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7.1 SIMPLE EDGE CONDITIONS

Ten combinations of simple (i.e., clamped
(C), simply supported (SS), or free (F)) bound-
ary conditions exist for a triangular plate. Of
these, only six have a significant amount of
results. One, the case when one edge is
simply supported and the others free, has
absolutely no results in the published literature
and will not be discussed herein.
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In terms of the £, # skew coordinates for the
C-C-C triangular plate shown in figure 7.1,
the differential equation (eq. (1.4)) for the
region becomes

4 4 4
S F2-+2sintg) 20 O

. o'W . W 2
—4 Slnd)(m-f-m‘? =—TMN (71)

Cox and Klein (ref. 7.1) took a deflection
function

Wi, 77)=<A1$2 sin’ %E+A252 sinlcgsin %)

(m=1,3...)

422
( ° 1) cos TETT (7.2)

1= ) %

where A; and A, are undetermined constants.
Equation (7.2) satisfies the boundary condi-
tions exactly. Equation (7.1) was satisfied at
the two points £=¢/2 and 2¢/3 and 7=0; this
yielded a second-order characteristic determi-
nant. Fundamental frequency parameters are
shown in figure 7.2 for ¢=0° and 25°. As dis-
cussed later in this section, the limiting case as
2¢/b—0 is we*y/p/D=22.4, an exact solution,
which indicates a lack of accuracy for small
values of 2¢/b in figure 7.2. According to
reference 7.1, the results are not sufficiently
accurate for use when ¢>>25°, but, by suitable
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Figure 7.1—C-C-C triangular plate.

choice of coordinates, ¢ can almost always be
kept less than 25°. The mode shape compo-
nents arising from equation (7.2) are shown in
figure 7.3.

The results were also checked in reference
7.2 for the case when ¢=0 and the triangle is
equilateral by using the finite difference method.
The two triangular meshes shown in figure 7.4
were used. For the fundamental mode, only
one sextile of the triangle is required; this
results in independent deflections of one point
in figure 7.4(a) and eight points in figure
7.4(0). Results from using these two meshes
and the extrapolation formula (eq. 4.90)) are
given in table 7.1.

In reference 7.3 the solution for the rhombus
given in reference 7.4 (see discussion on the
C-C-C-C rhombic plate, sec. 5.1.1) is extended
to yield the solution for the isosceles triangle
clamped all around. Fundamental frequency
parameters wl’/p/D for ay=a,=a, where [ is
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F1curE 7.2—Fundamental frequency parameters for a
C-C-C triangular plate. (After ref. 7.1)

TaBLE 7.1.—Fundamental Frequency Param-
eters wclyp/D for a C-C-C Eguilateral
Triangle

Solution 1 point 8 points | Extrapo-
lation
weyp/D_ ... ___ ( 42. 31 65. 85 70. 34

the length of one of the equal sides, are given
in table 7.2.

These results are also plotted as a solid line
in figure 7.5 along with experimental data ob-
tained on two mild steel plates having {=2.95
inches and thicknesses A=0.091 and 0.063 inch.
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(o)

{b)

F1eurEe 7.3.—Fundamental mode shape components for
a C-C-C triangular plate. (a) Shape along f-axis.
(b) Shape parallel to n-axis. (After ref. 7.1)

The limiting values as ay=c;=a—0 and
a=a,=a—90° are both well-lgxown exact
solutions. Both cases become, in the limit,
that of an infinite strip having its opposite
edges clamped; that is, wb%/p/D=22.4. This
limiting value is used to plot the curves of
figures 7.6 and 7.7 which were taken from
reference 7.3.

Hersch (ref. 7.5) showed that a lower bound
for the frequency of an equilateral triangle
clamped all around is given by wb%/p/D>>82.20.

71.2 C-C-SS

The only known solutions to the problem of
the C-C-SS triangular plate are for the case
when the triangle is isosceles, as shown in
figure 7.8.

TABLE 7.2.—Fundamental Frequency Param-
eters wl%/p/D for C-C-C Isosceles Triangle
Plates

2a, deg 30 ] 60 90

WBVoIDoee e
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Figure 7.4—Triangular finite difference meshes.
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Figure 7.5.—Theoretical and experimental funda-
mental frequency parameters for C~C-C and C-C-8S
isosceles triangular plates. (After ref. 7.3)

Cox and Klein (ref. 7.6) solved the problem
by using the collocation method and the de-
flection function

3rx
a

4qa’ .
(1——%§>sm2’2r—2cos (-%a% (7.3)

Eq}lation (7.3) satisfies all the boundary con-
ditions exactly except that for zero ‘bending

W(z,y) =(A1 sin %x+A2 sin ?Z_ft+A3 sin

(b)

(a) Coarse grid. (b) Fine grid.
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Ficure 7.6.—Fundamental frequency parameters
wb?v/p/D for C-C~C and C-C-SS isosceles triangular
plates. (After ref. 7.3)

0 30°

moment M, along z=a. It satisfies this con-
dition only at the midpoint of the side (i.e., at
y=0). The differential equation (eq. (1.4))
was satisfied at the three points (a/2, 0),
(2a/3, 0), and (3a/4, 0), thus giving & third-order
characteristic determinant for the frequencies.
Results for the fundamental frequency param-
eter obtained directly from the collocation pro-
cedure are shown as the broken curve in figure
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Figure 7.7.—Fundamental frequency parameters

wetyp/D for C~C-C and C-C-S88 isosceles triangular
plates. (After ref. 7.3)
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Ficure 7.8.—C-C-88S isosceles triangular plate.

7.9. The solid curve, which is indicated in
reference 7.6 as being more accurate, was found
from an extrapolation of finite difference
solutions.

Ota, Hamada, and Tarumoto (ref. 7.3) used
the solution for the rhombus given in reference
7.4 (see sec. 5.1.1 of the present work) to solve
the problem of the isosceles triangle. Funda-
mental frequency parameters are given in
table 7.3, where [ is the length of the equal
sides. These frequency parameters are plotted
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Figure 7.9.—Fundamental frequency parameters for a
C-C-88S isosceles triangular plate. (Aftar ref. 7.6)

‘TasLe 7.3.—Fundamental Frequency Param-

eters for a C—C-SS Isosceles Triangular Plate

24, deg 30 ' 60 | 90 ’ 120 ‘ 150
|
N N 178.8 | 81.6 | 73.6 \ 105.2 | 304.0

in figure 7.5 along with experimental results
obtained on mild steel plates. In figures 7.6
and 7.7 they are plotted again in terms of
other length dimensions, including the limiting
cases as 2a—0 and as 2a-180°, for which
there are exact solutions.

