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The elliptical boundary will be taken to be
one of the confocal ellipses of an elliptical co-
ordinate system. The semimajor and semi-
minor axes of the ellipse will be taken as ¢ and
b, respectively (see fig. 3.1). The eccentricity
¢ of the ellipse is related to ¢ and b by

e=+1—(b/a)? (3.1)

For a mode shape having symmetry with
respect to both axes of the ellipse (m even) or
with respect to the minor axis (m odd), equation
(1.27) reduces to

o

W=33 [CaCen(t, dYoen(n, 0
+C3Cen(t,—cen(n,—0)] (3:2)

For mode shapes which are antisymmetric
about both axes (m even) or with respect to the
major axis of the ellipse (m odd), equation
(1.27) reduces to

W=§1[sm8em(s, Q)sen(n, q)
+SnSen(£,—q)sem(n,— )] (3.3)

y

b

Ficure 3.1.—Elliptical plate.

Chapter 3

3.1 CLAMPED PLATES

When equation (3.2) is used and the condi-
tions of zero deflection and slope around the
boundary are applied, a characteristic de-
terminant of unbounded order is obtained.
Shibaoka (ref. 3.1) solved the problem of
clamped elliptical plates by beginning with the
element in the upper left-hand corner and tak-
ing & series of finite determinants containing
that element. Assuccessive determinants were
taken, convergence to a lowest root was es-
tablished. Table 3.1 shows the fundamental
roots obtained for three values of a/b and
corresponding eccentricities. The convergence
is slower for large values of afb. Only third-
order determinants were requiréd to establish
the convergence to the number of figures givan
for a/b=1.25 and 2.00, but a fourth-order
determinant was required for a/b=3.00.

TaBLE 3.1.—Values of MN=walyp/D for a

Clamped Elliptical Plate
afb P M=wa?yp/D
1.25 0. 600 13.1
200 o v s s . 866 27.5
300 . . 943 56.9

In reference 3.1 an expansion formula is also
derived for elliptical plates of small eccentricity.
It is

A=(pw?D) *a=3.1961+0.7991*4-0.7892¢*
(3.4)

where 3.1961 is the fundamental eigenvalue for
a clamped circular plate of radius a.
The problem was also solved by using the
Rayleigh technique (ref. 3.1). A function
37
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W=Wo(1—§—%z (3.5)

was chosen to satisfy the boundary conditions
exactly. The Rayleigh quotient gives the
approximate frequency formula

w=§\/40[1+§<%>2+(%>4](D/p) (3.6)

The Galerkin method and a two-term de-
flection function

W_A,( ?/2—1) +A2< 2+b2 1) 3.7)

were also used to solve the problem (ref. 3.2).
By use of equation (3.7), the eigenvalues are
found to be

§=pw';’a‘/D=39.218[1+§(%)2+(%>4] (3.8)
and

)é:paga‘/D=l29.18[1+§(%>2+<%>4] (3.9)

Values of A? from equation (3.8) for various
ratios of a/b are given in table 3.2.

TABLE 3.2.—Approzimate Values of \2=wa?v, »/D
for a Clamped Elliptical Plate

afb Y]

1.0 oo 10. 217
Y e 11. 314
D R 12. 566
B st m i e ————— i e i 17. 025
2.0 e 27. 746
8.0 e 58. 693
5.0 e 158. 85

VIBRATION OF PLATES

Comparing equations (3.8) and (3.6) with table
3.1, it is seen that equation (3.8) gives results
only slightly more accurate than those of equa-
tion (3.6) and the ratio of frequencies obtained
from equations (3.6) and (3.8) does not vary
with a/b.

In reference 3.3 the differential equation
(eq. (1.4)) expressed ir terms of elliptical co-
ordinates (eq. (1.20)) is transformed into a
form yielding & solution in “epicycloidal tran-
scendental functions.” The characteristic de-
terminant for the clamped case is presented,
but not evaluated.

In reference 3.4 & minimal energy method is
used with a deflection function of the form

W(r,0)=(1—p*) A+ A1p*+ Asp*+ (Asp*+ Aip*)
cos 26+ Asp* cos46]  (3.10)

where p and 6 are related to rectangular co-
ordinates by the parametric equations

=p cosé T
b (3.11)
y=_psin 6

to obtain fundamental frequency parameters.
Results are given in table 3.3.

The problem was also formulated in terms of
Mathieu functions and discussed in reference
3.5. Itis also discussed in reference 3.6.

3.2 FREE PLATES

Experimental results for free elliptical brass
plates having a/b ratios of 2 and 1.25 were ob-
tained by Waller (ref. 3.7). Table 3.4 gives
ratios of frequencies for a/b=1.98 relative to
the fundamental frequency. The fundamental
frequency upon which the table is based is
given in reference 3.7 as 438 cycles per second

TaBLE 3.3.—Approzimate Frequency Parameters N*= waX/p/D for a Clamped Elliptical Plate

bla 1.0 0.9 0.8 0.7

0.6 0.5 0.4 0.3 0.2 0.1

10. 216 | 11. 443 | 13. 229 | 15. 928

20. 195 | 27. 378 | 40. 649 | 69. 163 | 149.89 | 583. 10
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TABLE 3.4.—Ezperimentally Determined Rela-  TaBLE 3.5.—Ezperimentally Determined Rela-

twe Frequencies for a Free Elliptical Brass
Plate; afb=1.98

tive Frequencies for a Free Elliptical Brass
Plate; a/b=1.2/

Frequency for value of n of— Frequency for value of n of—
8 3
0 1 2 3 4 5 6 0 1 2 3 4 5 6 7

1 S I I, 1 2.58 147 7.3 10 L1 20 (S R, 1 2.45 [4.28 16.66 9.39 | 13

) S S, 1.77 1 3.27 | 5.68 | 8.29 | 11 S b S P 1.07 | 2.59 | 4.34 6.8 19.6 |____._ —

2....14.25 1 6.57 | 9.43 |12.6 |______|______ - 2.1 2.0313.99{6.71 |10 | ____|oca_]ooeo- et

8.-_-010.6 (14 | ool I 3..| 4.42 | 7.41 |10.7 14 . _|eooofeeea- —

4____i17 22 e T 4.1 9.0 (12 e fem ] -
70 b U: S (SRR FRUNIUUIUN FRIUNURP FUSRU SN BN ———

for a brass plate with a major axis of 4.99

inches, & minor axis of 2.52 inches, and a thick-

: ' REFERENCES

ness of 0.0638 inch. The mode indicators s
and n indicate the number of nodal lines run-
ning approximately in the directions of the
major and minor axes, respectively. This is
illustrated in figure 3.2, where node patterns
corresponding to some of the frequencies in
table 3.4 are shown.

Frequency ratios for a/b=1.24 are given in
table 3.5. The fundamental frequency for a
brass plate having a major axis of 4.96 inches,
& minor axis of 4.00 inches, and a thickness of
0.0638 inch was found (ref. 3.7) to be 414 cps.

This problem is also discussed in reference
3.8.

s

00k
£16]8)

|
&

Ficure 3.2.—Nodal lines for a free elliptical brass
plate with a/b=1.98. (After ref. 3.7)
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Altogether there are 21 combinations of
simple boundary conditions (i.e., either clamped
(C), simply supported (SS), or free (F)) for
rectangular plates. Frequency parameters are
expressed in terms of wa®/p/D, where @ is a
length dimension, and do not depend upon
Poisson’s ratio unless at least one of the edges
of the plate is free. However, because D
contains », the frequencies themselves depend
upon » for all cases.

Warburton (ref. 4.1) presented the first com-
prehensive collection of solutions for rectangular
plates. He used the Rayleigh method with
deflection functions as the product of beam
functions; that is,

W(z,y)=X(2)Y(y) (4.1)

where X(z) and Y(y) are chosen as the funda-
mental mode shapes of beams having the
boundary conditions of the plate. This choice
of functions then exactly satisfies all boundary
conditions for the plate, except in the case of
the free edge, where the shear condition is
approximately satisfied. The six possible dis-
tinct sets of boundary conditions along the
edges x=0 and z=a are satisfied by the
following mode shapes:

(a) Simply Supported at 2=0 and z=a:

X@)=sin PTU (534, @2
%) C}g.mped at z=0 and z=aqa
ermson (e o
(m=2,4,6,...) (4.3)

where the values of v, are obtained as roots of
tan (y1/2)+tanh (v,/2)=0 (4.4)

308-337 0—70———4

Chapter 4

and
o z 1 sin (y4f2) .
X(")—s‘n”(a‘—i ~Smh (yg2) SRb 72 a z
(mn=3,5,7,...) (4.5)

where the values of v, are obtained as roots of

tan (vz/2)—tanh (y,/2)=0 (4.6)
() Free at 2=0 and z=a:
X(x)=1 (m=0) 4.7)
X@)=1-2  (m=1) (4.8)
z 1 sin (v,/2) z 1
X(a)=o0sm(3=5)—ioh oy oo (53
(m=2,4,6,...) (4.9)
and 4t
. 5111(‘)’2/2)
X(x)=sm7”<a )+smh(7z/2) (
(m=3,5,7,...) (4.10)

with v, and v; as defined in equations (4.4)
and (4.6).
(d) Clamped at z=0 and Free at z=a:

X(z)—-cos— cos hyf
+<Sm73—smh73><sin‘%f—sinh1§>

cos 73—cosh ¥s
) (4.11)

(m=1 2,3,..
\__\ e
€os 3 cosh 73= ] (4.12)

where

(e) Cla.mpgdﬂg.‘pﬂ =0 and Simply Supported
at z=a:

sin (v»/2)
X(z)=sin, (2(1—— " sinh (y2/2)
sinhﬁ(%—z—E) (m=2,3,4,-+-) (4.13)
41

P
e+ o

(1, b {)uif‘!



