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The ever-increasing rate of scientific research throughout the world, and
particularly in the United States, is a well-known fact. This increase is partly
evidenced by the growing number of books, papers, and reports published
every year. Indeed, we are faced with an information retrieval problem. If
the results of a piece of scientific work are to provide useful knowledge, the
expository technical papers or reports must be generally known and available,
and they must be capable of being understood and evaluated by the reader
(the problem of language is included here). The present monograph attempts to
bridge these gaps in one field—the vibration of plates.

From the beginning, two objectives were intrinsic in this work:

(1) A comprehensive set of available results for the frequencies and mode
shapes of free vibration of plates would be provided for the design or develop-
ment engineer.

(2) A summary of all known results would be provided for the researcher
._in the field of plate vibrations.

- These objectives will be elaborated upon below.

Several years ago I observed the following incident at a INAajor aerospace
company. An engineer needed to know the first three frequencies and mode
shapes of a rectangular plate of a certain aspect ratio and with certain simple
restraint conditions along its edges. A literature search was conducted by
the engineer for 2 weeks, during which only the first two frequencies and no
accurate mode shapes were found. Since he had neither the analytical capa-
bility of solving the problem nor the money and time needed for an experimental
program, the engineer was forced to drop the problem at this point.

In the present study all direct results which are known for the aforemen-
tioned problem are presented. Furthermore, from a brief comparison among
the known results for other boundary conditions, estimates of additional
frequencies and mode shapes can be made. This is one way in which the
engineer can develop a qualitative understanding of piate vibrational behavior.
For the aforementioned problem, at least two approximate formulas are given
for estimates of frequencies. Finally, the mathematical techniques used in
the literature to solve the problem or related ones are pointed out in case more
accurate results are needed.

It is my hope that this monograph will reduce duphcatlon of research effort
in plate vibrations in the future (a very pointed example is that of the square
plate clamped all around). In addition, the researcher is provided accurate
numerical results for the testing of new methods (this is the reason that results
are given to eight significant figures in some cases). Finally, it is hoped that
this work will give added perspective to the merits and complexities of’ ‘applying
analytical techniques to eigenvalue problems.
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Gaps in knowledge are made implicitly obvious by examining this work.
For example, analytical results have been found for a clamped elliptical plate,
and experimental results for the free case, but no results whatsoever have been
found for the simply supported case.

The scope of this study was limited by several considerations. Only the
analytical results from plate theories were considered; that is, the governing
equations are two-dimensional, not three-dimensional. Materials were re-
stricted to those which are linearly elastic. Structures were not included in
the study; for example, a rectangular plate supported by one or more edge
beams was considered to be a structure.

The primary logical division of this work is by the complexity of the
governing differential equations. - Thus, the first eight chapters deal with the
simplest “‘classical theory” of plates. The next three chapters introduce the
complications of anisotropy, in-plane force, and variable thickness. Other
complications are discussed in the twelfth chapter. The first subdivision is
by geometrical shape; that is, circles, ellipses, rectangles, parallelograms, and
so forth. Further subdivision accounts for holes, boundary conditions, added
masses or springs, and so forth.

It is presupposed that the user of this monograph will have at least an
elementary understanding of plate theory. In order to increase understanding
and to define notation and assumptions more clearly, a reasonably rigorous
derivation of the plate equations is made in the appendix.

Some statements about the format of presentation will be useful in under-
standing this work. It will be seen that the majority of results available are
for the natural frequencies of free vibration and quite often only the funda-
mental (lowest) frequency. Patterns showing node lines are frequently
available for the higher modes. Mode shapes (deflection surfaces in two
dimensions) are usually not completely specified in the literature. It should
be remarked here that the mode shapes (eigenfunctions) cannot be completely
determined until the frequencies (eigenvalues) are found. The mode shapes
are generally known less accurately than the frequencies.

Virtually no one in the literature evaluates the bending stresses due to a
unit amplitude of motion. This information is obviously important, particu-
larly for fatigue studies. The lack of results is undoubtedly due to the fact
that the stresses must be obtained from second derivatives of the mode shapes.
Not only does this require additional computational work, but also the mode
shapes usually are not known with sufficient accuracy to give meaningful
results for stresses.

Frequency data were converted to the angular frequency o (radians/unit
time) or to a corresponding nondimensional frequency parameter, where
possible. Almost always the number of significant figures was kept the same
as that in the original publication. In no case were significant figures added.
In some few cases the number of significant figures was reduced because the
accuracy of the calculations in the publication did not justify the numbers
given. Curves were not replotted but were photographically enlarged and
traced to maximize accuracy. Quite often, when they are available, both -
tabular and graphical results are given for a problem. Tabular results are
particularly important for measuring the accuracy of an analytical method,
whereas curves are valuable for interpolation, extrapolation, and qualitative
studies. In some cases many sets of results are given for the same problem.
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In these cases each set was derived by a different theoretical or experimental
technique; this permits a comparison of techniques.

Two of the major goals of the project were accuracy and completeness.
Some of the efforts made to maintain accuracy have been described in the
foregoing paragraphs. Reasonable completeness of results published through
the end of the year 1965 is claimed. Writing of the manuscript began in the
summer of that year. In addition to the well-known abstracting journals,
several special-purpose bibliographies were used in order to procure pertinent
technical papers and reports. Further references were obtained from the
discussion and reference lists within those already procured. Approximately
150 letters were sent to people throughout the world who were known to be
active in the field of continuum vibrations. These letters listed their publica-
tions already in hand and asked for copies of any others which they deemed
applicable. Through these efforts I have come to possess a reasonably com-
plete set of literature in the field of plate vibrations. However, in spite of this,
I am convinced that some significant publications are not included, particularly
some which are known to exist but have been thus far unobtainable, especially
books by Soviet researchers.

In light of the preceding paragraph, I expect—indeed, hope—to receive
considerable valuable criticism pointing out errors or omissions. In addition, I
would appreciate receiving copies of recent or forthcoming publications and
reports which are pertinent. It is my intention to write a supplement to this
volume after a few years have elapsed; such a document will correct any
major mistakes or omissions in this work and will report on further advances
in the field.

- For historical record and recognition it should be pointed out that, ap-
proximately 6 months after this project began, I discovered a notable work -

entitled “Free Vibrations of Plates and Shells,” by V. S. Gontkevich, published
(in Russian) in 1964. A subsequent complete translation into English was
made under the sponsorship of the Lockheed Missiles & Space Co. This
book purports to do what the present monograph does and, in addition to plates
and shells, covers the fields of membranes-and stiffened plates. I do not
wish to criticize the work of Mr. Gontkevich. Indeed, if used with great care,
his work can be used to supplement this monograph. Nevertheless, two
objective comments concerning Gontkevich’s work must be made for the record:

(1) The number of references on plate vibrations included is less than half
of those in the present monograph.

(2) The large number of typographical mistakes made and the difficulty
in interpreting the work (in either the original Russian or in the English
translation) decrease its usefulness enormously.

The present monograph, sponsored by the National Aeronautics and
Space Administration, is my first major undertaking in the area of continuum
vibrations. It is to be continued by a 2-year project which is currently in
progress and summarizes the field of vibrations of shells. I would appreciate
receiving technical papers and reports related to that field from the readers
of this work.

The support of the National Aeronautics and Space Administration is
gratefully acknowledged. In particular, I am indebted to Mr. Douglas Michel
of NASA, who not only recognized the potential value of this work, but
was thinking of it before my proposal ever reached him. His technical com-
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ments and advice during the course of the work were also greatly appreciated.
I particularly wish to thank Messrs. Milton Vagins and S. G. Sampath, who
did all the necessary work so that I could be free for the actual summarization
and writing. Without their efforts in supervising the procurement of papers,
In manuscript editing, and in providing technical criticism, this work would
not have been possible. I wish to recognize the contributions of the project
advisory panel, which consisted of Mr. Michel, Drs. Robert Fulton, W. H.
Hoppmann, T. C. Huang, Eric Reissner, and Howard Wolko, who generously
met with me twice during the course of the project and offered their comments.
I also thank my colleagues, Drs. C. T. West and F. W. Niedenfuhr, for their
technical advice. Finally, the enormous editorial assistance of Mr. Chester
Ball, Mrs. Ada Simon, and Miss Doris Byrd of The Ohio State University is
gratefully acknowledged.

ArtHUR W. LEISsa

The Ohio State University
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Fundamental Equations of Classical Plate Theory

The classical differential equatioh of motion
for the transverse displacement w of a plate is
given by (see app. A):

dw

DV'w+p—z=0 (1.1)

where D is the flexural rigidity and is defined by

ER?

D “120—5)

(1.2)

E is Young’s modulus, % is the plate thickness,

v is Poisson’s ratio, p is mass density per unit .

area of the plate, ¢ is time, and V*=V?V?, where
V2 is the Laplacian operator.

When free vibrations are assumed, the mo-
tion is expressed. as ;

w= W cos wt (1.3)

where w is the circular frequency (expressed in

radians/unit time) and W is a function only of .

the position coordinates. Substituting equa-
tion (1.3) into equation (1.1) yields

(V=Y W=0 1.4)

where k is a parameter of convenience defined as
e PO =
= D (1.5)

It is usually convenient to factor equation (1.4)
into

(V248N (VA=) W=0 (1.6)
whence, by the theory of linear differential
equsations, the complete solution to equation
(1.6) can be obtained by superimposing the
solutions to the equations

V’W1+k’W1=O} 1.7)

sz—sz2=O

In the case of a plate supported by (or
embedded in) a massless elastic medium (or
foundation), equation (1.1) becomes

DViw+Kw+p g—:—f=0 (1.8)

where K is the stiffness of the foundation
measured in units of force per unit length of
deflection per unit area of contact. If the
foundation has significant mass, then its differ-
ential equation must also be written and a
coupled system of differential equations solved,
which is beyond the scope of the present work.
Assuming the deflection form (eq (1.3)) and
substituting into equation (1.8) again results in
equation (1.4), where now _
]

p’—K

&
k==

(1.9)

Thus, all results presented in this section as

‘pertaining to the classical plate equation (eq.

(1.1)) can also apply to the case of elastic
foundations by the simple use of equation (1.9)
in place of equation (1.5).

1.1 POLAR COORDINATES

The location of a point P in polar coordinates
is shown in figure 1.1.