For more results on the problem, including
those for higher frequencies, see the discussion
of the antisymmetric modes of a C-C-C-C
rhombus (sec. 5.1.1) and of a C-C-C-C square
(sec. 4.3.1).

11.3 CCF

There are no specific solutions of the prob-
lem of the C—C-F triangular plate. Westmann
(vef. 7.7) proposes for the case of the isosceles
triangle having its equal sides clamped that
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the frequency is bounded by those of the in-
scribed and circumseribing C-C-F sectorial
plates as shown in figure 7.10. Results for the
sectorial plates are given in the chapter entitled
‘“Plates of Other Shapes” (sec. 8.2).

7.1.4 C-S5-SS

Cox and Klein (ref. 7.8) solved the problem
of the C—SS-SS triangular plate for the case
of an isosceles shape; that is, a;=a, in figure
7.11. The collocation method was used, with
a deflection function

. oML . T . 2mx
Wi, y)=<A,x"’ sin? 7+A23:"’ sin-—sin ==

4
+A3(%(x—a)“> cos (%ai—/ (7.4)

The differential equation (eq. (1.4)) is satisfied
at the three points (¢/2, 0), (2¢/3, 0), and
(3a/4, 0), thus giving a third-order characteristic
determinant for the frequencies. Resulting
fundamental frequency parameters are shown
in figure 7.12.

For the case when oy=a,=45°, the funda-
mental frequency may be found quite accu-
rately from the fourth mode of a square plate
clamped all around (sec. 4.3.1). Using the
value from reference 7.9 yields wa®/p/D=232.91
as a close upper bound. The value from figure
7.12 is 34.7 (ref. 7.8).

Solecki (ref. 7.10) solved the problem for the
case a;=60° @a;=30°. A solution for the
SS-SS-SS case (see sec. 7.1.6) is taken, and a
Fredholm integral equation of the first kind is
formulated to satisfy the condition of zero

02 —ade— R
=

Figure 7.10.—C-C-F isosceles triangular plate with
inscribed and circumsecribing sectors.
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Figure 7.11.—C-S8-SS triangular plate.
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FIGURE 7.12.—Fundamental frequency parameters for a
C-SS-S8 isosceles triangular plate. (After ref. 7.8)

slope along r=a. The fundamental frequency
is found to be w=/(120.0~/D/p)/c.

7.14.5 C-SS-F

No solutions of the specific problem of the
C-SS-F triangular plate are known. In the
case of the right triangular plate (see fig. 7.13)
having the hypotenuse free, a considerable
amount of information can be obtained from
the antisymmetric modes of a symmetric
C-F-F triangular plate (sec. 7.1.8).
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Ficure 7.13.—C-S8-F right triangular plate.

7.1.6 SS5-S5-SS

Conway and Farnham (ref. 7.11) solved the
problem for the SS-SS-SS isosceles triangle
(i=az=a in fig. 7.14) by using the method
employed on the SS-SS-SS-SS rhombus (sec.
5.1.4). Functions given In equation (5.18)
were used and boundary conditions of zero
bending moment were satisfied at N points
along the edge z=a (fig. 7.14). Frequency
parameters arising from various N*-order char-
acteristic determinants are displayed in table
7.4. For a first-order determinant, the single
point used was at z=a, y=0.

Cox and Klein (ref. 7.2) solved the case of
the isosceles triangle by the collocation method
using a deflection function

W(x,y):(A,sinE+Azsin2—@
a a
. 3XT\( . 7T waY
+A3sm—a )(sm 2a‘cos————bgv) (7.5)

This function satisfies the condition of zero
deflection exactly on all boundaries. It also
gives zero normal moment at (a, 0) and at some
point in the interval a/2=z=< 3a/4 along the
equal sides. The differential equation (eq.
(1.4)) is satisfied at the three points (h/2, 0),
(2k/3, 0), and (3k/4, 0), giving a third-order
characteristic determinant to solve for the fre-
quencies. Fundamental frequency parameters
are given in figure 7.15. When 2a=90° the fre-
quency parameter is found by the foregoing
method to be wa?/p/D=24.028. This is in
error by 2.61 percent (ref. 7.2) from the exact
value of 24.674 obtained from the second mode
of a SS-SS-SS-SS square plate. It must be
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Ficure 7.14.—88-8S-8S triangular plate.
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Figure 7.15.—Fundamental frequency parameters for
a SS-SS-SS isosceles triangular plate. (After ref. 7.2)

observed that the curve of figure 7.15 is clearly
inaccurate for small values of 2a/b, for in the
limiting case 2a/b—0 the exact solution for
the case of a SS—SS strip, which is wa%/p/D=
x2=9.87, applies.

The results of reference 7.2 were extended in
reference 7.12 to estimate the frequencies of non-
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TABLE 7.4— Frequency Parameters wa’/p/D for
SS-SS-8S Isosceles Triangular Plates

wayp/D for determinant of
size—
a, deg
1by1l 3by3
10 .. 177. 69
5. ... 98. 72 97. 93
20, | __ 66. 34
25 e e 49. 45
30, o _____ 40. 70 39. 48
K 1 NN I 32. 87
40 .. 28. 18
45 .. 26. 38 24. 67

isosceles triangles. This was done by taking
the results of reference 7.2 and redefining the
dimensions @ and b so that one of the equal
angles becomes the vertex angle and its opposite
side becomes the base of length b. This gives
some points on the curves of figure 7.16. Other

200

3 888

we2 70

3 8

V

/
7

7
4

AN

20

[0) (o] 1.5 20 25 30 35 40

2¢/b

Fioure 7.16.—Fundamental frequency parameters for
a SS-SS-SS triangular plate. (After ref. 7.12)

points are determined from the relationship

(BB oo

relating the frequency parameters wc?/p/D
corresponding to the medians of the triangle
which have lengths ¢, ¢, and ¢;. Again, the
curves are inaccurate for small values of 2¢/b.

Solecki (ref. 7.10) gave the frequencies and
mode shapes for the 30°-60°—90° triangle shown
in figure 7.17. Mode shapes were taken as

@Cm+n)rz . nxy
Wra(z, )= (sm—————sm —a—)

_[(_l)mﬂsm (m+2n)1rx ; mry]

R
(m=2,3,..,n=1,2,..;m>n) (7.7)

FiGURE 7.17.—30°-60°-90° S5-SS-SS triangular plate.
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in terms of figure 7.17. Corresponding fre-
quencies are found from substituting equation
(7.7) into equation (1.4), giving

4 (mi+ mn-l—n“)J_ﬁ_
3a? p

Wmn

(m=2,3,..;0n=1,2,3,.. m>n) (7.8)

Thus the fundamental frequency is found from
equation (7.8) to be wxua’yp/D=92.113.