[image: image5.jpg]42 VIBRATION OF PLATES

with v, as defined in equation (4.6).
(f) Free at z=0 and Simply Supported
at z=a:

X(x)=1——§: (m=1) (4.14)
- z 1 sin (v./2)
X(x)"sm"’<2a 2>+sinh )
sinhw(%—% (m=2,3,4,-+-) (4.15)

with v, as defined in equation (4.6).

The functions ¥Y(y) are similarly chosen by
the conditions at y=0 and y=ea by replacing
z by y, a by b, and m by 7 in equations (4.2) to
(4.15). The indicators n and m are seen to be
the number of nodal lines lying in the z- and
y-directions, respectively, including the bound-

aries as nodal lines, except when the boundary
is free.
The frequency o is given by reference 4.1 as

+2<%)2 H H,~+(1 ‘—")JzJu]} (4.16)

where @,, H,, and J, are functions determined
from table 4.1 according to the conditions at
z=0 and z=a.

The quantities @,, H,, and J, are obtained
from table 4.1 by replacing z by ¥ and m by n.

Another comprehensive set of solutions was
later given by Janich (ref. 4.2). Fundamental
frequencies were obtained for 18 combinations
of boundary conditions. He, too, used the

TABLE 4.1.—Frequency Coefficients in Equation (4.16)

Boundary
conditions at— m G= H. Js
Do | L N (=17 i
Ce_ I 2 1. 506 1. 248 1. 248
2 2
1 2 1 2
LSRRI 8,45 ... | m—j (’"— 5) [1—( 1) :, ("‘—E) [1"( ) ]
“ m—= jr m—g 7
2
P 0 0 0 0
1 0 0 12/n?
2 1. 506 1. 248 5.017
1 2 - 2
Fbo e 3,4, 5 ... m'_§ (m— %) ( ) (m— %) 1+< L ) T
m—z m—3 )=
C® e _3 s\ 7 s\'T 1T
SSb_ . } 2, 3,4, . .. m i (m"' Z) ( > <m“ Z) 1 ( )
m—— m—-= |7
i i
) O 1 0 3/
2 - 3[‘
§Sb_ . 2,34, ... - _38 1 _3
" ( 4) D) ("‘ ) (,,,_ )
L Yyl L T
os 1 0. 597 —0. 0870 0. 471
----------------- 2 1. 404 1. 347 3. 284
1 ¥ : 2
Fboom e 3,45 ... | m—j (m )’: (m— %) 1+ T
(m--) (m-3)
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Rayleigh method, but used simple trigono-
metric functions which satisfied only the geo-
metric boundary conditions. The mode shapes
used in reference 4.2 are given in table 4.2.
The frequency w is given in reference 4.2 for
v=0.25 by
. mDK

——E N (4.17)
with K and N given in table 4.2.

The results of references 4.1 and 4.2 are both
obtained by the Rayleigh method and, hence,
yield upper bounds on the frequency values.
However, it must be pointed out that both sets
of results have limitations in accuracy. The
three cases not included in table 4.2 (F~F-F-F,

SS-F-F-F, and SS-SS-F-F) yield such poor
results with mode shapes of the same type that
they were not included in reference 4.2. The
force-type boundary conditions as well as the
geometric are satisfied in reference 4.1; this
usually improves the accuracy of the solution,
but occastonally makes it worse. The results
determined from table 4.1 will decrease in
accuracy for higher mode shapes (increasing
values of m and n).

A partial summary of vibration frequencies
for rectangular plates was given in reference 4.3.

41 SS-S5-SS-SS

The problem of plates with all sides SS is the
most simple to solve for the rectangular plate.

TaBLE 4.2.—Frequency Coefficients for Equation (4.17) and Different Mode Shapes; v=0.25

Boundary conditions Deflection function or mode shape N K
L LLLLLd,
/ A 2 4
/ a 4 (cos ——-1)(00& = ) 2.25 124-8 (2) +12 (9)
TTTIV. b b
LLL Lzt
j il b ! o' :
1..4a 1 (cos ———C08 — )(cos ——-—1) 1.50 3.85+5 (5> +8 (—) T
777777 b b
Ll LLLS
: 2 4
4 (1—cos ’—'—"’)(coe vy .340 | 0.0468+0.340 (‘3) +1.814 (9>
77777 2a . b b
————y
4 27z Ty a\’ a\'
/ (cos —a——1) sin ¥ 75 | 442 (3) +0.75 (5)
a 2.
(cos —-—-1) 3 .50 2.67+0.304 (E)
/
Y
/] g
cos 2—1"—:':—1 1.50 8
a
==
; I 3rz 3xy Ty a\’ a\*
y, T—— (cos 32— c0s 22 )(cos L—cos T¥) | 1.00 | 256+3.2 (}) +256 ()
T
? ' 3rz z Yy a\ a\*
| O o8 T2V 1—cos ™Y a o
% rrrrs ((oos = —cos 32 )(1~cos 32 ) 227 | 0.881+0213 (3) +0.031 ($)
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Boundary conditions Deflection function or mode shape N K
y <l—cos ﬂ)(l—cos = 0.0514 | 0.0071+40.024 (‘-‘)2
o 2a 2b 3
4
+0.0071 (‘g)
-7 3rz Tz Y a\’ a\*
] (‘o8 3= —cos 3% sin 2 50 | 1284125 (§)+0.50 (§)
| o\’
1 (cos 2 —cos -—) v .333 | 0.853--0.190 <3>
4 : 3
y oFT_ con X8
y 1 Co8 —5—-— 08 o 1.00 2.56
a 2
(l—cos ) 5 sin 2L .1134 | 0.0156--0.0852 (3>
i 4
+0.1134 (5)
A a 2
y IS (1-cos— y .0756 | 0.0104--0.0190 (z) .
A
/
/ 1—cos 2= .2268 | 0.0313
2a
] 2 .
i TT gin 7Y 9) (e)
L_ 1 sin % sin 2} 25 | 0.2540.50 (b +0.25 (2
| |‘ z\ ¥ a :
o ke
¢ | (sm7 y .1667 | 0.1667-+0.0760 (E)
! | . 7T
i i gin =2 .50 | 0.50
a
The boundary conditions are satisfies the boundary conditions, where A, is
_ an amplitude coefficient determined from the
w=0,M,=0 (for z=0, a) L (a18) initial conditions of the problem and m and n
w=0,M,=0  (fory=0,b) are integers. Substituting equation (4.19) into

When equations (1.29) are used it is seen that

Wan=Ampn Sm— sin

nwy

b

(4.19)

equation (1.4) gives the frequency

=[]

(4.20)
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A plot of four frequency parameters as s func-
tion of the bja ratio was made by Vet (ref. 4.4)

45

snd is shown in figure 4.1. i \ N
N \
- T AT
7z
e
B i
¥ e L

Frovss 4.1.—Frequency parameter 090u3/D for
55-55-55-58 rectangular plate.  (Afte re. 4.0)

Tho nodo lines for a general roctangle aro
simply straight lines paralll to the edges s
shown in figure 42. For square plates, how-
over, two mode shapes may bave the same
frequency and exist simoltaneously, their rela-
tive amplitudes depending upon the initin con-
ditions.  Sequences of nodal patterns obtain-
able for a given frequency are shown for three
cases from reference 4.3 in figure 43. The
problem was also solved in reference 4.6 by
saplacing the plate by an assemblage of beams
and concentrated masses.