F1gure 1.1.—Polar coordinate system..
1
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1.1.1 Classical Equations
The Laplacian operator expressed in polar
coordinates is

=rtratrw (130

Bending and twisting moments are related to
the displacements by

-

lbw 1 ow
10w
M"=—D(1—y)5—r(;_b—0>
Transverse shearing forces are given by
o
(1.12)

w

Q=—D12 (V) -

and the Kelvin-Kirchhoff edge reactions are

V,=Q+12%n

bM,,

Ve=Qs+

The strain energy of bending and twisting of
a plate expressed in polar coordinates is -

Qf((br"+r br+11-2:201£
—2(1‘”){ (Gt aoﬁ)

[5G H)ea aao

where dA=r dr de.
1.1.2 Solutions _
When Fourier components in 6§ are assumed,
Wi, o)=2:W,. (r) cos no+21W: (r) sin n8
n= ™

(1.15)

(1.13)

substituting equation (1.15) into equation (1.7)
yields

d’W,,l L dW,,
AT (r2 — ) W,,=0
d’W,.z L dW, (1.16)

2 —
T E (ﬁ“‘z)W"z—O

and two identical equations for W.. Equa-
tions (1.16) are recognized as forms of Bessel’s
equation having solutions (cf. work of McLach-
lan, ref. 1.1)

Wn1=Aan(kr) + BnY"(kf‘)
Wa,=Col o(kr)+ D, K,(kr) (1.17)

respectively, where J, and Y, are the Bessel
functions of the first and second kinds, respec-
tively, and I, and K, are modified Bessel
functions of the first and second kinds, respec-
tively. The coefficients A, . . ., D, determine
the mode shape and are solved for from the
boundary conditions. Thus, the general solii-
tion to equation (1.4) in polar coordinates is

W(r, 6)= 3 [AuJ(kr) +B.Y o(kr)
+CuL(kr)+D, K. (kr)) cos nf
+ 31417, (kr)+ BT o(lr)
+CtL(kr)+ DK (kr)lsin ng. (1.18)

1.2 ELLIPTICAL COORDINATES

Elliptical coordinates £, n are shown in figure
1.2 and are related to rectangular coordinates
z,y by the relation

z-+1iy=c cosh (§+1in) (i=y—1) (1.19)

where 2¢ is the interfocal distance. Separating
real and imaginary parts of equation (1.19)

yields
z=c cosh £ cos 'n}

y=c sinh £ sin g iL20)

1.2.1 Classical Equations
The Laplacian operator in elliptical co-
ordinates is (refs. 1.2 to 1.4)

2 »
= ca(COSh 2t—cos 2’)) (—5?-*-6_172) (1.21)
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Bending and twisting moments are related to the displacements by
Mo — 2D Qw , dw  (1—y)sinh2f dw (1—»)sin2y 2wy
M= ¢?(cosh 25—cos 2n) | OF* Y37 (cosh 2t—cos2n) OF (cosh 2tE—cos 29) On
M= 2D b’w Ow , (1—»)sinh2¢ ow (1—»)sin2n Ow  (1.22)
"= T Z(cosh 2t—cos 2n) . OF ‘ on? + (cosh 28—cos 27) Of (cosh 2£—cos 27) O -
_ 2D(1—vy) [b_'w : ow . _ %W - ]
M= Z(cosh 2E—cos 27)* | O sin 21;—{-3” sinh 2¢ 3ty (cosh 2f—cos 27) ) !
and the transverse shearing forces are given by (ref. 1.4)
22D dw |, dw
Qf—c‘*(cosh F—cos Zy)° [2 sinh 2¢ (aez +b 2) —(cosh 2&—cos 27) aE( e +5n2 ):] (
1.23)
2v2D *w , d'w d [dw , d'w
Q’=c3(cosh 2 —cos Iy} [2 sin 2n ( oF + ) (cosh 2£—cos 29) =— 5 ( oF + )]

1.2.2 Solutions

It has been shown (ref. 1.5) that equations
(1.7) have solutions composed of two parts:

equations (1.24) be discarded, and the complete
-solution becomes:

W1=MZ:‘,0[C’,..0&.(E, Q)+ FuFeyn(t, lcen(n, @ W=go[0,..0e,,.(£, q)cen(n, Q)

+0:.Cem(f, Q)cen(n,—q) |
S SaSenlt, Dtenln, )

‘,‘,,”::. A5 e

+ 33 (SnSen(£, 9)+ Gnbevm(t, Dlsen(n, 0)

=3 [ChCen(t,—9) ' +82Sen(t—Dsenn—)  (1.20)
4 Fekn(t,— 0)loen(n,—0) ‘
+3[SHSen(t—0) o
+G:G€km(f,—'Q)] Sem("l,—Q) J
(1.24)

where Ce,, cem, Stn, $m, Feyn, Fekn, Geym,
and Gek,, are ordinary and modified Mathieu
functions of order m; Cn, Ck, Sm, Sp, Fa,
Fr G., and G are constants of integration;
and

q=kK*=wvp/D -~ (1.25)

The complete solution to equation (1.4) is then

W=W1+W, (1.26)

For a solid region containing the origin, regular-

ity conditions require that half of the ‘terms in Freuse 1.2.—Elliptical coordinate system.
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1.3 RECTANGULAR COORDINATES
The rectangular coordinates of & point P are
shown in figure 1.3.

|
|
|
|
1
|
[
|
I
|
|
|

Fiqure 1.3.—Rectangular coordinate system.

1.3.1 Classical Equations

The Laplacian operator in rectangular co-
ordinates is
62 o*

top

Bending and twisting moments are related to
the displacements by

V=g - (1.28)

_ *w , O*w\)
M ——D(F57)
ow | o
M,=—D(W"’+v§ L (1.20)
M,=—D(1 y)%—y )

Transverse shearing forces are given by

@=—D2 (v'v)
3 (1.30)
@=—Dg ()

and the Kelvin-Kirchhoff edge reactions are

V=25

V,=Q+ 2

(1.31)

The strain energy of bending and twisting of a
plate expressed in rectangular coordinates is

OF PLATES

o3[ {Gr+37)

—20—)[ S22~

where dA=dz dy..

1.3.2 Solutions

General solutions to equation (1.4) in rec~
tangular coordinates may be obtained by
assuming Fourier series in one of the variables,
say z; that 1s,

Wz, )= n(y) sinoa+ 33 Y4(y) cos oz (1.33)

E’zg’y)']}dA (1.32)

Substituting equation (1.33) into equation (1.7)
yields

d di;:“ +(F—?)Y =0
&7 . (1.34)
mo -
a7 —(F+e)¥ =0

and two similar equations for Y, With the
assumption that k*>>c?, solutions to equations
(1.34) are well known as

Y = A sinVEP—c?y+ By cosViF—ay

Y, = Cn sinh i +a?y+ Dy, cosh VE+ oy
" (1.35)

where A, . . ., D,, are arbitrary coefficients
determining the mode shape and are obtained
from the boundary conditions. If k2<c?, it is
necessary to rewrite ¥, as

Ym =Ansinhyo’—ky+ B, cosh+/o?—Fy (1.36)

Thus the complete solution to equation (1.4)
may be written as

W(,9)=33 (AnsinVE—ay-+Bn cosF—cy
+Cp sinh VB ¥y
+ D, cosb VB +a?y) sin ax
+ig (A2 sinVIEE—cPy+ B cos k2 —oPy

+ C*sinh VP +cy
+ D% cosh/i?+o?y) cosax  (1.37)

—_—
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1.4 SKEW COORDINATES

The skew coordinates £, 3 of a point P are
shown in figure 1.4. The skew coordinates are
related to rectangular coordinates by

=z—y tana}
Y
1= Cos a

1.4.1 Classical Equations

(1.38)

The Laplacian operator in skew coordinates
is (ref. 1.6)

1 o? ; ot o
= 35—2—2sma-——a£a”+—5?> (1.39)
Bending and twisting moments are related to
the displacements by

az a? b
il [%-’-co:’ (sm a"5£_?
Qw
. ‘ “_2smab£b +bq’)]
o
M, =_D[cos’ (sm ab;f >
w  dw
23‘“%@ o]
_ (l—v)
My=— cosa bEbn a$2> J
(1.40)
y n
—————————pp
/
a /
/
/
B /
/
\ L x.f

F1GURE 1.4.—Skew coordinate system.

Transverse shegring forces are (ref. 1.7):

D [o*w *w 3
== sgloE —° Bag*a
+(1-+2 c08* ) oy —00s B2 % 2]
-
D [
AT 3_15—3‘”555@ :
w
gay 2 il
+(14+2 cos?B) bz’bn 0086383] )
(1.41)
where 8=(x/2) —a. The edgereactions are (ref.
1.7):
D [d%w o*w b
V§='— s“‘—‘—ins B 5?- —4 COSB——_OE’bn
_(2+3 20 ., qf 23)_931’5_
cos’ —v s dEor
—2 cos B e ]
D [o%w o0 i
Vo=—a5lor 1% 550y
| —(2+3cos*f—psin?f) 2
cos?f—yp s Y s
Q*w
—92 LAl ot
cosf & | |

(1.42)

-

The strain energy of bending and tmstmg of
a plate expressed in skew coordinates is

f b’w b”w)
cos" b.‘f’ bEbn on®

2(1—-11) %w azw
cos’a |_ Ot dn° bEbn)j}dA (1.43)

where dA=cos « d¢ d7.
1.4.2 Solutions

There are no known general solutions to
equation (1.4) in skew coordinates which allow
a separation of variables.
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2.1 SOLID CIRCULAR PLATES

When the origin of a polar coordinate system
is taken to coincide with the center of the
circular plate and plates having no internal holes
are considered, the terms of equation (1.18)
involving Y,(kr) and K,(kr) must be discarded
in order to avoid infinite deflections and stresses
at 7=0. If the boundary conditions possess
symmetry with respect to one or more diameters
of the circle, then the terms involving sin n
are not needed. When these simplifications
are employed, equation (1.18) becomes for a
typical mode:

W= [AJR(’CT) + ouIn(kr)] cos né (2' 1

where it will be understood in what follows that
n can take on all values from 0 to ». The

subseript 7 will also correspond to the number = -

of nodal diameters.

2.1.1 Plates Clamped All Around
Let the outside radius of the plate clamped

all around be a (see fig. 2.1). The boundary
conditions are:
W(a)=0
oW(a) (2.2)
=0
or

When equation (2.1) is substituted into equa-
tions (2.2), the existence of a nontrivial solution
yields the characteristic determinant

L) L)
) 1;0\)’“0 )

where A=%ka and the primes are used to indicate
differentiation with respect to the argument, in

this case r. Using the recursion relationships
(ref. 2.1)

ASn(A)=nJ y(A) =AJ nt1(A)

M) =L (AN i () ek

-7 TN 1N (M) w1 (M) =0

Chapter 2

e
\_

—

Figurs 2.1.—Clamped circular plate.. ... *

and expanding equation (2.3) gives
(2.5)

The eigenvalues A determining the frequencies
are the roots of equation (2.5).