This was also found in reference 7.13 by
using the solution for the SS-SS-SS-SS rec-
tangle and the method of images. Nodal
patterns for the first six modes are shown in
figure 7.18. The case of the 30°-60°-90°
triangle is also discussed in reference 7.14.

Schaefer and Havers (ref. 7.15) found the
fundamental frequency of the equilateral tri-
angle of altitude a to be wa%/p/D=39.478.
The problem was also solved by Conway by
analogy in reference 7.16 and by the point-
matching method in reference 7.11. The
problem is also solved in references 7.17 and 7.18.

The case when a=a,=45° (fig. 7.14) can be
deduced from the higher mode shapes of a
SS-SS-SS-SS square plate.
frequency parameter is wa’yp/D=24.674.

The case when a;=a,=60° was examined by
Seth (ref. 7.17), who gave a fundamental fre-
quency parameter of wo?y/p/D=17.272.

Much more information is available for this
problem from an analogy that exists between

% w2, % w3y % w32
Wai We2 Wsq
L
4

Ficure 7.18.— Nodal patterns for a 30°-60°-90° SS—
SS-SS triangtlar plate.

oy

The fundamental

a vibrating membrane and a simply supported
polygonal plate (see the chapter entitled
“Plates of Other Shapes” (ch. 8)).

7.1.7 SS-SS-F

There are no specific solutions of the problem
of SS-SS-F triangular plates. Westmann (ref.
7.7) proposed obtaining bounds from SS-SS-F
sectorial plates. (See sec. 7.1.3.)

71.8 C-F-F

Consider first the symmetric cantilevered
triangle depicted in figure 7.19. Andersen
(refs. 7.19 and 7.20) solved the problem by
using the Rayleigh-Ritz method and the
triangular u-v coordinates shown in figure 7.19
(see also the discussion for the C-F-F-F
trapezoidal plate, sec. 6.1.2). For symmetric
modes, the four-term series

W (u, v) =[ A+ AsuYs(0) 1 (1)
+ [ A+ Apguds(0)la(u)  (7.9)

was used, and for antisymmetric modes the
series

W (u, v)=[4da0+Aabs(0) W1 (u)  #
+[A v+ Al () Jupa(u) (7.10)
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FiGuRrE 7.19.—Symmetric C-F-F triangular plate.
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was used, where ¢, and ¢, represent the first
two modes of a cantilever beam free at u=0
and clamped at u=1. (See discussion of the
rectangular cantilever beam, sec. 4.3.12.) The
functions y¥; and 4 represent the first symmetric
and antisymmetric modes, respectively, of a
beam free at v=+1. The expression for the
strain energy in {riangular coordinates is
given in equation (6.4). Integration was
performed numerically. Frequency param-
eters, nodal patterns, and amplitude coefficients
for the first four modes and several a/b ratios
are given in table 7.5. Poisson’s ratio is 0.3.

Variation of frequency parameter with a/b
ratio for the two antisymmetric modes Is
shown in figure 7.20. 1t is seen that the
frequency parameters increase linearly with
a/b, as was the case for the C-F-F-F
rectangle (sec. 4.3.12). Frequency variations
for the first two modes are shown in figure 7.21
where the frequency parameters wa’y/12p/Eh’
obtained from beam theory are also plotted
as horizontal broken lines. It must be re-
membered that the plate and beam frequency
parameters differ by the factor 1—»%. Thus,
when Poisson’s ratio is considered, the plate
frequencies themselves are slightly higher than
those predicted by beam theory.

Duffin, Gustafson, and Warner (ref. 7.21)
also used the Rayleigh-Ritz method to analyze
the triangular plate of symmetric shape. A
partial summary of deflection functions used
and frequency parameters obtained is given
in table 7.6, where the notation used is that of
figure 7.19 and »=1/4. Because modes 1 and
2 are symmetric and antisymmetric, respec-
tively, the frequency parameters listed for
these modes are guaranteed to be upper bounds
on the exact frequencies, and improvement in
bounds with the various functions used is
clearly indicated in the table. Further results
were obtained which showed the variation in
fundamental frequency parameter and mode
shape with a/b ratio and Poisson’s ratio by
using the deflection function.

w=(§—1>2(?—:§+5>+11,(2—1)2§ (7.11)

These are shown in table 7.7.
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FiGCRE 7.20.—Variation in antisymmetric frequency
parameters with a/b for a C-F-F symmetric triangular
plate; »=0.3. (After ref. 7.20)
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FicuRrE 7.21.—Variation in symmetric frequency param-
eters with a/b for a C-F-F symmetric triangular
plate; »=0.8. (After ref. 7.20)
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TaBLE 7.5.—Frequency Parameters, Nodal Patterns, and Amplitude Coefficients for a O-F-F

Symmetric Triangular Plate; v=0.3

. afb
Amplitude
Mode Nodal lines coeflicient
1 2 4 7
wa"'\/p/_D
Q—a!
7.149 7.122 7.080 7.068
1 b
Ay 1. 000000 1. 000000 1. 000000 1. 000000
Ao oo ___ —. 013453 —. 018583 —. 020249 —. 020664
Ao . 000887 —. 000068 —. 000026 —. 000008
Asge s zrzue . 002312 —. 001362 —. 000498 —. 000176
wa?yp/D
30.803 30.718 30.654 30.638
2
Apn_ oo —0.77460 —0. 76682 —0. 76427 —0. 76368
Ayl 1. 00000 1. 00000 1. 00000 1. 00000
Ay __ —. 02305 . 00527 . 00208 . 00073
Asge . . 04645 . 01022 . 00241y, . 00077
wa*/p/D
61.131 90.105 157.70 265.98
3
. ¢ R 1. 64125 0. 60941 0. 33684 0. 27432
Agge o __ 1. 00000 1. 00000 1. 00000 1. 00000
Ay . 00581 . 00155 . 00038 . 00012
Ao oL —. 00380 —. 00079 —. 00019 —. 00006
walyp/D
148.8 259.4 493.4 853.6
4
¥ [T 1. 00000 1. 00000 1. 00000 1. 00000
A ome o —. 32893 —. 31823 —. 31430 —. 31330
Ajg_o . —. 00808 —. 00156 —. 00036 —. 00012
Ay . 00586 . 00122 . 00029 . 00009
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TaBLE 7.6.—Deflection Functions and Frequency Parameters for a Rayleigh-Ritz Analysis of a O-F~F
Symmetric Triangular Plate; v=1/4