Fiovns 43, —Combinad nodal patterns for 3 S8

“quare plato. (Afier vt 45)

lem (eq. (14)), aro exactly sacisfed by using

the first half of equation (1.87) with

that is,

Wi, )= 3 (A sin By

e
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42 TWO OPPOSITE SIDES S5

Thers ate six combinations of boundary con-
{5 for which o opposite sides are SS.
One of these (for the plate with ull sides S
which has a simple, exact solution) has already
been discussed. The remaining five cases also
have exact (although more difficult) solutions.
When the edges 2=0 and z=a are S5, it is
seen that the conditions 4t these bonndarie,
s vell as the difforential equation of the prob

+ B cosyF—y+Casinh By
+Dn coshVFF@ylsinaz (4.21)

Applying the remaining four homogeneous
boundary conditions results in  sot of fourth-
order characteristic determinants, one for each
valuoof a. Each determinant has an infinity
of solutions for the eigenvalues k. Any of the
four odgs being froa i & necessary and sufi-
cient condition for the frequency paramter o
depend upon Poisson's ratio.

The fist straightforvard, comprehensive
solution of these fve cases by the method out-
lined above was given by Fletcher, Woodield,
and Larsen in reference 4.7 and in reference 4.
In reference 4.7 an excallent analysis is made of
the conditions which lead to K<’ requiring
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that sin vF—a% and cos \/k*—a2y be replaced
in equation (1.36) by sinh &—k? and cosh
vJo?—k2y, respectively. They formulated the
characteristic determinants and solved for the
eigenfunctions for all five cases and published
the first six frequencies of a square plate in each
case.

Iguchi (ref. 4.9) solved the problems involving
one edge C and the opposite either C or SS and
presented extensive numerical results for them.
Das (ref. 4.10) formulated characteristic equa-
tions and eigenfunctions for the two cases of
opposite edges either F or C. Pertinent dis-
cussion can also be found in reference 4.11.

It has been shown (e.g., refs. 4.9 and 4.12)
that a useful analogy exists between the vibra-
tion and buckling of rectangular plates having
two opposite sides SS. The deflection of a
rectangular plate loaded by compressive inplane
forces is given by (see the appendix)

o*w
~Nae
where N,=N,(z,y) and N, are compreséive
forces per unit length acting in the z- and y-
directions, respectively, and N,, is the inplane

shearing force per unit length Taking the case
Ny=N,=0 and assuming that w(, y)=

2 Y o (y) sin mTﬂ (where m=1, 2, ...) satisfy
m

the SS boundary conditions at z=0 and z=a
and reduce equation (4.22) to the two homo-
eeneous equations

d;‘*'};—;n"l'(a-\/-]%—az) Yo =0

&y, N,
& 2"<"‘\/%+“}> L=l

where a=m=/a, as before. When equations
(4.23) are compared with equations (1.34), it is
seen that the solution for buckling also solves
the vibration problem if N,a?/D is replaced by

Dviw=—N, = LATES . & (4.22)

"bb

(4.23)

y y

a/2
L LLLLLLLL L L L b L L L L L L L Ll

__...___........_......._..
-

i it e i s e e e
<}

Q
FLIS LI/ 77777

77777 X
F1cURE 4.4.—SS-C-SS-C plate.

pw*/D and the boundary conditions on the re-
maining two edges are the same. Thus the
critical buckling load N, gives vibration fre-

quencies according to
2

N~

o
421 SS-C-SS-C
Recognizing that the solution for SS-C-85-C
plates (fig. 4.4) given by equation (1. 37) must
be valid for all independent values of 2 and sub-
stituting into the boundary conditions

(4.24)

Wz, 0)— Dy (:c 0)=W(z, b)— By (x,

(4.25)
results in the four homogeneous equations
B, +D,=0 k
Ap+Crdo=0
Ay sin b+ B, cos Mb-+C,, sinh Agb
+D,, cosh Ab=0
A €0S Mb— By sin Ab -+ Cp); cosh Agb

+Ds sinh Asb=0 J
(4.26)

i 4

where

X]E ‘sz—az

(4.27)

For a nontrivial solution the determinant of the coefficients of equations (4.26) must vanish; that is,

0 1
AL 0
sin b cos A

A1 cos b —\; sin Asd

0 1
& o |
fiih b cosh ah |=° (4.28)
)\2 COSh >\2b Az smh )\gb
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TABLE 4.3.—PFirst 6 Frequency Parameters A\=wa’/p/D for 8S—0-SS-C Square Plate

28. 946 54.743

94. 584

69. 320 102. 213 ’ 129. 086

Moden o e e w1y wa1

@iz w3z

w31 1 w13

which, when expanded, yields the characteristic
equation

2\ Az (cos b cosh A0—1)

Iguchi (ref. 4.9) solved this problem in essen-
tially the same manner and obtained the first
six frequency parameters for the case of the
square. They are presented in table 4.3.

For the frequency wmn, the subscript m identifies
the number of half-sine waves in the z-direction
and the subscript n identifies the nth lowest root
for a fixed value of m. The results of table 4.3
are also verified in references 4.7 and 4.13.

TaBLE 4.4.—12 Higher Frequency Parameters
A=wa(y/p/D) (not a Complete Set) for SS-
C-SS-C Square- Plate

A Mode b Mode
140,189 . _______ wy || 307.300_._.__.__ w5
154.765__ . _____ wez 1] 333.926. _ .. ____ w5
199.797 . _______ wy || 379.274 . ______ w35
208.373_.__._._. wy || 425.885_ . _ . __. wie
234.578 .. ____._ wy || 452.877 . . o wsg
279.627 . _____.. wyy || 498.501. .. ____ wsp

In addition, reference 4.9 gives 12 more roots
as listed in table 4.4. It must be emphasized
that other frequencies exist (e.g., wy, we, and

ws;) which would separate some of the values in
table 4.4 if a complete, sequential list were
available. These can be obtained from the
work of Odman (ref. 4.13) who solved equation
(4.29) with less accuracy than did Iguchi but
extracted the first six roots for m=1,2,.. ., 6.
The corresponding frequency parameters are
listed in table 4.5.

Nishimura (ref. 4.14) achieved accurate results
for the square using relatively coarse finite dif-
ference grids. He obtained wa?/p/D=28.974
for the fundamental mode by solving only third-
order finite-difference determinants.

For nonsquare plates, fundamental frequen-
cies are available for various aspect ratios.
These are listed in table 4.6 (see also ref. 4.9).
Hamada (ref. 4.15) used a variational approach
and Kanazawa and Kawai (ref. 4.16) useld an

TABLE 4.5.—Frequency Parameters wa®/p/D for
SS-C-SS-C Square Plate

wa? ¥p/D for values of n of-—
m
1 2 3 4 5 6
... 28.9 69.2 1 129.1 | 208.6 | 307.4 | 426. 1
2....] 54.8 94.6 | 154.8 | 234.5 | 333.9 | 452. 9
3....1102.2 | 140.2 | 199.9 | 279.5 | 379.1 | 498. 4
4__..|170.3 | 206.6 | 265.2 | 344.6 | 443. 8 | 563. 5
5._._.]258.5 | 203.8 | 351.1 | 429.8 | 529.0 | 647. 9
6._._| 366.8 | 400.9 | 457.4 | 535.1 | 633. 7 | 752. 2
|

TABLE 4.6.—Fundamental Frequency Parameters for a SS-C-SS-C Rectangular Plate

A for values of b/a and M* for values of afb of—

Parameter
1 1.5 2 2.5 3 ©
A=W (Vp/D) - e 28. 946 17. 369 13. 688 12. 129 11. 359 9. 869
A* = b? (VoI D) - e 28. 946 24, 047 23. 814 23. 271 22. 985 22. 373
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TABLE 4.7.—Frequency Parameter wb*(y/p/D) for the Second Antisymmetric Mode of a S8-C-8S8-C
Rectangular Plate

Boundary conditions

wb?(Vp/D) for value of afb of—

1.5 2 2.5 3 ) ©

Ll il

68. 181

b~ b

g
77777

65. 118 63. 641 62. 967 62. 602 61. 178

integral formulation to obtain confirming results
for several a/b ratios. In reference 4.16, results
are also obtained for the mode antisymmetric
about =0, for a/b=1. Unfortunately, this is
the second sntisymmetric' mode shape of the
plate. These frequency parameters are given
in table 4.7.

The first six roots of equation (4.29) for
m=1, 2, . . ., 6 and for ¢/b=0.5, 1.5, and 2.0
were found in reference 4.13. The correspond-
ing frequency parameters are listed in table
4.8.

