, 119, 122, 131, 132, 133, 
141, 151, 152 

129 

Reissner’s variational method, 140 
rigid strip mass, 141, 145 
rotary inertia, 318-323 
series method, 58, 60, 63, 74, 79, 102, 131 
shear deformation, 318-323 
simple edge conditions, other, 58 
soap powder, 83 
Southwell’s method, 78 
spring-mass system, 148 
SS-C-SS-C, 46-50 
SS-6-SS-F, 51-52 
SS-6-SS-SS, 50-51 
SS-ES-SS-ES, 116, 120 
SS-F-F-F, 87 
SS-F-SS-F, 53-58 
SS-SS-F-F, 87 
SS-SS-SS-F, 52-53 
SS-SS-SS-SS, 43-45, 276-279 
steel, 79, 83, 86 
stepwise superposition of modes, 57 
strain energy, 119 
surrounding media, effects of, 301-303 
symmetrical slope restraints, 120 
transcendental functions, 129 
transition points, 54, 65, 75, 79, 109 
translational spring, 148 
transverse shear, continuity of, 139 
two opposite sides SS, 45-46, 279-280 
uniform slope restraint, 122 
variable thickness, 291-297 
variational method, 47, 51, 58, 65, 79, 136, 140 

Rectangular plates-Continued 
“veering away” phenomenon, 63, 74 
V-groove simulation of simply supported edge, 124 
Warburton’s formula, 86 
weight density, 86 
Weinstein method, 58, 61 

Recursion formulas, 14, 20, 32 
Regularity conditions, 17 
Reissner’s static theory, shear deformation, 315 
Reissner’s variational method, rectangular plates, 140 
Rhombic plates. See Parallelogram plates. 

compared to square, 163 
parallelogram, aluminum, 172 
triangular, 205 

Rigid body translation, 31 
Rigidity, flexural, 1 
Rigid strip mass, rectangular plates, 141-145 
Ritz method, anisotropic plates, 261 
Rotary inertia, 314-324 

AT-cut quartz crystal plates, 314 
boundary conditions, 324 
circular plates, 316 
effects of, 314, 317, 323 
elliptical plates, 322 
finite difference method, 314 
inplane forces, 316 
large deflections, 316 
low frequency cutoff, 320 
Mathieu functions, 324 
Mindlin’s equations, 323 
Mindlin theory, 318-319 
rectangular orthotropy, 321 
rectangular plates, 318-323 
synthesis of equations, 335 
thermal effects, 316 
thickness-shear mode, 315, 316, 317, 321 
thickness-twist mode, 321 
variable thickness, 285 

Rotating disk, clamped a t  center, outer edge free, 27% 
Rotation 

edge, 13 
modes, 31 

Sectorial plates, 239-240 
all edges clamped, 239 
boundary conditions, other, 239 
circular edge, 239 
completely clamped, 240 
exact solution, 239 
radial sides simply supported, 239 
Rayleigh method, 239, 240 
semicircular, 240 

Semicircular plates, sectorial, 240 
Series method, rectangular plates, 60, 63, 78, 131 
Shear de€ormation, 314-324 

anisotropic material, 314 
AT-cut quartz crystal plates, 314 
bending moments, 315 
circular plates, 31E-318 
effects of, 314, 317 
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Shear deformation-Continued 
elliptical plates, 322 
finite difference method, 317 
inplane forces, 316 
large deflections, 316 
low-frequency cutoff, 320 
Mathieu functions, 324 
Mindlin theory, 318, 319 
mode of vibration, 315 
Poisson’s ratio, 317 
polar orthotropy, 337 
rectangular plates, 318-323 
Reissner’s static theory, 314, 315 
static theory, 314 
strain displacement, 314315 
synthesis of equations, 335 
thermal effects, 316 
thickness-shear mode, 315, 316, 317, 321 
thickness-twist mode, 321 

variable thickness, 
Shearing forces, transverse, 2-5 

elliptical coordinates, 3 
polar coordinates, 2 
rectangular coordinates, 4 
skew coordinates, 5 

parallelogram plates, 161-184 
rectangular plates, 58 
triangular plates, 205-229 

Simple edge conditions 

Simply supported plates 

circular plates, inplane forces, 272-273 
circular plates, isotropic, 8 
parallelogram plates, 165 
polygonal plates, 237 
rectangular plates, 45 
sectorial sides, 239 
simulation by V-grooves, 123 
trapezoidal plates,. 193 
triangular plates, 210 

Sinusoidal time response, 276 
Skew coordinates, 5 

bending and twisting moments, 5 
edge reactions, 5 
Laplacian operator, 5 
shearing forces, transverse, 5 
strain energy, 5 

Slopes, small, equilibrium equations, 331 
Soap powder, rectangular plates, 83 
Solid circular plates. 
Solutions, significant, parallelogram plates, 161 
Southwell method 

plates with inplane forces, 269, 270, 272 
rectangular plates, 78 

Space fixed coordinate system, notation, 329 
Spacing of grooves, 253 
Spring-mass system, rectangular plates, 148 
Springs, supporting plate, 13-14 

See Circular plates. 