afb Mode no. Deflection function, W(z, y) Amplitude wa*yp/D
coefficients
2
2. .. 1 (’-”—- 1) <£+Ao> Ae=5/3 7.15
a a
z_1Y(3 T 1 \V¥ -
(& 1) (a +5)+A, (a 1) - A=—485 6. 55
z_\'y
2 ((-l 1) vy 26. 5
(’-’—1 (Vs a y—s) A=—1
z )(a % = 23. 8
z_ \/z y —
(E 1) (E+A,) y A3=0.462 23. 0
T iz
3 (5—1) (E—A.) A,=49/164 37.1
2
1. 1 (Z—l) (§+A,) Ay=53 7.15
z 2/3z .7 22 _ ;
(a—- 1) (-a—+5)+A6 (E“ 1) g Ag=—3.61 7. 02
TaBLE 7.7.—Frequency Parameters and Amplitude Coefficients for C-F-F Symmetric Triangular
Plates
ofb v=0 yv=1/4 v=1/2
Ay wa?y p/D Ay wayp/P Ay wa?Vp/D
Y2 oo —3.95 6. 733 —4.85 6. 555 —5.92 6. 320
S —2.27 7. 101 —3.61 7. 002 —5.09 6. 888
PR —. 725 7. 154 —2.25 7. 122 —3.83 7. 032

Kumaraswamy and Cadambe (ref. 7.22)
experimentally determined the first 18 modes
and frequencies of a symmetric triangular
cantilever plate made of commercial mild steel.
Pertinent dimensions and physical constants
were: a=6.00 inches, b=6.00 inches, h=0.0895
inch, pg=0.282 pound per cubic inch, length-

wise E=29.83X10° psi, breadthwise E=29.18"

X10° psi, and »=0.29 (assumed). Cyclic fre-
quencies and frequency parameters are given
in table 7.8. The disagreement in values of
wa*yp/D between tables 7.5 and 7.8 for a/b=1
1s readily apparent. Nodal patterns are shown
in figure 7.22.

Further experimental results from reference
7.23 for a/b=1 are given later in this section.

Consider next the delta cantilever plate
depicted in figure 7.23. This problem was
solved in reference 7.20 for the first two modes
by the method described earlier in this section.
The following six-term series was used for the
deflection function:

W, )= (An+Anu?v+Aau*s(0)) d: (w)

+ (As2+Asuo+ Asuts(0)) o(w)  (7.12)

Frequency parameters, nodal patterns, and
amplitude coefficients are listed in table 7.9 for
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»=0.3. Variation of frequency parameter with
a/b ratio is seen in figure 7.21.

In reference 7.24 the method of reference
7.20 given previously was duplicated by using
only the four terms of equation (7.12) asso-
ciated with Ay, 42, 452, and Az, The funda-
mental frequency for the plate of figure 7.23
was found to be wa?/p/D=5.045 for a/b=1.

VIBRATION OF PLATES

A corroborating experimental value of wa?y/p/D=
5.36 was determined for a steel plate (¢=6.00
in., 6=6.00 in., A=0.0895 in., pg=0.282 lb/in 3,
and £=29.5X10° psi). Tabular values of the
integrals obtained from equation (6.4) are also
given in reference 7.24.

In reference 7.21 the delta plate having
a=45° was also analyzed by the Rayleigh-

TasLe 7.8.—Ezxperimentally Determined Frequencies and Frequency Parameters for a C-F-F
Symmetric Triangular Plate; a/b=1; v=0.29

Mode f, cps wa?yp/D Mode f, cps wavp/D Mode f, cps wa2yp/D
) SR 137 576 || 7_-o.._._ 28. 40 119.10 || 13__._____ 6499 272. 4
2 .. 642 26.91 || 8.___.___ 3133 131. 30 || 14_______ 6526 273. 5
b N—— 655 27.45 )| 9____.____ 3924 164. 40 | 15_______ 6884 288. 5
4 ____ 1442 60.42 || 10___.___ 3988 167. 1 16 .. ___ 7627 319. 7
S 1725 72,30 | 11._____. 4929 206. 5 17.______ 8498 356. 1
6. ... 2080 87.18 || 12___.____ 5939 249 18 . __. 9875 413. 8

TaBLE 7.9.—Frequency Parameters, Nodal Patterns, and Amplitude Coefficients for a C-F-F Right
Triangular Plate; v=0.3

oY
) alb
Mode Nodal lines Amplitude
coefficient
2 4 7
warvp[D
5.887 6.617 6.897
1 b Ay 1. 00000 1. 00000 1. 00000
Ay . 02030 —. 00077 —. 01287
8 Appooooeo . —.31370 —. 09379 —. 03234
Aggevaaa_. —. 14370 —. 07012 —. 02783
Y. K —. 00073 —. 00005 —. 00002
Aggooceee . —. 00598 —. 00198 -, 00070
wayp/D
25.40 28.80 30.28
Ay e —0. 81541 —0.77842 —0.77340
2 A5 e s s 1. 00000 1. 00000 1. 00000
1 Ay e 3. 1448 1.11722 . 40809
Agge e —1.25112 —. 50815 -.19731
Aspoeeeee . . 05200 . 01065 . 00320
Aga oo . 01845 . 00748 . 00028
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FicUure 7.22.—Nodal patterns for a C-F-F symmetric
triangular plate, a/b=1; material, steel. (From ref.
7.22)

ANV N VUV VNN
o

€

Fi1GURE 7.23.—C-F-F right triangular plate.
308-337 O—70——15

Designation Al

Ritz method, using »=1/4. A summary of
deflection functions used and the frequency
parameters obtained is given in table 7.10.
(See fig. 7.23.)

Gustafson, Stokey, and Zorowski (ref. 7.23)
obtained experimental mode shapes and fre-
quencies for the delta configurations shown in
figure 7.24. The plates were cut from sheet
steel averaging 0.061 inch in thickness. Ob-
served nodal patterns and cyclic frequencies
for the first six mode shapes of each plate are
shown in figure 7.25, where the designations
A1, A2, etc., refer to figure 7.24. Variation in
cyclic frequency with b/a ratio for each mode is
shown in figure 7.26.