By using equation (4.24), one can apply
stability results to this problem. Fundamental
frequencies are listed in table 4.9 for various

Eliminating three of the constants (e.g.,
B,, C,, and D,) in equations (4.26) in favor of
a fourth (e.g., A,) leaves one equation giving
the eigenfunctions, or mode shapes, for this
case. From reference 4.7 it is known to be:

'W(l', '.l/) . [(COSh Aob—cos k]b) ()\1 sinh Ay
—X; 8in Ay)

— (\; sinh A, sin A0) (cosh Asy—cos Ay)] sin ez
(4.30)

Substitution of A; and X\: determined from
equations (4.27) into equation (4.30), using the
frequencies from the tables of this section,

a/b ratios as given on page 367 of reference 4.17.  completely determines the mode shapes. Mode
TaBLE 4.8.—Frequency Parameters wb%/p/D for SS-C-SS-C Rectangular Plate
wb?vp/D for values of n of—
‘—; m
1 2 3 4 5 6
1 54. 8 94. 6 154. 8 234.5 333. 9 452. 9
2 170. 3 206. 6 265. 2 344. 6 443. 8 563. 5
0.5 3 366. 8 400. 9 457. 4 535.1 633. 7 752. 2
4 642. 8 675. 9 730. 5 806. 9 904. 2 1021
5 997. 7 1030 1084 1159 1257 1375
6 1432 1464 1517 1592 1686 1802
1 25. 0 64. 9 124. 5 203. 7 302. 4 420. 9
2 35.1 75.6 135. 7 215. 1 314. 1 432. 8
L5 3 54. 8 94. 6 154. 8 234. 5 333. 9 452. 9
’ 4 84.1 122. 3 182. 6 262. 5 362: 0 481. 1
5 122. 6 160. 0 219. 3 298. 9 398. 5 518. 0
6 170. 3 206. 6 265. 2 344. 6 443. 8 563. 5
1 23. 8 63. 4 123.0 202. 1 300. 7 419. 0
2 28. 9 69. 2 1290. 1 208. 6 307. 4 426. 1
2.0 3 39.0 79. 5 139. 7 219. 3 318.2 437. 1
. 4 54. 8 94. 6 154. 8 234. 5 333. 9 452. 9
b 75.9 114. 7 174. 6 254. 7 354. 1 473. 3
6 102. 2 140. 2 199. 9 279. 5 379. 1 498. 4
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FIGURE 4.5.-~Mode shapes Wna(Z, 7)=Xn(®) Y.(§) for 36 modes of a SS-C-SS-C square plate. m, n=1,2,... 6.

(After ref. 4.13)

TABLE 4.9.—Fundamental Frequency Parameters for SS—-C-SS-C Rectangular Plate

al/b

0.4

0.5

os |

0.7

0.8

0.9

12. 139

13. 718

15. 692

18. 258

20. 824

24. 080
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Fi1GURE 4.6.—Variation in Y,.(7) with e/b for the mode
m=6, n=5 for a SS-C-SS-C rectangular plate.
(After ref. 4.13)

shapes were computed and plotted in reference
4.13 for the first six roots of equation (4.29)
for m=1, 2, ... 6. Plots were made for
a/b=0.5, 1.0, 1.5, and 2.0. These are repro-
duced in figure 4.5 for ¢/b=1.0 alone. The
mode shapes are represented as the products
Woan(Z, P =Xn(@)Y.(7). Each of the six parts
of figure 4.5 corresponds to one value of m.
The first six modes having that value of m
are then determined from the separate curves
Y.(7). The curvesfor ¥,(%) do not change mark-
edly for variation of a/b in the range 0.5<a/b
<2.0. Themaximum variationsfor the 36 modes
shown in reference 4.13 are illustrated by
figure 4.6, which is for the mode m=6, n=>=5.
When k+ao>>>>1, then cosh +/k*+o?b—
sinh i2+o?b and equation (4.29) reduces to
the following asymptotic formula (ref. 4.7):

R GRCDIN

(m,nintegers) (4.31)

Other approximate formulas are given pre-
viously in equations (4.16) and (4.17). Fre-
quency parameters obtained from equation
(4.16) are given in reference 4.4 and are re-
produced as figure 4.7.

The problem was also studied in references
4.18 t0 4.21.
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Ficure 4.7.—Frequency parameter 0.90wb?yp/D for a
SS~C-8S-C rectangular plate. (After ref. 4.4)

4.2.2 SS-C-S5-S§
The boundary conditions for SS-C-SS-SS

rectangular plates (fig. 4.8) at y=0,b are
Wiz, 0)=My(z, =Wz, =35 (z, 1y=0
(4.32)

Substituting equation (1.37) into equation
(4.32) as in the previous section yields the
characteristic equation (ref. 4.7)

Az cosh Aob sin Ab=0X; sinh Az cos Mb  (4.33)

(L L LLLLLLLLLLLLLLLLLLLLLLLLLLL

———— — ————— ————— — - — — ——— . -

F16URE 4.8.—SS-C-SS5-88 plate.

TABLE 4.10—First 6 Frequency Parameters \=wa®/p/D for SS—C-SS-SS Square Plate

23. 646 | 51. 674 ] 58. 641

86. 126 l 100. 259 113. 217

wn l w21 l w1z

w22 ' w3 w13
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where \; and X\, are defined in equations (4.27).

Iguchi (ref. 4.9) also obtained equation (4.33)
and presented the first six frequencies for the
case of the square. They are given in table
4.10. These results are verified in reference
4.7. Three additional frequencies listed in
reference 4.9 are given in table 4.11. Explana-
tion of the significance of these roots appears
in the preceding section (4.2.1).

TasLE 4.11.—3 High-Frequency Parameters
A=wal/o/D for SS~C-SS-SS Square Plate

Ungar (ref. 4.22) presented an interesting
table which shows the ratio of the frequencies
of the SS-C-SS-SS plate to those of the

SS-S5-S5-8S plate when a=5. This is given
here as table 4.12, where m denotes the number
of half-sine waves in the z-direction (fig. 4.8)
and n denotes the mode number for a given
value of m.

TaBLE 4.12.—Ratio of Frequencies of a SS-C-
SS-SS Plate to Those of SS-SS-SS-SS
Plate When a=Db

Frequency ratio for value of n—
m
1 2 3 4 5 6
! .19 .06 | .02 | .01 | 1.00 | 1.00
b .21 1L09|1.05]1.02)1.02; 101
SO 1.14 | 1. 09 1.06 | 1.03 | 1.02 | 1. 02
4 . L11/109)1.06) 104103 1 02
Seceeeeo./ 1L10] 108|106 105 1.03] 1.02
6. .- .08 | 1.07 | 1.06 | 1.05 | 1. 04 1. 02

For nonsquare plates, fundamental frequencies are available for various aspect ratios as listed

in table 4.13 (ref. 4.9).

Hamada (ref. 4.15) used a variational approach and Kanazawa and Kawai

(ref. 4.16) used an integral equation formulation to obtain confirming results for several a/b ratios.

TaBLE 4.13—Fundamental Frequency Parameters for SS~0-SS-SS Rectangular Plate

Frequency parameter

A for values of b/a or N* for values of a/b of—

1 L5 2 2.5 3 @
A=wa? (Vo D)oo 23. 646 15. 573 12. 918 11. 754 11. 142 9. 869
AN =wb (/D) oo 23. 646 18. 899 17. 330 16. 629 16. 254 15. 425

The mode shapes are (ref. 4.7)

W(z, y)=(sin A\ sinh A;y—sinh A5 sin A\y) sin ax
(4.34)

When %2+a*>>>1, equation (4.33) reduces
2 (vef. 4.7)

A {LET)E
(m,nintegers) (4.35)

Other approximate formulas are given in
equations (4.16) and (4.17). Frequency param-

eters obtained from equation (4.16) are given
in figure 4.9 (vef. 4.4). The problem was also
discussed in references 4.23 and 4.24.

4.2.3 SS-C-SS-F

The boundary conditions for SS-C-SS-F
rectangular plates (fig. 4.10) at y=0, b are

Wz, o>=%‘§ (z,0)=M, (z, )=V, (z, b)=0
(4.36)

All results reported in this section are from
reference 4.7.
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FiGURE 4.9.—Frequency parameter 0.90wb?vp/D for a
SS-C-8S-SS rectangular plate. (After ref. 4.4)
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Figure 4.10.—SS-C-SS-F plate.

X

Substituting equation (1.37) ‘into equation

(4.36) yields the characteristic equation

2X1X2[<§>4—(1—v)2:|+2)\1)\2 [<§>4+(1-—v)2:|

cos\;b cosh A0+ (A—22) [(I;C)‘(l —2y)
—a -m] sin\bsinh \p=0 (4.37)

where A, and A, are defined in equations (4.27).