The Bessel functions are widely tabulated for
small values of n. The Harvard tables (ref. 2.2)
are available for » £120. Otherwise, the recur-
sion relationships

J,H..g “(7L+1)Jﬁ+1‘—J
(2.6)
In+2= _5" (n+ 1 )In+1+1u

or various forms of series expansions for the
Bessel functions may be used.

Values of A* taken from references 2.3 to 2.5
are tabulated in table 2.1, where n , Yefers to the
number of nodal dm.meters and s ‘15 the number
of nodal cx_x_'cles, not including the boundary
- 7





[image: image14.jpg]8 VIBRATION OF PLATES

TaBLE 2.1.—Values of N¥=wa®p/D for a Clamped Circular Plate

A2 for values of n of—

0 1 2 3 4 5 [ 7 8 9 10 11 12 13 4

) FR— 10.2158 | 21.26 | 34.88 | 51.04 | 60.6659 | 90.7390 {114.2126 [140.0561 {168.2445 [106.7561 [231.5732 1266.6700 |304.0601 [343.7038 {385, 5006
p I—— 39.771 60.82 | B4.58 | 111.01 {140.1079 |171.8020 |206,0706 |242.8782 |282.1977 |324.0036 |368.2734 | .- | oo fommimiificinnn
p EE— 80.104 | 120.08 | 153.81 | 190.30 |229. 5186 {271.4283 1316.0016 I363.2007 |. .o |ecmommo e e[ e
R 158.183 | 100.06 | 242.71 | 289.17 |338.4113 [390.3896 | - o ooo)omceoofanmmcea o ea e e e
[ S 247.005 | 207.77

| I 335.568 | 416.20

[ SO 483.872 | 5564.37

(R 631.914 | 712.30

Blzpusan 790.702 | 889.95

[ —— 987.216 11087.4

circle. It is seen from equations (2.2) that the
frequency does not depend upon Poisson’s ratio
in the clamped case. An accurate transcen-
dental approximating equation for additional
roots of equation (2.5) is given in reference 2.5.

The mode shapes of equation (2.1) are
determined from either of equations (2.2).
Using the first of equations (2.2)

A. L.V

C.~ a0

- (2.7)

where the A values are taken from table 2.1.
The radii of nodal circles p=r/a are determined
from the equation

Ju(Mo)
T

I.(\p)
T 1.0

(2.8)

and are presented in table 2.2 as taken from
reference 2.6.

The procedure for determining the motion
of a plate subjected to arbitrary initial dis-
placement and velocity conditions is given in
reference 2.7.

The problem of finding stresses in & vibrating
clamped circular plate was discussed by Ungar
(ref. 2.8). The problem was also discussed
in references 2.9 to 2.18.

For more information concerning this prob-
lem, see the section in the present work on
in-plane forces in clamped circular plates
(10.1.1).

2.1.2 Plates Simply Supported All Around
Let the outside radius of the simply supported

plate be a (see fig. 2.2).
conditions are
W(a)=0}
M. (a)=0

Substituting equation (2.1) and equation (1.11)
into equations (2.9) and noting that 0*w/0#*=0
on the boundary give the equations

The boundary

(2.9)

b

A a0+ Caln(N)=0
A.[J"(xH—J:.(x)]w [I"(x>+ Ly (x)]

(2. 10)

Figure 2.2.—Simply supported circular plate.
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TABLE 2.2.—Radii of Nodal Circles p=r/a for Clamped Circular Plate

p for values of n of—
3
0 1 2 3 4 5

) R ST 1.0 1.0 1.0 1.0 1.0 1.0
.379 . 4899 . 559 . 606 . 641 . 669

D s e it S SRS 1.0 1.0 1.0 1.0 1.0 1.0
. 583 . 640 . 679 .708 .730 .749
. 255 . 350 .414 . 462 .501 .532

O B S 1.0 1.0 1.0 1.0 1.0 1.0
. 688 .721 . 746 765 .781 .787
. 439 . 497 . 540 . 574 . 601 .618
.191 . 272 . 330 . 375 .412 . 439
A o e P e e T T 1.0 1.0 1.0 L0 enmemmarmses b mamimis
. 749 . 767 . 789 .1 1 1 [, [
. 550 . 589 . 620 D i i
. 351 . 407 . 449 ABB: [ i o S St i
.153 . 222 .274 BB oo i mimicriomiiimtnia
Sl s s 1.0 b %, | [ ISP ISP, IR, VIS S
.791 BOT e e mml i m s S s s e s
. 625 %% S U M. S SRS
. 459 499 || e e ccccc e cmmmmmmm e oo
.293 IR 7. SO SSSURONUUNN ISR (OO PUpE U,
.127 88 L e b s e o e i
B e e e i 1.0 1.0 |- e | s R S R A e e
o L 5 .822 B33 i immee e m e e o e e
A 678 W I N, L ISR R
.535 05686 |o oo e e
. 393 0 1) (N (R (SR (RSP B
..251 W 1 T N, (P UPU: (IS IR
.109 B 1,2 N R SUSRR S SR S Y
7 T e D 1.0 0 ) A PPN S IR, IR
.844 0853 | cemcmecmmcfemmmmcccmemfemmm e e
.720 STBE e s e s s e s o s e | i mimiom i
. 593 SBIT e s s e sy e e s ot amiml i
. 469 A e e b s s s e
. 344 B8 sk ] e SR SR e e
. 220 263 ) eeafemmcmcmcmc e e e e a e
. 096 IS - S (IO, S NIRRT, Je-—ji S = r e

where the notation of the previous section is
used. It has been shown (ref. 2.11) that equa-
tions (2.10) lead to the frequency equation

Jart) | Lasa() _ 2N
T.) T L) 1—»

(2.11)

Roots of equation (2.11) and radii of nodal
circles for v=0.3 are taken from reference 2.6
and presented in tables 2.3 and 2.4, respectively.
Poisson, in an early paper (ref. 2.12), and
Prescott (ref. 2.11) give A=2.204 for »=0.25.
Bodine (ref. 2.19) (see section entitled ‘“Plates

308337 0—T0——2

TaBLE 2.3.—Values of N=wa?/p/D for a
Simply Supported Circular Plate; v=0.3

A? for values of n of—

3
0 1 2
(| S —— 4.977. 13.94 25. 65
[ PEECPP 29.76 48.51 70. 14
p S, 74.20 102. 80 134. 33
B 138. 34 176. 84 218. 24
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TaBLE 2.4.—Radii of Nedal Circles p=r/a for a
Simply Supported Circular Plate; v=0.3

p for values of n of—
8
0 1 2
(1 — 1 1 1
o F 1 1 1
.441 . 550 .613
b 1 1 e 1
. 644 . 692 726
. 279 . 378 .443
, 1 1 1
.736 .765 .787
. 469 . 528 .570
. 204 . 288 . 348

Supported on Circle of Arbitrary Radius”
(2.1.7)) gives \=2.228 for »=0.333.

The mode shapes are most conveniently
determined from the first of equations_(2.10)
by use of the roots of table 2.3; that is,

A 1.0
C.  JaN)

(2.12)

The procedure for determining the motion of

a plate subjected to arbitrary initial displace-
ment and velocity conditions is given in
reference 2.7.

The simply supported case is also solved in

reference 2.20.

For more information concerning this prob-
lem, see section entitled “Simply Supported
Circular Plates” (10.1.2).

2.1.3 Completely Free Plates

Let the outside radius of the completely
free plate be a (see fiz. 2.3). The boundary

conditions are
M. (a)=0 }
VAa)=0

Using equations (1.11), (1.12), (1.13), it has
been shown (ref. 2.3) that equations (2.13)
yield the frequency equation

(2.13)‘

Fi1cure 2.3.—Free circular plate.

AT (N 4+ (1—) WS oV —n2T (V)]
NN — (1 —») N o(N)—n2 (M)

_ NI+ =) NaN) = a0
NI, (0 — (A=) ) —L(V)]

(2.14)

It has also been shown (ref. 2.20) that, when
A>>>n, one can replace equation (2.14) by the
approximate formula

Ia(A) 4201 =)’} [N/ LM ]— 201 —»)
TN —2(1—n)7

(2.15)

According to reference 2.20, the roots of
equation (2.14) are located between the zeroes
of the functions J,(\) and J,(A) and the
larger roots may be calculated from the series
expansion

m+1_4(Tm’+22m+11) _

B 3(8a)

(2.16)

wherem=4n? and a= (x/2) (n+2s). The asymp-
totic value is

xgg(n+2s) (2.17)

Using equations (2.15) and (2.16), values of
A? are computed in reference 2.20 for »=0.33,
and in reference 2.3, for »=0.25. These are
presented in tables 2.5 and 2.6, respectively.
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TaBLe 2.5.—Values of N*=walyp/D for a Completely Free Circular Plate; v=0.33

)

v i ] ;
g A2 for values of n of— = S
s
0 1 2 3 4 5 6
(¢ S, | NS OPRP | [ 5. 253 12. 23 »21.6 2331 » 46. 2
) S, 9. 084 20. 52 35. 25 52. 91 2731 295.8 =121 0
) 1 38. 55 59. 86 83.9 111. 3 142. 8 175. 0 210. 3
b SO 87. 80 119. 0 154 0 192. 1 232.3 274. 6 319. 7
7 ST 157. 0 198 2 242, 7 290. 7 340. 4 392. 4 447. 3
8. e 245. 9 296. 9 350. 8 408. 4 467. 9 529. 5 593. 9
6 e 354. 6 415. 3 479. 2 546, 2 615. 0 686. 4 760. 1
7 (R 483. 1 651. 8 627. 0 703. 3 781. 8 864. 4 952. 3
i TP, 631. 0 711. 3 794. 7 880. 3 968. 5 1061 1158. 7
! I 798. 6 888. 6 981. 6 1076 1175 1277 1384
10 - crrrmasss 986. 0 1086 1188 1292 1401 1513 1631

» Values true within 2 percent (ref. 2.20).

TABLE 2.6.—Values of \X2=wa’/p/D for a Com-
pletely Free Circular Plate; v=0.26

2 for values of n of—
3
0 1 2 3
(| [REPEIST e, SR 5.513 12.75
) 8.892 20.41 | 35.28 53.16
2] 38.34 59.74 | 84.38 112. 36
£ S T 87.65 118.88 | 153.29 191.02
C T 156.73 196. 67 | 241.99 289.51
R 245. 52 296.46 | 350.48 408. 16
| R 354. 08 414.86 | 478.73 545. 83
Tessemmanms 482. 37 553.00 | 626.75 703. 63
8 conerssans, 630. 41 710.92 | 794. 51 881. 20
! I 798.23 888.58 | 982.01 | 1078.5

The radii p=r/a of the nodal
be found from reference 2.20:

(1=») N 2N =12 T a(M)]+NTu(A)

circles may

JNO‘P)= 7
BN ARy X R WA
(1 ”)[“In(xp) " el Lo
(2.18)

Table 2.7 gives values of p=r/a for »=0.33
computed from equation (2.18).