Christensen (ref. 7.25) used the method of
replacing plate elements by equivalent beam
networks as developed by Hrennikoff (ref. 7.26)
to analyze the delta plate when a=45°. The
10 grid points shown in figure 7.27 were used.
Each grid point is allowed rotation about axes
parallel to the z- and y-axes and a w displace-
ment, and a thirtieth-order characteristic de-
terminant results. Frequency parameters and
grid-point deflections associated with each of
the first 10 vibration modes are given in table
7.11 for »=0.3. Experimental frequency pa-
rameters converted in reference 7.25 from
reference 7.23 (discussed previously) and values
obtained from reference 7.27 by using the
Rayleigh-Ritz method and polynomials are
also listed for comparison. The total mass
of the plate is M. Nodal patterns compared
with the experimental results of reference
7.23 are shown in figure 7.28.

o

e ¥ 2
A2 A3 A4 AS

Ficure 7.24.—C-F-F delta configurations. (After ref.
7.23)
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TasLe 7.10.—Deflection Functions and Frequency Parameters for @ Rayleigh-Ritz Analysis of a
C-F-F 45° Delta Triangular Plate; v=1/4

( )(Ao atdrg £14, ﬂ2+Ao +Ato)

Mode no. Deflection function, W(z,y) Amplitude wayp/D
coefficients
, I (5— 1)2<§+Ao) Ap=5/3 7.15
(2_1)’(37:%) +4, (5— 1)’(%—/4, ) j;z — 3;/8182 6. 37
( )(A T L O — 7.16
(4B a S Tra Ivan) 6. 57
a o
O 5 -
P2, (2)2(31 a—E:'{-Brl'Ba 1') ---------------- 28.0
(Y (ab+a franBealean) 26. 9
8 &(sE+m+ml) e 57.5
54.3

TaBLE 7.11.—Frequency Parameters way/M/D (M, Total Mass of Plate) and Mode Shapes for a
C-F-F /5° Delta Triangular Plate; v=0.3

Mode. ... 1 2 3 4 5 6 7 8 10
wayM/D from ref
7.25 _____________ 4.35| 16.76 | 23.01 | 38.90| 53.65 | 60.32 78.26 | 90.92 | 107. 1 148. 6
M/D from ref
7 y.A. J S 4.17 | 16.4 23.0 39. 3 53.3 | 699 |icssssselimocsevsfesnsomcnafecnmonan
wayM/D from ref
1.27 - 4.42 | 16.9 23.7 43. 5 | e e e
Grid point deflec-
tion amplitude
ratios for point—
) S 1 1 1 1 1 1 1 1 1
p S .65 .29 —-. 27 07 —.74 |—1.01 —1.15 | —1.02 | —1.32 —1.60
IR —— .56 —. 94 .45 | —3.62 —. 18 1. 39 1.8 | —1.03 . 64 3.70
”. SR .33 —. 05 —. 81 .39 —. 06 .04 1. 36 1. 10 . 32 5. 08
B i i i .28 —.78 —-.07( —.31 . 04 .002 | —2.08 1.74 | —1.65 —6. 98
; J .20 —1.33 .43 1. 88 .03 |—1.99 4. 38 —. 37 .65 5. 54
T smmmms somen 10 —. 05 —. 47 44 55 .90 3.05 | —1.66 | —1.05 —5.48
8. o .08 1 —.32 —. 11 . 49 . 47 .27 -3.77 —. 70 . 43 8. 62
¢ . 06 —. 45 .12 1.24| —.19 .27 —1.92 | —1.17 . 76 —6. 00
10 . .02 —. 31 .14 1.78 | —1.28 | 2.65 . 84 1.18 | —1.99 2. 89
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Fiaure 7.25.—Experimentally observed cyclic frequencies, cps, and nodal patterns for C-F-F delta triangular
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Fi1Gure 7.26.—Experimentally measured cyclic fre-
quencies for C-F-F delta triangular steel plates. Ficure 7.27.—Grid points in a structural element
(After ref. 7.23)

representation of a C—C-F triangular plate.
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Kawashima (ref. 7.28) used the finite differ-
ence method to obtain frequencies and mode
shapes for delta plates (fig. 7.23) having
bj/a=1 and 2. The 45° delta was analyzed by
using both 6 and 10 free grid points on the
plate, and the other, by using only 6 grid
points. Cyclic frequencies were computed by
using the dimensions of the plates in reference
7.93 for comparison. Available results are
given in table 7.12. Grid points used for the
more accurate analysis of the 45° delta are
shown in figure 7.29, wherein deflections for
the first two mode shapes are presented. At
each grid point, including those along the
clamped boundary, two numbers are listed.
The first gives the deflection amplitude at each
point normalized with respect to the tip
deflection. 'The second is the bending moment
M, relative to the value at a point along the
clamped boundary near the skew edge. Cor-
responding results for the case b/a=2 are also
given in reference 7.28, but are considerably
inaccurate.

= Gridwork Method
——~ Experimental Resuits

[LLL8484

MODES

FicurE 7.28.—Nodal patterns for a C-F-F 45° delta
triangular plate; material, steel. (After ref. 7.25)

TasLE 7.12.— Theoretical Cyclic Frequencies for
CO-C-F Delta Triangular Steel Plates

[
Cyeclic frequencies for values of b/a of—

VIBRATION OF PLATES

The delta plate for the cases b/a=1 and 2
was alfo analyzed by Walton (ref. 7.29) by
using the method of reference 7.30 which re-
places the derivatives in the strain energy
integral by finite differences. Twenty-eight
free grid points were used in the analysis.
Frequencies were computed and compared
with experimental data for sheet steel plates
having the dimensions a=10 inches, b=10
inches and a@=10 inches, and 5=20 inches.
Both plates were 0.061 inch thick and » and £
were taken as 0.025 and 30X 10° psi, respec-
tively. The first six cyclic frequencies for each
plate are given in table 7.13. Nodal patterns
for the five higher modes of each plate are
depicted in figures 7.30 and 7.31.

Hanson and Tuovila (ref. 7.31) experimen-

Mode 1
2 (6 grid
points)
6 grid 10 grid
points points
) O, 40.0 35.0 35. 5
. 115. 5 136. 7 82.7
:: I 155. 8 161. 9 161. 0
. S 221. 0 3003 |-coocamaea-
;S 266. 0 364 0 |icooommimn en

FIRST MODE -

L~

L~

y ﬁ

0.031 4 ol

15263, %

R #

|~

L~

0.264 0.078 ot~

X 0.893 T.561 7498 ;

L~

e

0.657 0.354] 0114 o

-0.334, 0474 1.758] 3647}

e

v

e

| 0725] 0409  0.133 1%
0" <0458 0449 1595 2992

SECOND MODE ;

e

L~

-1.047 o>

0i8 T

e

L~

L~

-1.890 -0.872 ol

-0.485 ~0.108 0833

e

-

-0.834 -0684] -0.327 o

-0.264 ~6.323] -0.1i2 K] g

-

e

-
! 1.303 0993 0483 0
0 0.205 0068 -0090 -0323

Ficurg 7.20.—Deflections and bending moments M.

for a C-F-F 45° delta triangular steel plate.
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tally investigated 45° and 60° delta plates
made of 0.034-inch-thick magnesium (pg=
0.064 1b/in3). (See discussion of the C-F-F-F
parallelogram plate, sec. 5.1.5.) They investi-
gated plates with a=45°, b=6.00 inches, and
a=60°, b=8.50 inches. The first three fre-
quencies and mode shapes for the two plates
are shown in figures 7.32 and 7.33. Note that
the three-dimensional perspective used in these
figures distorts the right angle at the clamped
edge.