The first six frequencies for the case of the
square and »=0.3 are listed in table 4.14,
with wm, as described In the section covering
SS-C-SS-C plates (sec. 4.2.1). The mode
shapes are

Wiz, y)=( { [(’;‘)2+(1 —V)] b
+ [(é)z—(l —u):l cos \b }

()\2 sin )\1'!/—)\1 sinh )\2?/) -

sy

+{[<’£>2+(1—y):|x, i,
-0}

{cosh A y—cos k;y)) sinaxr (4.38)

TABLE 4.14—First 6 Frequency Parameters \=wa?/p/D for SS-C-SS-F Square Plate; v=0.3

33. 06 i 41. 70 l 63. 01 . 1 72. 40 ‘ 90. 61

When k*=a?>>>1, equation (4.37) reduces to

={ @[

(m,nintegers) (4.39)

Another approximate formula is given by
equation (4.17).

By using equation (4.24), one can apply
stability results to this problem. Fundamental

frequencies given in reference 4.17 (p. 364)
and reference 4.25 (p. 298) are listed in table
4.15 for various a/b ratios for »=0.25.

424 SS-SS-SS-F
The boundary conditions for SS-SS-SS-F
rectangular plates (fig. 4.11) at y=0, b are

W(z, 0)=M,(z, 0)=M,(z, b)=V,(z, b)=0
(4.40)
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F1gURE 4.11.—SS-SS-SS-F plate.

TABLE 4.15.—Fundamental Frequency Param-
eters for SS—C-SS-F Rectangular Plate; v=0.25

a/b watyp/D a/b wa’\/;]—D_
T 12. 859 1.6 ______.__ 18. 258
1.1 ... 13. 520 1.7 . 19. 343
1a2 e 14.310 || 1.8 _ ________ 20. 527
1.3 . 15.198 || 1.9 .. _____._ 21. 910
14 __ 16.086 || 2.0__________ 23. 192
B S 17172 || 2.2 . ____ 26. 153

All results reported in this section are from
reference 4.7.

Substituting equation (1.37) into equation
(4.40) yields the characteristic equation

A2 [(g)z—(l—v)]z cosh )\gb sin )\1b
\? 2,
=\ [(;) + (l—v):l sinh Ah cos b (4.41)

where A; and ), are defined in equations (4.27).

The first six frequencies for the case of the
square and »=0.3 are listed in table 4.16, with
wmn, 83 described in the section covering
S8-C-8S-C plates (sec. 4.2.1).

The mode shapes are

Wiz, y)= { [(5)2—(1 —u):lsin N

2
+ ({f) +(1—-u):|sinh Ab sin)qy} sinaz
(4.42)
When k*+a*>>1, equation (4.41) reduces to

—{ @ =HTHE

(m,nintegers) (4.43)

Other approximate formulas are given by
equations (4.16) and (4.17).

By using equation (4.24), one can apply
stability results to this problem. Fundamental
frequencies given in reference 4.17 (p. 362) and
reference 4.25 (p. 297) are listed in table 4.17
for various a/b ratios for »=0.25.

4.2.5 SS-F-SS-F

The boundary conditions for SS-F-SS-F
rectangular plates (fig. 4.12) at y=0, b are
o

Mv(x! 0)=V(z, 0)=M,(z, 0)=V,(z, b)=0
(4.44)

Substituting equation (1.37) into equations
(4.44) yields the characteristic equation

{ Xi[(§>2—(1—v)]—Xf [<§>2+(1—y)] }
X sin b sinh Ad =27, [({;")4__ a —”)2]2
X(cos Azb cosh Agd—1) (4.45)

where A, and A, are defined in equation (4.27).

TABLE 4.16.—First 6 Frequency Parameters \=wa*(y/p/D) for SS-SS-SS-F Square Plate; »=0.3

11.68 27.76

41.20 59.07 ! 61.86 90.29

Mode.___ ... @t w2

w2y ‘ wz2 l w3 w3t
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FigUre 4.12.—SS-F-S8-F plate.

TABLE 4.17.—Fundamental Frequency Param-
eters for SS-SS-SS-F Rectangular Plate; v=
0.25

afb waVp/D afb wa*Vp/D
0.50 . cacunaa- 10.362 || 1.8 caceeo- 15. 396
0.60. - comums 11.349 || 2.0 ... 16. 481
0.80.ccco-- 11.547 || 2.6 (cceee- 19. 244
) 11.843 || 8.0 oo 22. 205
Li2eenmamcn 12.632 || 4.0 28. 324
s (X S, 13.520 |{ 5.0 coccene- 35. 133
i1 S 14, 409
i

The first exact solution to this problem was
achieved by Voigt (ref. 4.26) in 1893. The first
six frequencies for the case of the square and
»=0.3 are taken from reference 4.7 and listed
in table 4.18, with wn, as described in the sec-
tion covering SS-C-SS-C plates (sec. 4.2.1).
The frequencies w,; and wy are the only fre-
quencies among the first six frequencies for each
of the six cases of plates having two opposite
edges simply supported for which £*<a®.

For non-square plates, & complete set of lowest
frequencies for m*r*<wa?/p/D< 160 has been cal-
culated by Jankovic (ref. 4.27) for various
aspect ratios and for »=0.3 and »=0.16. These

are given in tables 4.19 and 4.20. In these tables
the notation wn, is the same as before; that is,
m gives the number of half-sine waves in the
z-direction, and 7 is the nth lowest frequency
for a given value of m. Odman (ref. 4.13) also
obtained frequency parameters for »=1/6 and
a/b=0.5, 1.0, 1.5, and 2.0. He gave 36 values,
but he assumed that for n=1 the plate behaves
exactly like a beam. His results, where appli-
cable, are essentially verified in table 4.19.
Roots obtained from reference 4.13 which sup-
plement those of reference 4.27 are also shown
in the column for a/b=1.0 in table 4.19. It
must be remembered that the frequencies wn; are
omitted in these portions of the table.

When the results of table 4.20, when a/b=1,
are compared with those of table 4.18, it can
be seen that disagreement exists for values of
@y and wg. The problem appears to be the
assumption in reference 4.27 that k*>o’ for
all roots. In reference 4.7 it is shown that

< if ~
n(@<2C-1)

This gives critical constants for various values
of Poisson’s ratio as listed in table 4.21. Thus,
for a square plate, if »=0.3, negative values
of k2—o? exist for m<15. Even though the
roots for which %< o? are not handled correctly
in reference 4.27, the frequencies arising from
these roots should not differ markedly from
those given in tables 4.19 and 4.20.

Zeissig in an early piece of work (ref. 4.28,
published in 1898) also set up the frequency
determinant for an exact solution and achieved
a comprehensive set of solutions which are
shown in figure 4.13. In this figure, solid
curves identify symmetric modes in y and
broken curves identify antisymmetric modes
in y. The 10 numbered points indicate in-
teresting intersections or “‘transition points”

t+ (4.46)

TABLE 4.18.—First 6 Frequency Parameters \=wa(/p/D) for SS-F-SS-F Square Plate; v=0.3

9.631

16.13 & 36.72

38.94 46.74 70.75

Mode o oo meeemeeee e Wiy

w12 \ w33 ‘ w21 w22 w23
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TaBLE 4.21.—Critical Constants Determining When k*<o? for SS-F~-SS-F Plate

—— symmetric modes in y -=== antisymmetric modes in y

FigURE 4.13.—Frequency parameters wa?/x3y/D for
various a/b ratios of a rectangular S8~-F-3S-F plate.
Numbered points are intersections where two modes
can exist simultaneously. (After ref. 4.28)

where two modes can exist simultaneously.
For example, at point 1 the fifth root for
m=1 (called 1/4 mode) and the third root for
m=3 (3/2 mode) can exist simultaneously for
4 plate having an a/b ratio of approximately
0.9. Figures 4.14(a) and 4.14(}) (reprinted
from ref. 4.28) show the nodal patterns for
these two modes. The areas denoted by plus
signs can be taken as positive (upward) dis-
placements and the others, as negative. If
the initial conditions are chosen so as to excite
each mode with the same amplitude, the
308--337 O—T70——5

v 0 0.1 0.2 0.3 0.4 0.5
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ll o ~ ,’ FigurE 4.14.—Superposition of two modes having the

’I’/ 77 1//A 5 same frequency. <{a) Nodal pattern for 3/2 mode.