For large values of » and s it has been shown
(ref. 2.20) that the radii of nodal circles can be
computed from the approximate formula

TaBLE 2.7.—Radii of Nodal Circles p=rt/a for u
Completely Free Circular Plate; v=0.33

o for values of n of—
3
0 1 2 3 4 5

1____.___l0.680 |0.781 |0.822 |0.847 |0. 86?5 0.881
2..._.-| .841 | .871 | .8897 | .925 | .926 | .993
.391 | .4972 | .562 | .605 | .635 [ .663

3eceea-| 893 | .932 .936 .939 | .943 . 947
.591 | .643 | .678 | .704 | .726 | .T45

ST 1 .257 | . 351 .414 .460 | .498 . 529
E S .941 | . 946 . 950 .951 | .955 . 958
.691 | .723 . 746 .763 | .779 .793

.441 | . 498 . 540 .572 | .600 . 623

.192 | . 272 . 330 . 374 | . 411 . 443

| E— .952 | . 956 . 959 .960 | .963 . 966
.752 [ .773 | .790 | .803 | .814 | .825

. 52| .590 . 620 .644 | . 644 . 682

.352 | .407 | .449 | .483 | .512 | .536

.154 | . 222 .274 .316 | . 351 . 381

Az
(p);=)‘—; (2.19)
where A\ is the pth root
J(3)=0.

Experimental results were obtained for a free
circular brass plate (ref. 2.21). The ratios of
frequencies of free vibration » to the funda-
mental frequency w, are presented in table 2.8

of the equation
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80 (—7 and figure 2.4 taken from reference 2.21. Radii
‘,’ N of nodal circles p=r/a are given in table 2.9.
70] BN S Other experimental data are presented in
y ~ ] V references 2.20 and 2.22 to 2.28. Further dis-
. =5 / ){ - &5 ). cussion of this problem is given in references
7 / // M 2.10, 2.11, 2.12, 2.15, 2.17, 2.29, 2.30, and 2.31.
55 / A / {/ 92.1.4 Plates With Elastic Edge Supports
1 ;-4/ / o Consider a circular plate of radius e sup-
§40 Vi / 7 ported elastically by springs uniformly - dis-
3 ,%/ M tributed about its contour as shown in figure
ol /] /] Y. 2.5. Translation in the direction of w is op-
2 / posed by springs having distributed stiffness
K, (force/(unit length)?). Edge rotation ¢ is
<0 0 /‘f opposed by spiral springs having distributed
stiffness K, (moment/unit length).
104
¥ =0 o
‘ K)z E
%172 3 4 5 6 7 8 9 0O 12 1314 © Y 1
Number of Diometers, n Ky 3
Ficure 2.4.—Experimental values of frequency ratios 7777 . i e
w/w, for a completely free circular brass plate. (After F16uRE 2.5.—Elastically supported circular plate.
ref. 2. 21)

TABLE 2.9.—Exzperimentally Determined Radii of Nodal Circles p=rt/a for a Omnpletely Free
Cireular Brass Plate

4
| p for values of n of—
Circles s
0 1 2 3 4 5 6 7 8 9 10 11
) S 0.680 | 0.781 | 0.823 | 0.843 | 0.859 | 0.871 | 0.880 | 0.889 | 0.897 | 0.903 | 0.909 | 0.912
PP .391 | .497 | .562 | .604 | .635| .662 | .681 | .702 | .715 |- ojeeeoaaofioona-
.843 | .867 | .887 | .808 | .906 | .915 .922 .927 | .932 | | ___|o--a--
[ . 257 . 349 . 415 . 461 . 505 PG v3 1 TRV AR EP—— E——— E——
L5901 | .643 1 .681 ) .706 | .728 | .745 |ocoooo_|eeemcmafema e oo
L8051 .902 | .913 | .919 | .925 | .933 | o_|eemmjmmmmmen|omm e
4 190 | .269 | .328 | .374 | 411 | 443 |l eceeaec|immm e
. 441 . 495 . 540 . 5971 . 596 B % N IR ISR NI PO SpSpRSGU PR
.692 | .726 | .748 | .764 | .TTO | .794 || emmen|e e
.918 | .928 | .934 | .938 | .941 | .944 i _____ | o |emmem|eeme e e
L J R 17" 8 DRI FURNSIUR SNV FIUNUUUNSIU SNSRI FRIPIURIU RUURUUIUNY ORI SOUGIPISI PR BT
B 3.5 U RN FEURUUE IV FRUUURUORN (SNSRI IPUOIPIIO U ORI SIS BT PR
.78 I S WU, SOR A IR, IR ORI, PRI I T
I £:7: 35 N (RN SRSV ANUUVHURNIO UEROSRPRUY PRSI SUUTIPIPN (RN Mmoo ORI P
IR 1.1 20 (S PR USROS (LOUUPPI DR UPDUGt) NSNS JRRIIIPISS PR SRR FEVRPUSIRI (RRpU
s Y S 3 [ DN [T ISP NNUNIPUN IORUINIUNY FRISPIN RN URINIPIE PV SOUSIPIUO BRI PR
292 | e et e e e e
Y1 2 U IR USSR (SRS ISP AU SRR (UUPIRUND SIS PUPEPS] B,
578 N N SRS AN AN (. (O [V SN I SO
<+ 7O AN AU FEUSUIPUNIN (NUNUIONUSUEN FOVUUVUHNS RSN FRUVIUpROHO SN ARUSSOUPIN NOISNEPRS S
B+ ;3 30 DR IR SAUNUIUNIOUU (NSO FUNURPRUY SUSIURPIY SPUUIIIIoY SUIUPIPRNN NUIPIIIeUs (PRPRSIS PR
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The boundary conditions are

ow
Mr(a'y 0)=K¢5;(a7 0) ‘ } (2.20)
Va,8)=—K, W(a,0)

Substituting equation (2.1) into equations
(2.20) and using recursion formulas of the type
of equations (2.4) and (2.6), it can be shown
that equations (2.20) become

An{ [Jn+2()‘)+Jn—2(>‘)]

_2 ,+K«a) Y B

—(2+)‘—"f’7) Ju(N) }
+Bn{ st +TaesV)]

+H2 (A BN L+ L)

+(-%%

A 1t s )= s O a0+ )]

I.(\) } =0 ~(2.21)

and

H o+ 5+ ()= )
i [2e—me-E 00}

+B..{ Unss(N)+1na(N)]

2
+x [Lns2(N)+ILa2(M)]

4 4(2—

H 52 )+ 2]

+h2(e~rmpre— 2B }I,.(x).—_4

(2.22)

“ . Formulation of the second-order characteristic de-
terminant for the frequencies from equations

(2.21) and (2.22) is & trivial operation. In the
case n=0, the frequency equation simplifies to

OF PLATES
Ji(A)—g Jo(N) 1i—qlo(M\) )
where
Ap= —(1—)
and
K.a*
Ng=—r— D

The problem was formulated in & similar
manner in reference 2.32 for the special case
when only an elastic moment edge constraint
is allowed; that is, the boundary conditions are

M,(a,0)=K, % (e, 9)} (2.24)
W(a, 6)=0

This case is obtained by setting K,=<« in
equation (2.22). Numerical results for the
first four frequencies for equations (2.24) for
varying amounts of rotational constraint are
given in table 2.10. Poisson’s ratio is not
given in reference 2.32, but it appears to bg
0.3 for table 2.10.

i

TaBLe 2.10.—Values of N=uwal{p/D for a

Circular Plate With No Edge Deflections and
Elastic Moment Constraint; »=0.3

»? for values of n of—
KD 5
¢ 1 2
8=0 8=1
O i 10. 2 39.7 21.2 34.8
0% e 10.2 39.7 21.2 34.8
107 .o 10.0 39.1 20.9 34.2
102.... e 8.76 35.2 18.6 30.8
1078 o 6. 05 30.8 15.0 26.7
0 e 4.93 29.7 13.9 25.6

2.1.5 Plates Clamped Along Part of Boundary
and Simply Supported Along Remainder

Figure 2.6 shows & circular plate which is
clamped along its edge for the interval —y<{#6
<y and simply supported on y<62x—7.
This problem was solved by Bartlett (ref. 2.33)
by an interesting variational approach to give
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Figure 2.6.—Circular plate partially clamped and
partially simply supported.

upper and lower bounds for the eigenvalues.
The method is based upon two perturbations.
One is a perturbation of the problem when the
plate is clamped all around (y==x) and yields
upper bounds for A; the other is a perturbation
of the simply supported case (y=0) and yields
lower bounds. Upper and lower bounds for
A? for the case v=1/4 are presented in table 2.11
as taken from reference 2.33.

An approximate solution to this problem was
given by Noble (ref. 2.34), who showed that a
good approximation of the frequency parameter
A is given by the roots of the equation

L), LT 1
T L] T T EEmam
(2.25)

A comparison of the values of A obtained from
equation (2.25) and the more accurate results of
reference 2.33 is given in figure 2.7.

This problem was also discussed in references

P2

3.5
) /
7
d
/4
7
A [hom reference 2.33 //
1
d

from reference 2.34]

20%-
[V} 4 -k-r %r E4

2

Figure 2.7.—Comparison of frequency parameters
obtained by two methods for a circular plate with
mixed boundary conditions; »=1/4. (After ref. 2.34)

2.35 and 2.36 wherein a method superimposing
concentrated moments along parts of the hound-
ary to be clamped was proposed. A numerical
solution A= (pw?/D)#a=3.98 is given for the
case when one-fourth of the boundary is
clamped, but this is clearly erroneous because -
it is ‘greater than the value for a completely
clamped plate.