Craig, Plass, and Caughfield (refs. 7.32 and
7.33) measured mode shapes and frequencies
on three 6061-T6 aluminum plates % inch
thick and having the dimensions a=7.5 inches,
b=7.5 inches; a=12.5 inches, b=7.5 inches;
and a=15 inches, b=7.5 inches. Cyclic fre-
quencies, nodal patterns, and mode shapes are
given in figures 7.34, 7.35, and 7.36.

,

N

Mode 2 Mode 3
/
4
/)
/
s
4
/]
4
4
]
-1
]
~
4
4
. A
y
p
p
Mode 4 Mode 5
——— Experimental

& Coalculoted

F-\
)
I3

Mode &

Ficure 7.30.—Nodal patterns for a C-F-F delta
triangular steel plate, bla=1.

221

TaBLE 7.13.—Cyclic Frequencies for C-F-F
Delta Triangular Steel Plates

Cyclic frequency, f,
cps
b | Mode P (Computed /
a Measured f
Theoret- Experi-
ical mental
) D 1 36. 4 34.5 1. 06
2 139 136 1. 02
3 192 190 1. 01
4 327 325 1.01
5 432 441 . 980
6 566 578 . 979
P 1 32.8 32.8 1. 00
2 890.9 91. 0 . 988
3 164 164 1. 00
4 175 181 . 967
5 263 283 . 929
6 328 348 i . 943
aa
-
a b a
baa
Mode 2 Mode 3 Mode 4
— Experimentol
& Coiculated
4
Mode 5 Mode 6

Ficure 7.31.—Nodal patterns for a C-F-F delta tri-
angular steel plate, bla=2.
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Fraure 7.32.—Experimental frequencies and mode shapes for a 60° delta cantilever plate; material, magnesium.
(a) Mode 1, fi=>50 cps. (b) Mode 2, f,=184 cps. (¢) Mode 3, fy=258 cps.
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F1GurE 7.33.—Experimental frequencies and mode shapes for a 45° delta cantilever plate; material, magnesium.
(a) Mode 1, f;=66 cps. (b) Mode 2, f,=185 cps. (c) Mode 3, f;==336 cps.
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Figure 7.34.—Experimental data for a 45° delta
cantilever plate; material, 6061-T6 aluminum 4§
inch thick. (a) Experimental node lines and data
points; fi=118.1 cps; fr=448.5 cps; f3=670.5 cps.
(b) Normalized deflection; mode 1; fi=118.1 cps.
(¢) Normalized deflection; mode 2; f;=448.5 cps.
(d) Normalized deflection; mode 3; f;,=670.5 cps.
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FIGurE 7.35.—Experimental data for a 31°
cantilever plate; material, 6061-T6 aluminum 4

inch thick.
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delta

(a) Experimental node lines and data

points; fi=250.2 cps; f,=212 cps; f;=316.5 cps;

fi="524 cps; f5=809 cps.
mode 1; f;=050.2 cps.
mode 2; f,=212 cps.
mode 3; f;=316.5 cps.
mode 4; f,;=524 cps.

mode 5; f;=809 cps.

(b) Normalized deflection;
(¢) Normalized deflection;
(d) Normalized deflection;
(¢) Normalized deflection;
(f) Normalized deflection;
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Fieure 7.36.—Experimental data for a 26.6° delta cantilever plate; material, 6061-T6
aluminum 3 inch thick. (a) Experimental node lines and data points; fi=71.2 cps; f>=300
cps; f3==508 cps. () Normalized deflection; mode 1; fi="71.2 cps. (c) Normalized deflection;
mode 2; f,=300 cps. (d) Normalized deflection; mode 3; f3==508 cps.
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Consider finally the triangular cantilever
plate of general shape as shown in figure 7.37.
In reference 7.29 this problem was also (see
discussion earlier in this subsection) solved ana-
lytically for a sheet steel plate having dimen-
sions ¢=10 inches, =10 inches, 8,=116.6°,
and h=0.061 inch. Material constants were
taken as y=0.250 and E=30X10° psi. Thirty-
one grid points were used in the analysis. The-
oretical frequencies are compared with experi-
mental ones in table 7.14. Nodal patterns for
thé five higher modes are depicted in figure
7.38. :

Frequencies and nodal patterns were found
experimentally in reference 7.23 for sheet
steel plates having ¢=10.0 inches, b=10.0
inches, £=0.061 inch, and 8,=63.4°, 78.7°, 90°,

w»
‘\TI
y

(=

az

Bz

AR AR N 1NN

Figure 7.37..—C-F-F triangular plate of general
shape.

TaBLE 7.14—Cyclic Frequencies for a C-F-F
Triangular Steel Plate; v=0.25

Cyclic frequency, cps
Mode
Theoretical | Experimental | Theoretical
Experimental
) U 27. 6 26. 3 1. 05
2L 107 101 1. 06
[ Mm— 173 171 1. 01
4 .. 262 259 1.01
Sonas 352 346 1. 02
6. 480 522 .92
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101.3° and 126.6°. Results for the first six
modes are shown in figure 7.39.

Klein (ref. 7.34) proposed & set of empirical
formulas for the prediction of frequencies of the
first three bending modes and the first torsional
mode for arbitrarily shaped triangles. These
formulas are given in table 7.15.

The planform dimensions used on both sides
of the formulas in table 7.15 are those of
figure 7.40. Substantiation of the formulas of
table 7.15 was given in reference 7.34 by com-
parison with the experimental results of refer-
ence 7.23. These data are reproduced in table
7.16. The plate designations used are those
shown in figures 7.25 and 7.39.

The vibration of C-F-F triangular plates is
also discussed in references 7.35 and 7.36.

Mode 2

Experimenta!
4 Colculated

Fiaure 7.38.—Nodal patterns for a C-F-F triangular
steel plate.
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Ficure 7.39.—Experimentally observed cyclic frequencies, c¢ps, and nodal patterns for C-F-F triangular steel
plates. (From ref. 7.23)
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Ficure 7.40.—Planform dimensions of a C-F-F tri-

angular plate of arbitrary shape. (After ref. 7.34)

Ficure 7.41.—F-F-F 45° right triangular plate.