02547 7 7 y (b) Nodal pattern for 1/4 mode. (c) Nodal pattern

7 for (a) superimposed on (b). (1) Nodal pattern

o LLnet Joe2 ned (9 n=5 when initial amplitude of 1/4 mode is 180° out of

) 5 10 5 2 25 30 35 phase. (c!) Nodal pattern for (a) superimposed
2""_2 H7 on (bY). (After ref. 4.28)

resulting nodal pattern of the superimposed
modes is shown in figure 4.14(c). If the initial
amplitude of the 1/4 mode is taken 180° out of
phase as in figure 4.14("), the superimposed
motion is as in figure 4.14(c’). Stepwise
superposition of varying ratios of the modes
3/2 and 1/4 yields nodal patterns as shown
in figure 4.15 (from ref. 4.13).
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FIGURE 4.15.—Stepwise superposition of two modes
having the same frequency. (After ref. 4.28)
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The detailed mode shapes are (ref. 4.7):

W {0 <—(cosh Adb—onsd b [(%)4—(1—-»2]

{n[(E)+a—nTsinnng+r.
-0 s}
W[ +a—n T simnn
0T}
{[E-orJoer
+[(§)2+ a _,,)] — }>sin g%

(4.47)

Mode shapes were computed and plotted in
reference 4.13 for the six roots of equation
(4.45) for m=1, 2, . . ., 6 and »=1/6. Unfor-
tunately, it was assumed that for the lowest root
(symmetry about y=0) for each value of m, the
plate behaves exactly like a beam and, conse-
quently, these cases were omitted in the results.
Thus, the plotted mode shapes begin with those
antisymmetrical about y=0. Plots are given
in reference 4.13 for a/b=0.5, 1.0, 1.5, and 2.0
and those for a/b=1.0 reproduced in figure 4.16.
The mode shapes are represented as the products
Wie(Z, ) =Xn(@)Y,.(7), where Z and 7y are
measured with the point at the center of
the plate taken as origin (see fig. 4.12).
Each of the six parts of figure 4.16 corre-
sponds to one value of m. The first six modes
having that value of m are then determined
from the separate curves Y,(y). The curves
for Y.(y) do not change markedly for
variations in a/b in the range 0.5<a/b<{2.0.
The maximum variations for the 36 modes
shown are illustrated in figure 4.17, which cor-
responds to m=>5 and n=>5.

When k*/a®>>>1, equation (4.45) reduces to
(ref. 4.7)

—{ @)= 1

(m, nintegers) (4.48)

Other approximate formulas are given in equa-
tions (4.16) and (4.17).

Zeissig (vef. 4.28) reported many experimen-
tal results which essentially substantiated his
analytical calculations. The problem was also
formulated in references 4.10 and 4.24.

4.3 OTHER SIMPLE EDGE CONDITIONS

4.3.1 All Sides Clamped (C-C-C-Q)

The problem of C~C-C-C rectangular plates
(fig. 4.18) has received a voluminous treatment
in the literature, especially for the case of the
square plate. The first reasonably accurate
results for the square plate were given in 1931 by
Sezawa (ref. 4.21), who used the series method.
He used functions which exactly satisfied the
differential equation (eq. (1.1)) and the bound-
ary condition of zero deflection along all edges
and required the slope to be zero only at the
midpoints of the edges. This initial work has
been followed by a host of Japanese publica-
tions on the problem; for example, see references
4.9, 4.15,4.16, 4.20, and 4.29 to 4.33. -

Some variation of the series method was used
in references 4.9, 4.20, 4.21, 4.29, 4.30, 4.32, and
4.34 to 4.40. Particularly notable is Tomotika’s
work (refs. 4.30 and 4.41); he determined
the fundamental frequency for the square plate
with extreme accuracy. Like Sezawa, he chose
functions which satisfied the deflection condi-
tions exactly and set up an infinite characteris-
tic determinant for the slope conditions.
Convergence of results from a sequence of deter-
minants obtained by truncating the infinite case
was used to get extreme accuracy. He also
used the Rayleigh and Weinstein methods to ob-

tain the frequency bounds 35.9855<(wa’y/p/D)
<(36.09 for a square of dimension a x a.

Finite difference techniques were used in
references 4.14, 4.38, 4.42, and 4.43; the Galer-
kin technique, in references 4.13, 4.33, 4.44,
4.45, and 4.46; the Rayleigh or Rayleigh-Ritz
method, in references 4.1, 4.2, 4.47, and 4.48;
Weinstein’s method, in reference 4.49; integral
equations, in reference 4.16; and a variational
approach, in reference 4.15. Other publica-
tions include references 4.18, 4.31, and 4.50 to
4.56. A notable lack of experimental results
exists.
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Table 4.22 summarizes the first six sets of
frequencies, nodal lines, and amplitude coeffi-
cients for a square plate having side length a.
Iguchi (ref. 4.9) did not find the fourth mode in
his work. Young (ref. 4.47) used the products
of beam functions (i.e., eigenfunctions for C—C
beams) and the Raylelgh—thz method to ob-
tain accurate upper bounds. The resulting
mode shapes are of the form

Wz, y)=3 iA,.,,[cosh a7 ops fa

m=1n=1

— (smh - —sin f"’—z):' I:cosh Y

—Cos ﬂ—a,. (sinh &Y _sin ﬂ)] (4.49)
a a a

where the values of A,,, are given in table 4.22,
those of « and e are given in table 4.23, and
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Deflection
o

F1cORE 4.17.-—Variation in Y.(§) with a/b for the
mode m=5, n=>5 for a SS-F-SS-F rectangular plate.
(After ref. 4.13)

the origin of the zy-coordinate system is taken
at one corner of the plate as shown in figure
4.18.

Further results were obtained by Bolotin
(ref. 4.57), who used a variation of the series
method to obtain approximate results for the
square. These are summarized in table 4.24.
In table 4.24 odd values of m yield modes sym-
metric about the y-axis, even values of m yield
modes antisymmetric about the y-axis, and simi-
larly for n with respect to the z-axis. It is

~<|
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T
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77777777777 7777777777/ /7 7
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F1GURE 4.18.—C-C-C-C rectangular plate.

TaBLE 4.23.—FEigenfunction Parameters for a

C-C Beam
m,n Qmy Cn €m; €n
) I 0. 98250222 4. 7300408
2 1. 00077731 7. 8532046
S s pemeee 0. 99996645 10. 9946078
S 1. 00000145 14. 1371655
L S 0. 99999994 17. 2787596
I 1. 00000000 20. 4203522
3> I 1.0 @r+1)x/2

TaBLE 4.22.—First 6 Sets of Frequency Parameters, Nodal Lines, and Amplitude Coefficients for
a C-C-C-C Sguare Plate

Mode 1 2 3 4 5 6
2 \/_7_”_- * 35. 9866 ©73.40 ©108.22 |oococemicoaoan ©132.18 © 164.99
“YYVD b 35. 99 b 73,41 b 108. 27 b 131, 64 b 132. 25 b 165.15
p y o4 g4 7 {// 4 /// V% % J,/,//
Nodal % /__'__/ AN 2 ~ V A '_: /
lines__. ﬂ b ;r---'b z 7 ; /x\ ¢ é 7 ;?"! ?-4 5
7L /L s yr a4 /7 L
Ampli— Au= 1.0000 Au= 1.0000 A33= 1.0000 A13= 1.0000 An= —0.0280 Au= —0. 0406
tude co- | A13=0.0142 Ay=0.0101 Ag=0.0326 Ay=0.0085 Ay3=1.0000 Ay=—0.0105
efficient b | A;5=0.0020 A4=0.0020 Ag=0.0073 Ay= —1.0000 Aq5=0.0055 A= —0.0017
A81=0.0142 A:2= 0.0406 A4z= 0.0326 Au= —0.0141 A31= 1.0000 Aaz= 1.0000
Ap=—0.0031 | Au=—0.0022 | Au=—0.0019 | Ay=—0.0085 | A5=0.1267 Ag=0.0560
Ayp=—0.0009 | Asy=—0.0007 | Ap=—0.0010 | Ap=0.0141 Ay=0.0118 Ag=0.0141
Apn=0.0020 Agp=0.0070 Ag=0.0073 Ayn=0.0055 Apy=0.0238
Apn=—0.0009 | Ay=—0.0011 | Ae=—0.0010 Agp=0.0118 Ay=—0.0011
Ag=—0.0004 | Ay=—0.0005 | Ae=—0.0006 Agp=—0.0018 | Ag=—0.0009

» Work of Tomotika (ref. 4.30).
b Work of Young (ref. 4.47).
¢ Work of Iguchi (ref. 4.9).
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TABLE 4.24.—Approximate Frequencies for a
C-C-C-C Square Plate

m n walvo/D
1 1 35. 10
2 1 72. 90
2 2 107. 47
3 1 131. 63
3 2 164. 39
4 1 210. 35
3 3 219. 32
4 2 242. 20
4 3 295. 69
4 ! 4 370. 66

|

noted that only one root is given in this table
in the vicinity of 132. The general formula
for frequency for a square when m=n is (ref.