9.1.6 Plates Clamped at Center With Various
Conditions on Contour

In the case of plates clamped at the center
that have various conditions on contour, it is
obvious that for two or more nodal diameters
(nZ2) the resultant frequencies and mode

TABLE 2.11.—Values of N=wa?yp/D for a Circular Plate Clamped Along the Boundary Through
an Angle 2v and Stmply Supported Along the Rest of the Boundary; v=1[4

a2 for values of v of—

Bound
0 /8 2x/8 3x/8 4x/8 5x/8 6x/8 7=(8 x
(V)7 S RS 5871 | 6.350| 6.880 | 7.508 | 8231 9.120| 9.885 10. 21
Lower_ . ___ . .. . ____ 4862 | 5842 | 6.335| 6.864| 7.480 | 8162 | 8880 9.126 |._______
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shapes are identical to those obtained in the
previous sections when no constraint was
applied at the center. This can be seen be-
cause at the intersection of two mode lines the
slopes in all directions, as well as the deflection,
are zero. )

Southwell (ref. 2.37) discussed the problem
of a free disk clamped at the center as a special
case of an annulus free on the outside and
clamped on the inner edge (see section entitled
“Annular Plates Free on Outside and Clamped.
on Inside” (2.2.7)). It is necessary to evaluate
the fourth-order characteristic determinant by
a careful limit process as the inner radius ap-
proaches zero. He showed that in the case of
one nodal diameter (n=1) the set of frequencies
is identical to those for the completely free
plate. For the axisymmetric case (n=0), the
first four roots for »=0.3 are given as:

N—wq?y/p/D=3.752
=20.91
=60.68
=119.7
Colwell and Hardy (ref. 2.20) showed that

the frequency equation for the axisymmetric
case can be approximated accurately by

EJ(N=Yo(\) _2(1—») Is(N)
EJ(M-Y:(0)  » L)

(2.26)

where E=(ln 2)—Euler’s constant=0.11593.
The first 11 roots of equation (2.26) for »=1/3
are given in table 2.12. It is seen that higher
roots of ) are separated by .

The equation determining nodal radii p=r/a
1s (ref. 2.20)

EJo(Ap)=Yo(\p) (2.27)

and has roots given in table 2.13 for »=1/3.

Reference 2.11 gives wa?y/p/D=3.717 for y=
0.25.

The axisymmetric cases for the plates having
simply supported or clamped edges in addition
to & point support at the center are discussed in
reference 2.38. The frequency equation for the
simply supported plate becomes

(l—v){ [Io(k)—Jo(x)][Yl(x)-i-%Kl(x)]
+[Jx()\)+11(>\)][Yo(x)+§Ko(x)]}

~a[ LT 2 AMEM [0 (228
which has as its first two roots (v is not given,
but apparently is 0.3): '

A=14.8
=49.4

TaBLE 2.12.—Values of N=uwa?/p/D for Azisymmeiric Vibrations of a Free Circular Plate Fized
at the Center; v=1/3

8 0 1 2 3 4

5 6 7 8 9 10

) I 3752 | 20.91 61. 2 120.6 | 199.9

208.2 | 416.6 | 555.1 | 712.9 | 890.4 1088

TasLE 2.13.—Roots for Determining Relative Radii p=r/a for a Free Circular Plate Fized at the
Cenler; v=1/3
[Values of p are determined by dividing each of successive roots by value of » of desired mode]

8 . 1 2 3 ‘ 4 5

6 7 ‘ 8 9 10

3 97 7.08 10. 20

13. 33 16. 49 19. 61 22. 76

25. 90 29. 04 32.18
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The frequency equation for the clamped plate is
o)~ LI T+2 K |
AL T+ 2N [0 (229)

which has as its first two roots:

N=22.7
=61.9

9.1.7 Plates Supported on Circle of Arbitrary
Radius

A circular plate having a free outside edge of

radius a is supported on a concentric ring

having a radius b as shown in figure 2.8. The

solution of this problem is very straightforward.

One can recognize symmetry and take

W= An i aller)+ By ¥ o)+ Co Iollr)
+D, K (kr)  (i=1,2) (2.30)

from equation (1.18), where the subscript 1
refers to the region 0<{r<(b and the subscript 2
refers to-b<r<a; Bn;, and D=, are discarded
to satisfy regularity conditions ~at 7r=0.
The remaining six boundary and continuity
conditions :
w(8)=wx(b)=0 1
2.(b) du(b)

or or L
azwl(b)_azwz(b) (2.31)
orr o

M, (a)=V,(a)=0 |

are satisfied by substituting equation (2.30) into
equations (2.31) and forming a sixth-order char-

-—-o—-*

— m|

D e e Ceca

F1gurE 2.8.—Circular plate supported on a concentric
circle.

17

acteristic determinant equation. The roots of
the determinant are found by evaluating it
by computer for many values of A for a given
b/a ratio.

The numerical solution of this problem is
reported in reference 2.19 for the fundamental
mode. The frequency parameter A?is plotted
in figure 2.9 and mode shapes for three repre-
sentative b/a ratios are shown in figure 2.10,

both for »=1/3.

2.1.8 Plates With Concentrated Mass at Center

The problems of free and clamped circular
plates having a concentrated mass m at the
center were solved by Roberson (refs. 2.39 and
2.40) for the case of axisymmetric modes. The
concentrated mass was treated as an impulse in
the mass density function. The impulsive
change in density makes it convenient to solve
the problem by Laplace transform methods.

In the case of the plate having free edges, it
is shown (ref. 2.39) that the frequency equation
takes the form

%k
- Mnt¢a) 4 - (@3)
where ' g

HO)=5] TOVL0)+T00E0)
N ~2a—)T 5 |-
4»0\)=[Jl(x)Ko<x)—Jo(x)Kl(x>
2 1
+2a—a0nm |- T
@(x)=[Jo<x>L<x)+Jlo)lom

2
—2a=nFRM |
(2.33)

and u is the ratio of the concentrated mass at
the center to the mass of the plate; that is,

m
p_— . (2.34)
The first four roots of equation (2.32) are shown
graphically in figure 2.11 (for »=0.3)- as func-
tions of the mass ratio . An asymptotic-
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F1GURE 2.9.—Values of A*=wa3yp/D for a circular
plate of radius ¢ supported on a concentric circle

of radius b (for fundamental mode); »=1/3. (After
ref. 2.19)
w
\ . o, / r
o - 05 ——t+— 05 Lo ¢@
(a)
w

{b)

1\. 1 " o . 1 A/L

(c)

F1aurE 2.10.—Fundamental mode shapes for a circular
plate supported on & concentric circle; »=1/3.
(a) b/a=0.392; 2*=6.502. (b) b/a=0.699; \2=9.024.
(c) bja=0.814; M*=7.301. (After ref. 2.19)
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FI1GURE 2.11.—Values of M=wa?yp/D for various mass
ratios for a free circular plate having a concentrated
mass at the center; »=0.3. (After ref. 2.39)

expansion estimate of the higher roots for the
asbove problem can be obtained from the
frequency equation

L

tan A=— ?'-8’-‘ A2 (2.35)

The accuracy of equation (2.35) is shown by '
table 2.14 for the extreme mass ratios of u=e
and p=0. The first mode shape is shown in
figure 2.12 for three values of mass ratio.

For the clamped plate (ref. 2.40) the fre-
quency equation is also given by equation (2.32)
where, in this case,

SO =2 LT N +LNT 0 ]+5

SN =ANEMN—JNEN+; + (2:36)

&s(\)=Io(\)J:(N)+1:(M)Jo()

The first four roots of equation (2.32) are shown
graphically in figure 2.13 as functions of the
mass ratio u. It is noted that in the case of
clamped edges the frequencies are independent
of Poisson’s ratio. More precise values of A\
for x=0, 0.05, and 0.10 are given in table 2.15.

It should be noted that for both types of edge
conditions (free or clamped) the frequency
changes rapidly with the addition of a small
amount of mass at the center, particularly for
the higher modes.
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TasLE 2.14.—Comparison of Roots \* From Asymptotic-Expansion Estimate With Exact Values;

v=0.3
2 for values of u of—
oo 0
3
Value from Estimate from Error of Value from | Estimate from Error of
eq. (2.32) eq. (2.35) estimate, eq. (2.32) eq. (2.35) estimate,
[(2s—1)(=/2)P percent ) (s7)? percent
) 3.73 2. 47 —33.8 9. 006 9. 87 9.6
P 20. 9 22, 20 6. 2 38. 44 39. 48 2.7
B i i B 60. 5 61. 69 L9 87. 76 88. 83 1.2
4 - 119. 7 120. 91 1.0 156. 75 157. 90 .7
5 YN (S 199: 85 |- zzommeveemele e 246. T4 | e
[ S F I 298. 50 emmim mimmmim | s 350582 e
7 (G| TP VIS, 416. 98 |- cmc e 483. 60 .o csosmanaame
£ o
TABLE 2.15.—Precise Values of N=uwa?y/p/D for
o a Clamped Circular Plate Having a Concen-
. trated Mass at the Center
NATP
w =y = R , A2 for values of x of—
E o R=S =
Y # — N \ 0 0.05 0.10
b ]
I~ . o
E ) D 10. 214 9. 0120 8.1111
10 D 39.766 32.833 29. 681
kS 89. 114 72.012 67.733
0 Ol 02 03 04 05 06 Of 08 09 10 R 158,18 12939 125449
: _
Figure 2.12.—First mode shape for a free plate having The clamped case hav]ng a general concen-

a concentrated mass at its center; »=0.3. (After trated impedance at the center was discussed
f. 2.39 2 .
ref. 2.35) in reference 2.41, though no numerical results

were presented therein.
e 2.2 ANNULAR PLATES
=
01921%0y€° An annular plate consists of a circular outer
3*33134]52 A boundary and a conceptric circular ianar bound-
ary. Throughout this work the radii ¢ and b
S134178 1e4 will define the outer and inner boundaries,
al30i72 436 - , ~_respectively. . . ,
\ —— There exist nine possible combinations of sim
2{26 {66128 \\t\: - ple boundary conditions (i.e., clamped, simply
ol ] supported, or free) for the two boundaries. An
2276012002 04 06 08 10 12 14 »  outstanding set of results was given by Raju

- Fiaure 2.13.—Values of N=wa?vp/D for various mass (ref. .2'.42) for all mne cort}lginafalons of boundary
ratios for a clamped circular plate having a con- conditions for a Poisson’s ratio of 1/3, and the
centrated mass at the center. (After ref. 2.40) results which follow draw heavily from his work.
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Joga-Rao and Pickett (ref. 2.43) also evaluated
the exact characteristic determinants in the
axisymmetric case when the outside boundary
is clamped, simply supported, or free and the
inside boundary is free. - Their results closely
match those of Raju and will not be repeated
here. They also analyzed these cases for
a/b=0.5 by the Rayleigh-Ritz method and
obtained confirming results.

Two-term Rayleigh-Ritz solutions. were used
in reference 2.44 to obtain approximate axi-
symmetric frequency parameters for all but the
free-free cases. These results are summarized
in table 2.16 for »=1/3 and are compared with
exact solutions. The b/a ratio is 0.5 throughout
the table.