Square plates. Bee Rectangular plates. 
Stabilizing surface, 161 
Static case, large deflections, 306 
Static deflection, shear deformation, 314 
Steel plates 

cantilever plates, 293 
parallelogram plates, 163 
rectangular plates, 83 
trapezoids, 195, 196 

Stepwise superposition, rectangular plates, 57 
Stiffeners, anisotropic plates, 265 
Stiffness, distributed, 13 
Stiffness of foundation, 1 
Strain-displacement equations 

kinematics of deformation, 333 
Iarge deformations, 303-304 
polar coordinates, 337 
shear deformation, 314-315 

Strain energy, 337-338 
anisotropic plates, 250 
bending, 250 
deformation, 337 
derivatives, 220 
plates with inplane forces, 269 
Rayleigh-Ritz method, 337 
rectangular coordinates, 4 
rectangular plates, 119 

triangular plates, 220 

general anisotropic elastic material, 333 
isotropic elastic material, 334 
polar orthotropy, 337 
rectangular orthotropy, 333 
shear deformation, 315 

Styrofoam core, nonhomogeneity, 324,325 
Surrounding media, effects of, 29 

Stress-strain relationships, 333-334 

air, 299, 301 
apparent mass, 301 
beam functions, 303 
cantilever plates, rectangular, 301 
circular plates, 299-301 
Dini series, 300 
hydrodynamic strip theory, 303 
incompressible fluid, 299 
partial immersion, 301 
Rayleigh method, 300 
Rayleigh-Ritz method, 299, 300 
rectangular cantilever plates, 301 
rectangular plates, 301-303 
virtual mass function, 301 
water, 299, 300, 301 

Surrounding media, elastic Constants, 300 
Symmetrical slope restraints, rectangular plates, 120 
Synthesis of equations, 335 

Tensorial, kinematics of deformation 
manipulations, 333 
strain, 333 
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Thermal gradients, 273-275 
large deformations, 309 
plates with inplane forces, 267-284 

shear deformation, 315 
synthesis of equations, 335 
variable. See Variable thickness. 

Thickness 

Torsional moduli of rigidity, 171 
Transcendental functions, 129 
Transition curves, parallelogram plates, 170, 171 
Transition points 

parallellogram plates, 17 1 
rectangular plates, 54, 65, 75, 79 

Translational spring, stiffness, 148 
Transverse bending, polar orthotropic plate, 245 
Transverse deflection 

large deflections, 311 
plates with inplane forces, 267 

Transverse displacement, 1 
Transverse force equilibrium, polar orthotropy, 337 
Transverse shear, continuity of, 139, 145 
Transverse shearing force 

equilibrium equations, 332 
notation, 329 
polar coordinates, 2 
polar orthotropy, 337 
shear deformation, 315 
strain energy, 338 

Transverse stresses, strain energy, 338 
Trapezoidal plates, 193-196 

beam functions, 195 
cantilever, C-F-F-F, 194-196 
chain rule of differentiation, 194 
collocation method, 193 
Kato-Tempie method, 195 
perturbation methods, 193 
planform dimensions, 196 
Rayleigh-Rita method, 194, 195 
right triangular coordinates, 194 

steel, 195, 196 
strain energy, I94 

TreEtz method, 161 
Triangular plates, 205-235 

analogy with vibrating membrane, 212 
arbitrarily shaped, 227 
beam functions, 212 
beam network representation, 217 
cantilever beam, 213 
cantilever plate, 212-229 

SS-SS-SS-SS, 193-194 

C-6-C, 205-206 
6-C-F, 208-209 
C-C-SS, 206-208 
C-F-F, 212-229 
collocation method, 205, 207, 209, 210 
C-SS-F, 209-210 
C-SS-SS, 209 
delta cantilever plate, 215-226 
derivatives in strain energy, 220 
equilateral triangle, 206, 212 

Triangular plates-Continued 
extrapolation formula, 206 

finite difference method, 205, 220 
hub-pin supports, 230 
isosceles, 208 
method of images, 212 
other supports and conditions, 229-233 
planform dimensions, 227, 228 
point-matching method, 210, 212 
Poisson’s ratio, effects of, 213 
Xayleigh-Ritz method, 212, 213, 213-217 
sectorial plates, comparison with, 205, 208 
simple edge conditions, 205-229 
skew coordinates, 205 

F-F-F, 229 

SS-F-F, 205 
SS-SS-F, 212 
ss-ss-ss, 210-212 
steel, 206, 208 
strain energy, derivatives in, 220 
triangular coordinates, 212 

Turbine, vane, 244 
Twisting and bending moments. See Bending and 

Twisting moment intensities, notation, 329 
Twisting, strain energy of, 250 
Two opposite sides, SS, anisotropic plates, 254-260 
Two opposite sides, SS, inplane forces, 279-280 

Uniform inplane forces, 279 
Uniform slope restraint, 122 

Variable thickness, 285-298 
annular plates, 286 
arbitrary shape, 277 
Bessel functions, 286 
cantilever beam, analogy with, 286 
circular plates, 285-291 
circular plates, clamped, 285 
finite-difference method, 293 
flexural rigidity, 285 
inplane forces, 285 
polar coordinates, 285 
rate of taper, 291 
Rayleigh-Ritz method, 288, 290 
rectangular plates, 291-297 
rotary inertia, 285 

twisting moments. 

Variational method, 136, 140, 170, 271 
“Veering away’’ phenomenon, 63, 75, 170, 261 
Veneer, grain of, anisotropic plates, 252 
Von K&rm&n equations, 306, 310 

Warburton’s formula, 86 
Water 

loading, 300 
surrounding media, 299, 301 

Weight density, square steel plate, 86 
Weinstein method, 58, 61 

Young’s modulus, P 
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