[image: image26.jpg]TRIANGULAR PLATES 229

TaBLE 7.15.—Empirical Formulas for Calculating the Frequencies of C-F-F Triangular Plates of
Arbitrary Shape

Mode Frequency formula
Ist bending. .- ________.____ waivp/D=[7.14— (0.4b/a;) Wsec 6,
2d bending_ . ... was/p/D=[31— (2b/a,) — 2v/sec 6,— 1]ysec 6,
3dbending. - - ... _.____. waZvp/D=[73—4(b/a,)?*){1+[sin 6,— (b/2az)]Vsec 6,—1}
Ist torsion. ... _______... walyp/D={20[1+0.2(b/as)*]* +30(b/az)Vsec 6,— 1} (a,/b)

TABLE 7.16.—Cyclic Frequencies Computed From Empirical Formulas Compared With Test Results
for C-F-F Triangular Plates; Material: Steel

Frequency, cps, computed from—
Bending type modes
Plate Torsional mode
fr Ja Js

Formula Test Formula Test Formula Test Formula Test
Al e ses ssmmans 32.5 32.8 92 91 179 181 164 164
A2 . 35.3 34.5 140 136 325 325 192 190
A3 . 38.3 37.5 160 161 386 392 245 243
7% N —— 39.6 38. 4 168 165 401 403 330 338
ABy e semes o 40. 6 40. 2 173 172 414 411 598 608
Sl . 39.1 38.5 168 169 400 404 167 166
- A — 37.8 37.8 156 151 365 363 194 186
B8 s 35.3 34.5 140 136 325 325 192 190
<5 A —— 31.6 32. 4 121 120 293 293 179 182
85 e 26. 6 26. 3 98 101 255 259 166 171
7.19 F-F-F plate having dimensions ¢=8.86 inches and

Waller (ref. 7.37) experimentally investigated
completely free 45° right triangular plates.
The modes were classified as m/n according to
the corresponding products of beam functions,
namely,

W(x; '.l/) =AmnXm(x) Yn(y) + anXn(z) Ym(y)
(7.13)
where z and y are as shown in figure 7.41 and

the beam functions apply to beams of length a.
Cyclic frequencies were obtained for a brass

h=0.102 inch and are given in table 7.17 along
with frequency ratios relative to the funda-
mental frequency. Corresponding nodal pat-
terns are shown in figure 7.42. Nodal patterns
for some higher nodes are shown in figure 7.43.

Some nodal patterns obtained for free equi-
lateral triangular plates (ref. 7.38) are depicted
in figure 7.44.

7.2 OTHER SUPPORTS AND CONDITIONS

The problem of a simply supported 30°-60°-
90° triangular plate with an internal point





[image: image27.jpg]230 VIBRATION OF PLATES

support at £ 7 (see fig. 7.45) was studied by
Solecki (ref. 7.10). Frequency parameters for
the first three modes and for various locations
of the point support are given in table 7.18.

The isosceles right triangular plate with all
edges free and having hub-pin supports (see
fig. 7.46) was investigated experimentally by
Craig, Plass, and Caughfield (refs. 7.32 and
7.33). Pertinent dimensions, cyclic frequen-
cies, and the nodal patterns of the first four
modes of vibration are shown in figure 7.46.
Corresponding mode shapes are plotted in
figure 7.47.

TasLe 7.17.—Cyclic and Relative Frequencies
for a F-F-F 45° Right Triangular Brass
Plate

[Relative frequency ratios are in parentheses]

Cyclic frequency, cps, for values
of n of—
m
0 1 2 3
7 S E— 162 227 380  [amessemes
(1) (1. 4) (@1 )) ] REC—
F: S 414 590 710 1090
(2. 56) (3. 65) (4. 39) (6. 8)
. S 862 1078 1350 1690
(5. 32) (6. 62) (8. 36) (10. 4)
L S 1380 1670 2000 2490
(8. 54)| (10.3) (12. 4) (15, 4)

TABLE 7.18.—Frequency Parameters wb*yp/D for
a SS-SS-SS 30°-60°-90° Triangular Plate
With an Interior Point Support

¢ " wb3Vp/D for mode—
a b
1 2 3
0.10 0. 50 97. 91 205. 29 258. 19
.20 . 50 99, 88 216. 34 261. 35
.25 . 50 101. 06 219. 50 263. 32
.30 . 50 101. 85 220. 29 264. 51
.40 . 50 101. 85 189. 10 259. 77
.50 . 167 129. 88 216. 34 276. 35
. 50 . 250 152. 39 206. 08 249. 90
. 50 . 333 140. 15 175, 28 250. 29
. 250 . 250 170. 55 170. 94 276. 35
. 333 . 333 147. 25 233. 71 264. 11

~

AN
b b
h b b
bbb

Fioure 7.42.—Nodal patterns for a F-F-F 45° right
triangular plate; material, brass. (From ref. 7.37)

4/4 | 6/1
6/2 7/2 6/4

FIGURE 7.43.—Nodal patterns for some higher modes of
a F-F-F 45° right triangular plate; material, brass.
(From ref. 7.37)
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F1GURE 7.44.—Nodal patterns for a F-F-F equilateral 2’ PIN
triangular plate; material, brass. (From ref. 7.38)
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FiGURE 7.46.—Cyclic frequencies and nodal patterns
for an isosceles right triangular plate with hub-pin
supports; material, 6061-T6 aluminum » inch
thick. f,=76.9 cps; f2=297 cps; f3==390 cps; fi==841
cps.

P F o
|

X

FIGURE 7.45.—88-SS-8S 30°-60°-90° triangular plate
with internal point support.
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FiGURE 7.47.—Normalized deflections of a 45° triangular hub-pin plate; material, 6061-T6 aluminum. (a) Mode 1;
fi=16.9 cps. (b) Mode 2; f,=297 cps. (¢) Mode 3; f,=390 cps. (d) Mode 4; f =841 cps.
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8.1 POLYGONAL PLATES

Well-known analogies (refs. 8.1 and 8.2)
exist between the separate problems of trans-
verse free vibration and buckling of a polygonal
plate simply supported all around and the
problem of the transverse vibration of a
prestretched membrane having no deflection at
its edges.