Sakharov (ref. 2.45) solved the cases for
plates with the outside clamped or simply sup-
ported and the inside free, and Gontkevich
(ref. 2.6) presented results for four additional
cases but omitted those for the simply supported
inside boundary. Vogel and Skinner (ref. 2.46)
in a recent paper also obtained exact solutions
for all nine cases.

OF PLATES

In addition, Southwell (ref. 2.37) presented
results for the outside-free, inside-clamped case;
Hort and Koenig (ref. 2.47) and Kumai (ref.
2.48) gave theoretical and experimental results
for annular plates of given dimensions; reference
2.47 deals with the free-free case and reference
2.48, with the case for both edges either clamped
or simply supported.

2.2.1 Annular Plates Clamped on Outside and
S Inside

Substituting the complete solution (eq.
(1.18)) for the cos nf terms into the boundary
conditions W=dW/dr=0 at r=a and r=b
yields four homogeneous equations in 4,, B,,
C,, and D, for which a nontrivial solution can
exist only if the determinant of coefficients is
zero. Using recursion relationships of the types
in equations (2.4) and equations (2.6), deriva-
tives of the Bessel functions can be expressed
in terms of functions of the zeroth and first
orders. The frequency determinants for n=Q,
(axisymmetric), n=1 (one diametral node), and
n=2 (two diametral nodes) are given below
(ref. 2.6). »

TaBLE 2.16.—Azisymmelric Frequency Parameters for Annular Plates; v=1/3; bja=0.6

Boundary wa?yp/D
conditions *
Deflection function W(r)
Exact Rayleigh-
r=aq r=>5b solution Ritz
. . solution
OB &€
C C A[1—(r/b)*P[1—(r/a)?] In (r/a)+ B[1— (r/b)2P[1—(r/a)* P o .. 89. 30 89. 42
C S8 A= (r/b))1—(r/a)*] In (r/a)+ Bl —(r/b)* 1 —(r/a)?P_ . 64. 06 65.17
C E A[l—(r/a)?] In (rfa)+B1—(r/a)*P_ - .. 17. 51 17.56
S8 C All—(r/b)2R.In (r/a) + B[1—(r/b)?R[1 —(rla)?) - o oo 59.91 61. 81
Ss SS A{l—(r/b)*) In (r/a)+ B[1— (/b)) 1 —(r/a)?) e o e oo 40.01 43.19
SS F A In (r/a)+ B(1—(r/a)2]+C(r/a)* [l —(r/a)?) - - - oo 5. 040 5. 062
F C A[l= (/b)) In (r/b) +Bl1— (r/b)2 P e 13.05 13. 59
F SSs A ln (r/b)+B[1—(r/b)2 ]+ C(r/a)} 1 — (r/b)2) - o e 4. 060 4.084

* C, clamped; SS, simply supported; F, free.

For n=0,
Jo(N) Yo(N)
J1(N) Yi(n)
Jo(aN) Yo(a))
Jl(a)\) Yl(a)\)

where a=b/a.

Io(N) K,(\)
LY KO |_,

I oa) Ko(ak) o
—Ii(a)\) Ki(aN)
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For n=1,
L) T LN KW
L) L L) =K |_g
Ji(a) Y () Ii{aX) Ki(a))
Jo(ad) Yo(aN) Io(ad) —Kq(ad)
For n=2,
L) T LRI —EM-3E0)
L) T Lo ~EO) L
Tl YaN)  —hat @) —Ka)— K@)
Ji(aN) Y (ar) Li{oN) —K;(ar)

Fundamental roots for these three frequency equations are given in table 2.17.

TABLE 2.17.—Values of N>=wa?\/p/D for a Clamped, Clamped Annulus

A2 for values of bja of—

R 8 0.1 0.2 0.3 ’ 0.4 ' 0.5 l 0.6
1 USSP Py (01 T (S— 45. 36 62.33 89. 30 jopmmmesmases
) RSN S 28. 84 [ I < S S —— 62.92 | __ 108. 16
- R 36. 609 4).796 l.ccccncanaaa 66.406 |- ... ... 123. 766
These results are plotted in figure 2.14, along ' T
with the eigenvalues for the second mode of wo A /
n=0 taken from reference 2.6. Extrapolations Re ’/
are shown as dashed lines as they were proposed : v

in reference 2.42. Note that for b/a=0 accurate
values are given in the section entitled “Plates
Clamped at Center With Various Conditions
on Contour” (2.1.6).

A more comprehensive set of results is given
in table 2.18 (see ref. 2.46).

Theoretical and experimental results for
0<b/a<0.5 are given for the first three mode
shapes in reference 2.48. Additional informa-
tion is given in table 2.16.

2.2.2 Annular Plates Clcméed on Oﬁhiae and
Simply Supported on Inside

The case of plates clamped on the outside
and simply supported on the inside is not dis-
cussed in reference 2.6. Fundamental eigen-
values from reference 2.42 are given in table
2.19 and are plotted in figure 2.15. Accurate

AN

O N

nb"(:

FiGUrE 2.14.—Values of A= (pw?/D)'/4a for a clamped,
clamped annulus. (After refs. 2.6 and 2.42)

values for bja=0 are given in the section en-
titled “Plates Clamped at Center With Various
Conditions on Contour” (2.1.6). Additional
information is given in table 2.16.
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10 7 TABLE 2.19.—Values of \*=wa?/p/D for a
Clamped, Simply Supported Annulus; v=1 /38
9
/ »? for values of bfa of—
8 n
0.1 } 0.2 { 0.3 0.4 0.5 0.6
A7 /l/
‘&/ / b O___} 22.61 | 26.57 | 33.66 | 44.89 | 64.06 99. 16
6 p g v ] 1...125.20129.11 |_______ | 47.09 |______. 98. 01
P—c 2.1 35.39 | 37.54 |___.__ 1 51.81 |___.___ 104. 45
~ n=0
5 _:: ——
4O [+X] 0.2 03 04 0.5 0.6 07 08
8

F1GURE 2.15.—Values of A= (pw?/D)!/4a for a clamped,
simply supported annulus; v=1/3. (After ref. 2.42)

TABLE 2.18.—Frequency Parameters wa?/p/D
for a Clamped, Clamped Annular Plate

A more comprehensive set of results is given
in table 2.20 (see ref. 2.46).

TABLE 2.20.—Frequency Parameters wa’/p/D
Jor a Clamped, Simply Supported Annular Plate

wa*Vp/D for values of bja of— wa*yp/D for values of b/a of— -
n s - - n s
o 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

(| N— 0 27.3 45.2 89.2 248 2237 0 0 22.6 33. 7 63.9 175 1550
p S 0 28.4 46. 6 90.2 249 2238 1 0 25.1 35.8 65.4 175 1551
b 0| 36.7 51.0 93.3 /159 S — "2 0 35.4 42.8 70.0 178 1553
kS, 0 51.2 60. 0 99.0 256 2243 3 0 51.0 54.7 78.1 185-| 1558
0. 1 75.3 | 125 246 686 6167 0 1 65.6 | 104 202 558 5004
1._.__. 1 78.6 | 127 248 686 6167 1 1 70.5 | 107 203 560 5004
2 . 1 90.5 | 134 253 689 {______ 2 1 86.7 | 116 210 563 5007
b 1112 145 259 694 6174 3 1} 111.0 | 130 218 570 5012

2.2.3 Annular Plates Clamped on Outside and Free on Inside

The frequency determinants for n=0, 1, and 2 taken from reference 2.45 for plates clamped
on the outside and free on the inside are as follows:

For n=0,
Jo(N) Yo(N) I(N) KN
VA RIS 40N LY —E,() ’
Jl(a)\) Y1 (a)\) Il(a)\) -—K;(a)\)
Jo(ak) = Yo(a)\) Io(a)\) -*-AIl(a)\) Ko(a)\) +BK1 (a)\)

where
, 21— p_21—)
4= al B al

For n=1,
Jo(N) Yo(N) I,(N) Ko,
Ji(0) iy (N —K,(\) -0

—Ji(a)) ~Yi(a)) CJo(ar)+DIy(aN) —K(a)) o

Jolal) Yo(ar) BJo(aN) + AL (a)) Ky(a\)+BEK,(a))
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where (1—v) 4(1—v) 2(1—») 4(1—v)
__8 1—» _— 1—vp — 1—» - 1—y
A= @7 B=—1+ @ C oy D=1+ ()
For n=2,
Ji(N) o L) —Ki(»)
TN TN TEO=LO) —SEM-K0 |,
JolaN) Yo(a)) A*I(a)) —B*I(a)) A*Ky(a))+B*K;(a))
J1 (a)\) Y]_(a)\) OIQ(GA) ‘—DI],(IIA) OKo(a)\) +DK1(Q)\)
where
.y __a_k_3+v’ o _ah 3+V,
A*=1—AC, A—-4 2on B*=B—AD, _4+2a>‘
O=_380—na 5 120=n[(T+s)+ ()] —(a)*
12(1—p)*—(ar)* 12(1—p)*—(ar)*

Eigenvalues from reference 2.42 are given in table 2.21 and figure 2.16. Results for b/a=0
are also given in the section entitled “Completely Free Plates” (2.1.3).

TABLE 2.21.—Values of N=wa%/p/D for a Clamped, Free Annulus; v=1/3

A for values of b/a of—
n
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
) o
Qucsasanmamesmsmasmsmmmas 10. 24 10.18 10. 34 11.37 13. 54 17. 51 25. 60 42.38 85. 32
e 21.25 21.17 20.48 |.caacaaa 19. 80 21.76 28. 52 81.12 | vaccuan
S e e e S SR e 34.88 | 34.52 | 33.86 |-_..____ 31.34 | 36.60 |-.______ 72.17

Numerical problems make it difficult to evaluate the frequency determinant as b/a—1.
Reference 2.43 gives an approximate value of A=15 for b/a=0.9. Additional information appears
in table 2.16.

A more comprehensive set of results is given in table 2.22 (see ref. 2.46).