4.57)
1N2x* D
om=2(m+3) /2

Bazley, Fox, and Stadter (ref. 4.58) used a
method developed in reference 4.59 to compute
lower bounds for the first 15 frequencies of the
following symmetry class of a square: With an
zy-coordinate system having its origin at the
plate center and axes parallel to the edges, the
modes are symmetric with respect to both Z
and 7 and are unaltered by interchange of 7
and 7 (fourfold symmetry). (Thus, the first
and fifth modes of table 4.22 would be the only
modes shown which would fall into this sym-
metry class.) They also obtained extremely
accurate upper bounds by the Rayleigh-Ritz
method by taking the first 50 admissible prod-
ucts of C-C beam functions. Double-precision
arithmetic (16 significant figures) was used in
the computations where necessary. Results
are listed in table 4.25. In this table results
‘rom the Rayleigh-Ritz method are given using
both 25 and 50 admissible functions to show
the rate of convergence.

Another significant contribution was made
by Aronszajn (ref. 4.49), who used Weinstein’s
method to obtain accurate lower bounds for
the first 10 frequencies of a square plate. The
Rayleigh-Ritz method was used to obtain
pper bounds. These results are summarized
i table 4.26.

(4.50)

61

TaBLe 4.25.—Bounds on Frequency Parameters
wa®/p/D for Fourfold Symmetric Modes of a
C-C-C-C Square Plate

watyp[D
Mode Upper bound
Lower
bound

25 terms 50 terms
1o ... 35. 982 35. 986 35. 986
2o s 132. 18 132.21 132. 21
K S 219.73 220. 06 220. 04
S 309. 08 309. 17 309. 17
L S 393. 00 393. 98 393. 92
[ 558. 58 562. 38 562. 18
T e 565. 39 565. 56 565. 54
P 646. 62 648. 58 648. 46
9 .. 806. 51 814. 84 814. 48
100 . ..___. 900. 70 901. 00 900. 97
) O 979.55 | .. 982. 93
12 ... 1017.5 o _._. 1062. 5
13 .. 1127. 4 | ._. 1147. 1
4. _______ 1235. 1, ... 1315. 4
15 ... 13149 | ... 1393. 4

Odman (ref. 4.13) used a variation of the
Galerkin method and mode shapes of the form
W(i) g) =X(5) Y@) ’ where
X(Z)=A4, cosh u;Z+ .4, sinh i,

+A3 cosh [l25+A4 sinh p,zi
Y (y)=2B, cosh u37+ B, sinh u,7
+ B; cosh w7+ B,sinh u,7

(4.51)

and where uy, . . ., 4, are determined by applying
the Galerkin formula to the differential equation
of motion for the plate. The 36 frequencies
wma(m,n=1, . . ., 6) computed by this method
in reference 4.13 are upper bounds and are
given in table 4.27. It is interesting to note
that, in spite of apparent numerical precision,
Odman did not detect two separate frequencies
for wiy, as did Young (table 4.22).

For computing fundamental frequencies of
clamped rectangular plates of arbitrary a/b ratio,
there exists, in addition, Warburton’s (ref. 4.1)
and Janich’s (ref. 4.2) formulas, equations (4.16)
and (4.17). Frequencies obtained from War-
burton’s formula were plotted in reference 4.4.

Mt




[image: image26.jpg]62

VIBRATION OF PLATES

TABLE 4.26.—Frequency Parameters for a C~C-C-C Square Plate

wa’\/ p_/I_)
Mode symmetry
Lower bound | Upper bound Mean value Maximum
error, percent
Symmetric about bothZ and ¥ ... _.___ 35. 9693 36. 1074 36. 0384 0. 19
131. 55 133. 20 132. 38 . 63
131. 8 134. 1 132. 9 . 87
218 231 224.5 2. 98
Symmetric about Z, antisymmetric about 7 (or
CONVErSely) - ool oeeaoo 73. 354 74. 226 73. 790 . 59
164. 39 171. 39 167. 89 2.13
210 216 213 1. 43
Antisymmetric about bothZand 7_.__.__.___. 108. 119 109. 936 109. 027 . 84
241. 924 246. 118 244 021 . 87
242, 071 251. 033 246. 552 1. 85
TABLE 4.27.—Frequency Parameters wa’~/p/D for a C-C-C-C Sguare Plate
[Values in parentheses were obtained by interpolation; table is symmetric]
wa*y p/D for values of n of—
m
1 2 3 4 5 6
S 35. 998965 73. 405 131. 902 210. 526 309. 038 (428)
2 F I 108. 237 165. 023 242. 66 340. 59 458, 27
NIRRT SO UDII P PRSPPI 220. 06 296. 35 393. 36 509. 9
Biiiicsmma i e i | S e o i i 371. 38 467. 29 583. 83
D s s i s i it S i SR 562. 18 (676)
N [ (ASOTSUS N FNSICUSI N IR B S, 792. 5

A simple formula derived by Galin (ref. 4.45)
for this case 1s

7/1 41 1 D
w_12\/§(a—4+7ﬁ+§>\/; (4.52)
For a square this reduces to wa?y/p/D=36, which
compares favorably with the accurate value of
35.9866 from table 4.22.

A summary of the literature for frequencies
of nonsquare C-C-C-C rectangular plates is
presented in table 4.28. Neither Iguchi (ref.
4.9) nor Kanszawa and Kawai (ref. 4.16) recog-
nized the existence of the other mode having
one symmetry axis and one antisymmetry axis
which is not shown in the table.

Sixteen frequency parameters for a/b=0.25
and 0.50 are computed in reference 4.60. These
are given in table 4.29, with m and n as ex-

plained previously. More extensive results are
obtained in reference 4.13 and are also listed in
table 4.29.

Mode shapes in the form Wa.(, Y=
X.(z)Y.(y) corresponding t0 wm. were found in
reference 4.13. The components X,(Z)ye and
Y.(7)b are shown in figure 4.19 for a/b=1.0.
Variation in these curves with a/b is very small
for the range 0.5 <a/b £2.0. The magnitude of
this variation is shown by figure 4.20 for the
components X,(Z)va and Y,(7)+b. TFigure
421, taken from reference 4.60, shows the

7%: wa2(y/p/D)/* plotted

as a function of a/b and b/a. For a/b=0, the
frequencies are given by reference 4.60:

53

frequency parameter

(4.53)
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TABLE 4.28.—wb?%/p/D for C~C~C-C Rectangular Plates

wb*Vp/D for values of a/b of—
Source Mode (a>b)
1.5 2 2.5 3 @
a
Iguchi (ref. 4.9)._.___._ LLLLL, 27. 00 24. 56 23.76 23. 19 22. 37
1 b
TI7777
Kanazawa and Kawai Ll LLS 67. 58 | 65. 41 64. 49 64. 02 61. 78
(ref. 4.16). A--ee- b
T7777
Kanazawa and Kawai LLLLL, 81. 57 | 72.66 68. 89 66. 96 61. 78
(ref. 4.16). ﬁ-—-ﬂ-——fb
77777
%ﬁuﬁm A
Y m2 ma3,024
4706 or 2 4
Y{:'% o {x,m./i o l‘{nm./‘n oy . 3
15 e vs(y)./s ” ? g 111
1o (i %0 /I J
051~ n=§
i o : : ? - 13 , i
] 02 04 os ° P
25 / 2 |
e — 22 /
~1.0| ——4/
-1.5F __//
) 0.5 I 0.5 0

FiguRre 4.19.—Mode shape components X,.(£)va or
Y ()b for a C-C-C-C rectangular plate. (After ref.
4.13)
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F1cURE 4.20.—Variation in mode shape components
X.(#)va and Y,(§vb with a/b for a C-C-C-C
rectangular plate. (After ref. 4.13)

FIGURE 4.21.—\/x*=wad/x3(vp/D) for a C-C-C-C rec-
tangular plate.