TABLE 2.22.—Frequency Parameters wa®/p/D for a Clamped, Free Annular Plate

wa? /D for values of bfa of—
n 3
0.1 0.3 0.5 0.7 0.9
0 0 10.2 1.4 |- - 17.7 43.1 360
1 0 21. 1 19.5 22.0 45.3 362
2 0 34.5 32.5 32.0 ! 51.5 365
3 0 51.0 49.1 45.8 | 61.3 370
0 1 39.5 51.7 93.8 253 2219
1 1 60.0 59.8 97.3 254 2220
2 1 83.4 79.0 108.0 259 2225
0 2 90. 4 132.0 253.0 692 6183
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TABLE 2.23.—Values of N=ws’/p/D for a Simply Supported, Clamped Annulus; »v=1/3

A for values of b/a of—

n
0.1 0.2 0.3 0.4 0.5 0.6
O e e e 17. 85 22.79 30. 05 41.23 59. 91 95. 16
I 19. 44 24.32 |____________ 42.56 | __ 96. 67
e 28. 25 31.08 | ________ 46.81 |___________ 98. 84

2.2.4 Annular. Plates Simply Supported on Outside and Clamped on Inside

The frequency determinants for n=0, 1, and 2 taken from reference 2.6 for plates simply
supported on the outside and clamped on the inside are as follows:

For n=0,
Jo(A)
Ji(A)

Jo(ad)
Ji(ad)

For n=1,
- Ji(A)
Jo(A)

Jo(ad)
Ji(ar)

For n=2,

ALY

Jo(A)
Ji(ad)

Jo(ad)

where

Yo(d)
Yi(y)

Yolad)
Yi(ah) -

Y.\
Fo(h)

Yo(ar)
Yia)

Y.\

Yo(A)
Yyi(a))
Yo(a)

L)
2 1)—I)

Io(ar)
—Il(ak)

Lo
LO—2 L)

To(ar)
Ii(a))

ALON—2 I)

S BLO)—AL()
I(a))

— TN+ 5 Ti(a))

A=5—v

1—p

B=

3—»

1—yp

Kq(\)
2\
-1= KM\ —EKi(\) =0

Ko(ar)
Ky(ar)

E(\)

—EM - B0

—Eya)
Ki(a))

—AK ()~ 12 Ko(N)

~$ BEW—AK,0) | _
—Ki(a)
—Kifah) — Ki(ad)

Eigenvalues from reference 2.42 are given in table 2.23 and figure 2.17. Eigenvalues for the
second mode of n=0, taken from reference 2.6, are also given in figure 2.17. Additional infor-
mation appears in table 2.16.
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F1GURE 2.16.—Values of A= (pw?/D)'4a for a clamped,
free annulus; »=1/3. (After ref. 2.42)

¢} 0.1 0.2 03 04 0.5 0.6 0.7 0.8
]
q

F1GURE 2.17.—Values of A= (pw?/D)/4a for a simply
supported, clamped annulus; »=1/3. (After ref.
2.42)

A more comprehensive set of results is given in table 2.24 (see ref. 2.46).
TaBLE 2.24.—Frequency Parameters wa%/p/D for a Simply Supported, Clamped Annular Plate

watyp/D for values of b/a of— o
T on s | “ . b
i 0.1 0.3 0.5 0.7 0.9
0 0 17.8 29. 9 59. 8 168 1535
1 0 19.0 31. 4 B8L.0 170 1536
2 0 26. 8 36. 2 64. 6 172 1538
3 0 40. 0 45. 4 71.0 177 1541
0 1 60. 1 100 198 552 4989
1 1 62. 8 102 200 553 4989
2 1 747 109 205 557 4992
3 1 95. 3 120 211 563 4997

2.2.5 Annular Plates Simply Supported on Both Edges v
The case of annular plates simply supported on both edges is not discussed in reference 2.6.
Eigenvalues from reference 2.42 are given in table 2.25 and figure 2.18.

TaBLE 2.25.—Values of \*=wa?/p/D for an Annular Plate Simply Supported on Both Edges; v=1/3

A2 for values of b/a of—
n
0.1 0.2 i 0.3 ‘ 0.4 ‘ 0.5 ‘ 0.6 I 0.7
Q5 i SRS AR SRR 14. 44 17. 39 2131 28. 25 40. 01 62. 09 110. 67
b RS 16. 77 19: 19 |Locewausss 30.00 |ooooooo-—o 62.41 |-
2 e e 25. 97 27 86 |- msssssnns 36.14 | ..--- 68 41 | aeeae




[image: image32.jpg]26 VIBRATION OF PLATES

A more comprehensive set of results is given in table 2.26 (see ref. 2.46).

TaBLE 2.26.—Frequency Parameters wa%\/p/D for a Simply Supported, Simply Supported Annular
Plate

wa?Vp/D for values of b/a of—
n s
0.1 0.3 0.5 0.7 0.9
0 0 14.5 21. 1 40.0 110 988
1 0 16. 7 23.3 41. 8 112 988
2 0 25.9 30.2 47.1 1" 116 993
3 0 40. 0 42.0 56. 0 122 998
0 1 51. 7 81. 8 159 439 3948
1 1 56. 5 84.6 161 441 3948
2 1 71.7 933 167 444 3952
3 1 94. 7 108 177 453 3958

Theoretical and experimental results for  shapes in reference 2.48. Additional informa-
0=b/a<0.5 are given for the first three mode  tion appears in table 2.16.

2.2.6 Annular Plates Simply Supported on Outside and Free on Inside
The frequency determinants for n=0, 1, and 2 taken from reference 2.45 are as follows: ,,

For n=0,

JoN) Yo(d) 1o(N) BN
—dJ1(d) - LN+ALM =K, (\)+AK () a
Ji(aN) A e A\ —Ei(a)
~Jo(a)  —Yo(ad)  IfaN—BL(a))  Kyleh)+BE(ed)
where
For n=1,
Jo\) Yo(A) 1N —ELM) — Ko\ —EK,(\)
Ji(N) i L) K\
—Ji@)  =Yi(ad)  Clo(aN+DL(ad)  —CKo(e)+DKi(a))|
BARN Yolad)  Bly(aN4+AL(ad)  —BEo(ah)+AK,(ad)
where
a=-S Bt o=-E2) pog i) g B
For n=2,
Ry T EL(MN—FI,0) —EK,(\)— FKo(N)
JoN TN GL(N—EI(N —GE,(\) —EK,(N)

Jo(@d)  TYolad)  A*I(ed)—B*L(a))  A*Ky(a))+B*K(a))|
Ji@)  Yi(a) CIy(a\) —DI(a)) CEo(aN) +DEK;(a))
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where 3+, oA 34v , a 48(1—v)
v v "y 43(1—vp)ar

A*=1-AC B*=B—AD A=—S-+3 BS54 Cepp_y_ay
1201 —n)[(T+»)+ (aA)]—(e)* 55—y 2\ _ 43—y
D= = y— @) E=i—, =i S
Eigenvalues from reference 2.42 are given in table 2.27 and figure 2.19. Values for b/a=0
are also given in section 2.1.3. Additional information appears in table 2.16. A more compre-
hensive set of results is given in table 2.28 (from ref. 2.46). i

TABLE 2.27.—Values of N2=way/p/D for a Simply Supported, Free Annulus; v=1/3

M for values of b/a of—
n
0 l 0.1 1 0.2 0.3 ! 0.4 0.5 0.6 0.7 T 0.8 0.9
1 R | S 4. 933 4. 726 4. 654 4. 752 5. 040 5. 664 6. 864 9. 431 17. 81
) U 13.93 | 13. 91 12. 60 |.nvvwaws 11. 66 |oaoo---- 120 27 |oceeeaee 1. 05 |asasscecs
D S 25. 65 l 25. 43 2497 |uceosmen 23.09 oo 2220 |- 29.92 |______..

TaBLE 2.28.—Frequency Parameters wa%/p/D for a Simply Supported, Free Annular Plate

n 5 waty p/D for values of b/a of—
0.1 0.3 0.5 0.7 0.9
0 0 4 86 4. 66 5. 07 6.93 | - 17.7
1 0 13.9 12. 8 11. 6 0133 20.7 o
2 0 25. 4 24.1 . 22.3 - 243 . 3 N SESEL T ey
3 0 40. 0 38. 8 35. 7 37.2 745 :
0 1 29. 4 37.0 65. 8 175 1550
1 1 48. 0 45. 8 69. 9 178 1553
2 1 69. 2 65. 1 81. 1 185 1558
0 2 74. 8 107 203 558 5004

8 / 7
/
Y. /
V4
7 7 ! = /
A i 1]
b
& / s /’ II’,l'
|2 / === e I/."
T =1 LY
i / / ’ / R = .
"0 I'-"—‘{ S — I
4 = s . n=i 2=0
- =
s P |t
[*] 0. 0.2 0.3 0.4 0.5 0.6 07 0.8 20 Q.i 02 03 04 05 06 O7 08 09 1.0
2 '}
a c

FIGURE 2.18.—Values of A= (pw3/D)/4a for a simply sup-  FiGURE 2.19.—Values of A= (pw?/D)!/%a for a simply
ported, simply supported annulus; »=1/3. (After supported, free annulus; »=1/3. (After ref. 2.42)
ref. 2.42) '
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2.2.7 Annular Plates Free on Outside and Clamped on Inside

The frequency determinants for n=0, 1, 2 taken from reference 2.6 are as follows:

For n=0,
TN T I+ Ere) —gm- g0
S0 T.0) L(x) —Klm —o
Jo@)  Toed) Io(e) Ko(oh)
Ji@) T —I,(aM) Ky(a))
For n=1, ‘
[T0) T ARM-BLOY  —E— 2L k)
J0) T L) K0 g
J@)  Tolad) Io(e) Ko(oh)
WA Yi(er) (o) K,(or)
where
1+4(1 v) B=8(1):3—v)
For n=2, . .
JN) T\ (1—4ABNLMW—DLQ)  (1—44ABNE,N+DE()
S0 T 4B (\)— CL(\) 4BAE,(\)+CK;(\) .
@) Fa@)  —Lfe)+ 5 ) —Kofed)— = K (@)
Ji(@d)  Fied) L) —Ki) - |
where
_}__3+v 12(1—») _12(1—p)(74r42H)—2" A 3+v :
4 2\ B= 12(1—p?)—2* G 12(1—»%)—2\* D= + —4C

Eigenvalues from reference 2.42 are given in table 2.29 and figure 2.20.

Accurate values for

b/a=0 are given in the section entitled “Plates Clamped at Center With Various Conditions

on Contour” (2.1.6).