Claassen and Thorne (refs. 4.35 and 4.36)
used a most straightforward application of the
series method which represented the deflection
form as a double Fourier sine series; that is,

Wz, y)=3 3 Amnsin 2= - ™2 sin f’ (4.54)

Mm=ln=1

When the homogeneous boundary conditions
are written for all edges, they result in an in-
finite determinant, the zeros of which are the
desired eigenvalues. Numerical convergence
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TABLE 4.29.—Frequency Parameters wa’/p/D
for a O-C-C-C Rectangular Plate

[Values in parentheses are interpolated]

wazyp/D for value of a/b of—
m n 0.50
0.25 0.667
(ref. (ref.
4.60) Ref. Ref. 4.13)
4.60 4.13
1 1 23. 19 24. 09 24, 58 27. 01
2 23.94 | 31.40 31. 83 41. 72
3 26.32 | 44. 35 44 .78 66. 53
4 30. 01 63. 00 63. 34 100. 81
;T I IE—— 87. 26 144. 21
L P (117) (195)
2 1 62. 17 63. 93 (64. 1) (65. 5)
2 63.70 | 70.90 71. 08 79. 81
3 66.23 | 82.90 (83. 2) (103)
4 69. 97 | 100. 18 100. 80 136. 10
L3 P I, (124. 2) (178)
[ J PR PRI 151. 91 230. 04
3 1| 121. 59 | 123. 07 (124) (126)
21 122.98 | 130. 13 130. 35 138. 64
3| 125. 74 | 142. 12 142. 38 161. 23
4 | 129. 81 | 156. 47 159. 49 193. 24
LS PO I 181. 79 234. 65
[ I, —— (209. 6) (285. 4)
4 1 | 200.33 | 202. 02 (204) (206)
2 | 202.00 | 209. 18 (210) (218)
3 | 204. 72 | 231. 02 (221) (241)
4 | 208 83 | 238.01 238. 35 271. 17
- 18 IR Fa————— (261) (312)
[$ 30 D DS 287. 54 361. 90
5 ) (O PR AN (302) (303)
022 PR F P, 308. 12 316. 11
2 O N I— (320) (339)
B | im0 337. 08 369. 34
L PR I 358. 0 (409)
6 |- emmeofommeeanae (382) (456)
6 3 S SRS AN (421) (422)
b P (P (427) (436)
273 Y ey (439) (457)
S R R (456) (488)
;3 P IO (478) (529)
L P D, 504. 3 576. 6

is established by successive truncation of the
infinite determinant. The method is also dis-
cussed in reference 4.39.

The frequency as a function of the a/b ratio
for the 10 lowest modes is plotted in reference
4.35. These curves are reproduced as figures
4.22 t0 4.25. Intable 4.30 the accurate values

OF PLATES
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1.0 - . 5
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| i
0

FicURE 4.22.—Frequency parameters \/r3=wa?/r2(vs/D)
for modes symmetric about both Z- and - axes for
a C-C~C-C rectangular plate. (After ref. 4.35)
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F1GURE 4.23. —Frequency parameter \/r*=wa?/=*(v/s/D)
for modes symmetric about £=0 and antisymmetric
about §==0 for a C~C—C~C rectangular plate. (After
ref. 4.35)
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FiGURE 4.24 —Frequency parameters \ /3= wa?/=*(, /D)
for modes antisymmetric about =0 and symmetric
about =0 for a C~C-C—C rectangular plate. (After
ref. 4.35)

of frequency used in the preceding plots are
displayed for a/b increments of 0.02 in the
range 1.002a/b=0 (ref. 4.36).

When one looks, for example, at figure 4.23,
it appears that the curves for the second and
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F16URE 4.25.—Frequency parameters A/ »*= wa?/*(yp/D)
for modes antisymmetric about both #- and j-axes
for a C-C-C-C rectangular plate. (After ref. 4.35)

third symmetric-antisymmetric  frequencies
cross in the vicinity of a/b=0.84. Such an
intersection point is termed a “‘transition
point.” It is the contention of Claassen and
Thorne that these curves do not actually cross
at transition points but only approach each
other closely before ‘‘veering away’’ or being
“repelled.” Very small increments of a/b are
taken in reference 4.36 in the vicinity of these
transition points and corresponding values of
frequency parameter A are computed which
appear to substantiate this. The details of
this phenomenon can be seen in table 4.31.

From the table it is seen that the two curves
approach each other most closely at a/b=0.834.
It is the opinion of the writer that, although
extremely precise work was performed in refer-
ence 4.36, certain questions of convergence of
the series approach used need to be answered
before the transition-point phenomens de-
scribed above can be accepted.

In figure 4.26 are shown nodal lines for one
quadrant of the plate for various a/b ratios in
the vicinity of transition points (ref. 4.36).
In these figures the center of the plate is at
(0,0) and the 7 and % coordinates have been
nondimensionalized to Z/a and /b, respectively.
The rapid change from one mode form to
another with small variation in a/b is interest-
ing. Precise node-line coordinates used for
figure 4.26 and other nodal patterns are given
in reference 4.36.

Accurate upper and lower bounds for the
doubly symmetric modes of a rectangle (see
discussion earlier in this section) are reported

in reference 4.58. These results are given in
table 4.32. Upper bounds were computed
using 50 admissible beam modes. It is note-
worthy that the second and third doubly sym-
metric modes for the square are for distinct
frequencies, as reported earlier in references
4.36 and 4.47.

4.3.2 CC-CSS

Three sources of numerical data are available
for the problem of the C-C-C-SS plate (fig.
4.27). Results are listed in table 4.33 for the
case of the square.

Some higher frequencies for the square were
obtained by Kaul and Cadambe (ref. 4.61) as a
special case of the parallelogram plate by using
the Rayleigh-Ritz method and beam functions
(see sec. 5.1.1). Frequencies for four higher
modes are presented in table 4.34.

For a general rectangle, a spectrum of funda-
mental frequency parameters is given in
table 4.35.

Frequencies for the first antisymmetric mode
with respect to z=a/2 are given in table 4.36
(ref. 4.16). However, it is obvious that this
is at least the third mode of all mode shapegsof
a plate for a/b<1. No detailed mode shapes
are available in the literature, but for a/b<1
the second mode clearly must have a nodal line
essentially parallel to the z-axis and located
above y=>50/2.

Approximate formulas for frequencies are
given previously in equations (4.16) and (4.17).
Frequency parameters obtained from equation
(4.6) are plotted in figure 4.28 (from ref. 4.4).

For more information on this problem, see
the discussion of the antisymmetric modes of a
C-C~C-C rectangular plate in the preceding
section (sec. 4.3.1). Straight nodal lines of anti-
symmetry duplicate SS boundary conditions.

433 CC-C-F

The only known results for the problem of the
C-C-C-F plate (fig. 4.29) are the approximate
formulas, equations (4.16) and (4.17).

4.3.4 C-C-S5-SS

Four sources of numerical data are available
for fundamental frequencies of C-C-SS—SS rec-
tangular plates (fig. 4.30). The results are
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TABLE 4.31.—Frequency Parameters wa’yp/D for the Second and Third Modes Symmetric About
£=0 and Antisymmetric About ¥=0 in Vicinity of a Transition Point

wa?Vp/D for values of a/b of—

Mode
0. 837 0. 836 0. 835 0. 834 l 0. 833 0. 832 0. 831
|
Second_ _ ... 150. 2685 ! 150. 1544 | 150. 0184 | 149. 8461 | 149. 6269 | 149. 3663 149, 0791
Third_ . _ ... 151. 2909 | 150. 9951 | 150. 7217 | 150. 4853 ! 150. 2963 | 150. 1492 150. 0029
Difference. ... 1. 0224 . 8407 . 7033 .6392 | . 6694 . 7829 l . 9238
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summarized in table 4.37. Kanazawa and
Kawai (ref. 4.16) used an integral equation
formulation. Hamada (ref. 4.15) used a varia-
tional approach. Iwato (ref. 4.62) used the

Rayleigh-Ritz method and mode shapes of the
form

W(z,y)= Z Z Crn (cos g

3nry
25

cos ——COS

(4.55)

os
4
P
04 =
4
/’o.ssss
]
03 e
7 0996
b 09 09
02 e
-—"'
o6 %
ol ,//
0.9999
)
0 ol 0.2 03 0.4 0.5
(@) i

Freure 4.26.—Nodal patterns for various a/b ratios
in the vicinity of transition points. (a) Second
symmetric-symmetric mode; a/b=0.9 to 0.9999.
(») Third symmetric-symmetric mode; a/b=0.9 to
1.0. (c) Third symmetric-symmetric mode; a/b=
0.6 to 0.7. (d) Second symmetric-antisymmetric
mode; a/b=0.8 to 0.9. (¢) Third symng,;tnc-
antisymmetric mode; a/b=0.8 to 0.9. (f) Third
symmetric-antisymmetric mode; a/b=0.5 to 0.6.
(g) Second antisymmetric-antisymmetric mode; a/b=
0.9 to 0.9999.

and retained 011, 013, 031, and 033. Nishimura
(ref. 4.14) used finite difference equations. Ap-
proximate formulas, equations (4.16) and (4.17),
may also be used. Frequency parameters ob-
tained from equation (4.16) are plotted in figure
4.31 (from ref. 4.4) for four modes.

For more information on this problem, see
the discussion of the doubly antisymmetric
modes of a C-C-C-C rectangular plate (sec.
4.3.1). Straight node lines of antisymmetry
duplicate simply supported boundary conditions.
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