TaBLe 2.29.—Values of N*=wa®y/p/D for a Free, Clamped Annulus; v=1/3

¢
o

A2 for values of b/a of—

TN
ey ” 0.1 02 0.3 04 0.5 l 0.6 0.7 0.8
 I——— 4235 | 5244| 673 7036 13.05 [ 20.63| 3660 8L 45
3.482 | 4814 [ _________ 9.096 ._____.___ 20.93 | oo 45. 09
A 5499 |  6.345 | __ 7 1037 |-C-1IT0TC - e— 67. 65
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A more comprehensive set of results is given in table 2.30 (see ref. 2.46).
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TABLE 2.30.—Frequency Parameters wa~/p/D for a Free, Clamped Annular Plate

wa*yp]D for values of b/a of—
n 8
0.1 0.3 0.5 0.7 0.9
1 0 3. 14 6. 33 13. 3 37.5 345
0 0 4. 23 6. 66 13.0 37.0 51.5
2 0 5. 62 7. 96 14.7 39.3 347
3 0 12. 4 13. 27 18. 5 42. 6 352
0 1 25.3 42. 6 85. 1 239 970
1 1 27.3 44. 6 86.7 241 2189
2 1 37.0 50.9 91. 7 246 2194
3 1 53.2 62. 1 100 253 2200

Additional data for this case are available from the work of Southwell (ref. 2.37), who saved
considerable effort in computation of the Bessel functions by assuming arguments of A and then
finding the b/a ratios to which these correspond. These additional data are presented in table 2.31
for »=0.3. Results appear also in table 2.16. This problem was also discussed in reference 2.15.

TaBLE 2.31.—Additional Values of \*=wa®/p/D for a Free, Clamped Annulus; v=0.3

n=0 n=1 n=2 n=3
bla a bla » bla b bfa A
0. 276 6. 25 0. 060 2. 82 0. 186 6. 25 0. 43 16. 0

. 642 25.0 . 397 9. 00 . 349 9. 00 . 59 25

. 840 81. 0 . 603 212 ~522 16. 0 .71 49

PR e TSRS . 634 25.0 . 769 64. 0 .82 100
....................... JT71 64. 0 .81 100 e R e e
_______________________ . 827 121. 0 e | A S e A S R S

2.2.8 Annular Plates Free on Outside and Simply Supported on Inside

The case of annular plates free on the outside and simply supported on the inside is not discussed
in reference 2.6. Eigenvalues from reference 2.42 are given in table 2.32 and figure 2.21. Additional
information appears in table 2.16.

TaBLE 2.32.—Values of N*=wa?/p/D for a Free, Simply Supported Annulus; v=1/3

2\ for values of b/a of—

n
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ot i s 3.516 | 3.312 | 3.378 | 3.610| 4060 4.951| 6.101 | 8779 | 1892
e o 2.403 | 2.816 |._______ 3.940 |._______ 6.027 |. .. 12,55 |ocooeeen
B 5313 | 5513 | _______ 6.620 |._______ 9.653 |_____._. 19.95 oo
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Ficure 2.20.—Values of A= (pw?/D)/4a for a free,
clamped annulus; »=1/3. (After ref. 2.42)

supported annulus; »=1/3. (After ref. 2.42)

A more comprehensive set of results is given in table 2.33 (see ref. 2.46).

TABLE 2.33.—Freguency Parameters wa%/p/D for

a Free, Simply Supported Annular Plate "
wa?Vp/D for values of b/a of—
. n & . . —

) T "] 01| 03 | o5 0.7 09 e 1

1 0 2.30 3.32 4.86 8.34 25.9 <

0 0 3.45 3.42 4.11 6.18 17.2

2 0 5.42 6. 08 7.98 13.4 42. 6

3 01 12.4 12. 6 14.0 20.5 61.4

0 11208 31.6 61.0 170 1535

1 1| 24.1 34.5 63.3 172 1536

2 1| 35.8 43.0 69.7 177 1541

3 1530 56.7 80.3 185 1548

2.2.9 Annular Plates Free on Both Edges

The frequency determinants for n=0, 1, and 2 taken from reference 2.6 for annular plates free
on both edges are as follows:

For n=0,
Jo(A) Yo(n) — I\ +ALK) —Ko(\)—AK,(N)
Ji(A) Yi()) Li(x) —Ki(»)
@)  Tolad) —Io@N+BlL(ad)  —Ko(a)—BEi(aN)|
J1(aN) Yi(a)) Ii(a)) — K (a))
* where

_2(1—») _2(1—»)
A=—5— B==5—
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For n=1,
T TN (—-1-{-%11) LV—AI0) ~(—14+34) B—- 4K ()
JM T Fanm-(1+54)50) S ar0—(1+454) K
Tl Vo) (—1+% B)ah)—BL(@) —(—14+% B) Ku(ah)—BEA(a)) =
S v GLBI@~(1+5 B) L@ [—(—"‘-;‘lz BEy)—(1+% B) K,(ak)]

where
_8(1—v) _8(1—;:)
A-__P B= ()
For n=2,
Jo(M) Yo(d) AI,(N)—BILi(N) AK(\)+BK,(3)
Ji(A) Yi(» CI,(\)—DI,(N) CK,(\) +DK,(») _
Jo(a)) Yo(ad) A*Ig(ar)—B*I,(a)) A*K(aX) +-B*K (ar)
Ji(aN) Yi(a)) C*Iy(aX)—D*I,(aN) C*Ky(a\) +D*K (a))
where
_ 3+v N, 3ty 3+» __ 48(1—w)A
A= C i Q )D 0“12(1—-y’)—x
‘_‘_12(1-—1&) (7+»+2%)—2t e @_34-10) oA | 3+v (oA 347\
D=5 =175 B*=7ta 7 2)?" .
o* 48 (1—») (a}) Dé— 120 =) [7T4+v+ (ar)?]—(ar)*
T12(1—p?)— () 12(1—")—(N)*
Eigenvalues from reference 2.42 are given in 10 T T
table 2.34 for the lowest root of n=2. The 1 b / J
lowest roots of n=0 and n=1 are rigid body = /
translation and rotation modes, respectively. 8 don
Other eigenvalues are plotted in figure 2.22 as ﬂ[y / / /
taken from reference 2.6. Labels near the 7 /°’
ordinate identify roots for b/a=0 given in the
section entitled ‘“Completely Free Plates” e / /
(2.1.3). xS Jr A /
4-5;0'-?4\"\ s=i,n=l ,//
Y o
3 sxO,'Lg\‘ '/ o
|
0

0 0l 02 03 04 05 06 07 08 03 10
b
a

FIGURE 2.22.—Values of A= (pw?/D)/4q for a free, free
annulus; »=1/3. (After ref. 2.6)
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TaBLE 2.34.—Values of N=wa’/p/D for an Annular Plate Free on Both Edges; v=1/3

A for values of bja of—

0.1 0.2 0.3

0.4 0.5 0.6 0.7 0.8 0.9

5. 203 5. 053 4. 822

4.567 | 4.203 | 3.865 | 3.519 3. 200 2. 890

TaBLE 2.35.—Frequency Parameters wa%/p/D
for a Free, Free Annular Plate.

wa?Vp/D for values of bja of—

n 8
0.1 0.3 0.5 0.7 0.9

2 0| 530 4.91 ] 4.28 3.57 2.94
3 0 12.4 |12.26 | 11.4 9. 86 8.14
0 1 8.77 | 836 | 9.32 13.2 34.9
1 11205 18.3 | 17.2 22.0 55.7
2 1349 |330 |311 37.8 93.8
3 1753.0 |51.0 | 47.4 55.7 135

0 2382 |50.4 |92.3 | 251 2238

1 2|59.0 |58.8 |96.3 |253 |2240

A more comprehensive set of results is given in
table 2.35 (see ref. 2.46). 7

2.2.10 Annular Plates Clamped on Outside With
Rigid Mass on Inside

Considering only axisymmetric vibrations

the boundary conditions for annular plates

clamped on the outside with a rigid mass on the
inside (fig. 2.23) are

w(a,0, =32 (0,0, 1)=32 (b, 0, £)=0

(2.37)
%JK&@Q=M%¥&&0
N b |
y 77777 R
1 R
h
¢

FIGURE 2.23.—Annular plate clamped on outside, rigid
mass on inside.

where M is the total mass of the rigid insert. In
the general case the condition of zero slope at
the junction with the rigid mass would be
replaced by an equation of motion relating the
integral of the components of torque along the
edge r=>0 about a diametral axis to the product
of the mass moment of inertia and the rotational
acceleration about the axis.

Letting =0 in equation (1.18) and substi-
tuting into equation (2.37) result in & fourth-
order frequency determinant. Expanding this
by making use of the recursion formulas for
derivatives of Bessel functions yields a char-
acteristic equation which was given by
Handelman and Cohen (ref. 2.49):

(o) L) +J1 (N TN {4NY: (Ae)
+ad*[Y1(3) Ko(ha) — Ki(Ae) Yo (A)1})
+ ([JoMW Ey(N) — Ko 1N 4N (M) V1 (M)
—aNy[1i(A2) Yo(Aa) + To(Aa) Y1 (A)]})
+ (XN L)+ TN M (V) K ()
+ Xy [J1(A) Ko(ha) — Ky (Aa)Jo(Aa)]})
+ (TN K () — KoM Y1 (V)
(=T i(Ae) I, (Aa) +ar2y[1(Aa) Ip(Aex)

+ L) o(A)])) =27

*

(2.38)

where
A= (w?p/D)*a (2.39)
and
a=bla  y=p'lp

where p’ is the mass per unit area of the rigid,
inner mass.

Equation (2.38) was solved for the funda-
mental root A for two values of @ and y=2 and
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10. These results are shown as small circles « ,2.5. Carmineron, H.: The Frequencies of Vibration
in figure 2.24. Because of the complexity of of Flat Circular Plates Fixed at the Cir-
equation (2.38) its numerical evaluation was ;‘;’_’“f;gfffg;m Magy wek 89 oo 6 1925’/
limited in reference 2.49 and, in its place, & ~.; 36 GonrxEvicm, V. S.: Natural Vibrations of =
minimal principle was used to obtain approxi- Plates and Shells. A. P. Filippov, ed., Nauk.
mate eigenvalues which are upper bounds. Dumka (Kiev), 1964. (Transl. by Lockheed

Missiles & Space Co. (Sunnyvale, Calif.).)

ear in fi 2.24. »
These results appear as curves in figure 2.7l Rmb, W. P.: Free Vibrations of a Circular:

In figure 2.24 it is seen that for high mass- Plate. J. Soc. Ind. Appl. Math,, vol. 10,
density ratio v there exists a ratio of radii « no. 4, Dec. 1962, pp. 668-674.
for which the frequency is identical to that for 2.8. UnGar, E. E.: Maximum Stresses in Beams
the clamped solid circular plate without central and Plates Vibrating at Resonance. Trans.
mass. The critical values of ¥ for which this ﬁsg‘[gg 4. Eog. Ind., val, B4B; Feb. 1097, p0:
occurs are shown in figure 2.25 as a function 2.9. Nowackr, W.: Dynamics of Elastic Systems.
of a (see ref. 2.49). Jobn Wiley & Sons, Inc., 1963.
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