The governing differential equation for the
vibrating membrane is

2

VW + (”—'"—1“,"") W=0 (8.1)
where W=W(z, y) is the transverse deflection,
pm is the mass density per unit area, w, is the
frequency, and 7T is the membrane tension
(force per unit length). Operating on equation
(8.1) by V? and substituting for VW from
equation (8.1) give the resulting equation

2\ 2
v*W—(i""—“"") W=0 (8.2)
T

which is identical to equation (1.4) except for
the constant coefficient of W. Furthermore, if
W=0 along the polygonal boundary of the
membrane, then by equation (8.1) V2ZW is also
zero, which satisfies the boundary conditions
for the simply supported plate. Thus a com-
plete analogy exists between the two problems,
and the frequency of the plate can be obtained
from that of the membrane through the

correspondence
‘fﬁ N(mefu>2
D T

Again, operating on equation (8.1) by V2
gives

(8.3)

2
V4W+(”'"—1‘:"" VW =0 (8.4)

Chapter 8

which is of the same form as the differential
equation governing the buckling of a plate

under the action of the inplane forces
N,=N,=N, (a constant; i.e., hydrostatic
pressure) :

v+ 20y =o (8.5)

Again, the homogeneous boundary conditions
for the simply supported polygonal edges of
the plate are satisfied by the conditions around
the membrane. Thus the following corre-
spondence exists: ‘

(No)er Pmi
where (Ny)., is the critical buckling load of
the plate; that is, the eigenvalues which
satisfy the homogeneous boundary conditions.
Finally, from a comparison of relationships
(eq. (8.3) and eq. (8.6)), it is seen that the
following correspondence exists between the
plate vibration and plate buckling problems
(when, of course, all edges are rectilinear and

simply supported):
2 N

—~

“\'D D (8.7)

Results given for polygonal plates having all
edges simply supported in the sections that
follow are taken from literature which dealt
directly with the plate problem. For further
results which can be obtained through the
analogy (eq. (8.3)), the reader is directed to the
published literature dealing with membrane
vibrations.

8.1.1 Pentagons

Kaczkowski (ref. 8.3) analyzed the regular
pentagon of side a (fig. 8.1) for the case when
237
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all edges are simply supported. He chose a
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Fi1cUurg 8.1.—Regular pentagon.

deflection function

W(z, )

53 [Ansony/ () 4 5
()5 (%

(8.8)

which exactly satisfies the symmetry conditions
along AB and the simply supported conditions
along OA. The symmetry conditions along
OB yield a characteristic determinant for the
problem. The fundamental frequency was
found to be wa?yp/D=10.863.

Waller (ref. 8.4) experimentally found several
nodal patterns for a completely free regular
pentagon. These are exhibited in figure 8.2.

8.1.2 Hexagons

The fundamental frequency of a regular
hexagon of side length a¢ and simply supported
along all sides was determined by Kaczkowski
(ref. 8.3) to be wa?/p/D=6.961 by using the

"method described in the previous section.

Conway (ref. 8.5) solved the problem by the
point-matching method, using the solution in
polar coordinates (eq. (2.1)) and satisfying
boundary conditions at all corners, midpoints,
and quarter points of the sides. This gave the
fundamental frequency as wa’/p/D=7.129.
The problem is also discussed in references
8.2 and 8.6.

Nodal patterns for completely free regular

* hexagonal plates were determined experimen-

tally by Waller (ref. 8.4) and are exhibited in
figure 8.3.

s -
: * e e

e 2

. Fvs) p
- R i ¢
p
&
“
3

Ficure 8.3.—Nodal patterns of completely free regular hexagonal plates. (From ref. 8.4)
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Freure 8.4.—Nodal patterns of completely free regular octagonal plates. (From ref. 8.4)

8.1.3 Other Polygonal Plates

The fundamental frequency of a regular
octagonal plate of side length a and simply
supported along all edges was computed to be
wa’/p/D=3.624 in reference 8.3. The method
used was that described in the discussion of
pentagons (sec. 8.1.1).

Experimentally observed nodal patterns for
completely free regular octagonal plates are

set forth in figure 8.4 (ref. 8.4).
8.2 SECTORIAL PLATES

Coordinates and dimensions of a circular
sector are shown in figure 8.5.

8.2.1 Radial Sides Simply Supported

An exact solution is obtainable for the case
when the two radial edges are simply sup-
ported, regardless of the homogeneous bound-
ary conditions which exist along the circular

F1aure 8.5.—Circular sector.

edge. If one takes solutions to equation (1.4)
in the form of equation (2.1) with n=m/2q,
37/2a, . . . (fig. 8.5), satisfaction of the bound-
ary conditions along the circular edge yields a
second-order characteristic determinant for the fre-
quencies of symmetric modes. Similarly, the
antisymmetric modes are determined by re-
placing cos mé with sin n6 where n=n/a,
3w/a, . ... In spite of the relative simplicity
of this approach, the only known solutions of .
this type are those for which n is an integer
and which correspond to the higher modes of

a circular plate.
Westmann (ref. 8.7) solved the case when

the circular edge is free by using the Rayleigh
procedure, assuming a deflection function

W(r, 8)=r? cosné (8.9)

and obtained the following approximate for-
mula for the fundamental frequency parameter:

w?atp/D=3(n*—2n*+8)—v(6n’—8) (8.10)

For the case when n=3 (2a=60°), results for
w obtained from equation (8.10) for »=0 and
»=1/3 are determined (ref. 8.7) to be 4.8 and
5.5 percent too high, respectively, when com-
pared with an exact solution obtained from the
threefold symmetric mode of a completely free
circular plate (see sec. 2.1.3).

8.2.2 Other Boundary Conditions

Ben-Amoz (ref. 8.8) used the Rayleigh-Ritz
method to solve the problem when all edges are
clamped. A deflection function

W (r,0)=£(1—£™)?[C,; (coshy,0-+cosy2)
-+ 0, (cosh v,0—cos v:8)+- C; (sinh v,8
+sin v.6)+ C, (sinh y,6—sin v:6)] (8.11)
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was used, where

‘Yl.2=[(03+Po—bo)”2:f:0'0]”2 )

Bo= g (m—1)

2

bo== 2)(2+3m+2m?

m=n/2a

t=rla

_ owfa*p(m+1)(2m+1)(3m+2)
P="9D (m+F3)(m+6)(2m+3) )

This function satisfies the clamped edge condi-
tions at r=a exactly. Substituting equation
(8.11) into the boundary conditions at =+«
yields the characteristic equation

L)

N s Y22 14 %0 ginh Y ¥gin T2
cosh 5 €087 1+7172s1nh 5 Sin 5 (8.13)

Variation of the fundamental frequency with
sectorial angle is shown in figure 8.6.

The case when the two radial edges are
clamped and the circular edge is free was ana-
lyzed in reference 8.7 by using the Rayleigh
procedure and an assumed mode

W(r, 8)=r*(1+cos m8) (8.14)

giving a fundamental frequency parameter of
w’atp/D=(m*—2m?*+24)—v(6m?—24) (8.15)

where m is taken as =/a.

Waller (ref. 8.4) experimentally observed the
two nodal patterns shown in figure 8.7 for a
completely free semicircular plate.

8.3 OTHER PLATES

Grinsted (ref. 8.9) experimentally determined
the frequencies and mode shapes of a flat brass
plate designed to simulate an impeller blade.
The plate was 0.064 inch thick, and the remain-
ing dimensions are given in figure 8.8. Mode
shapes observed, along with the corresponding
cyclic frequencies, are depicted in figure 8.9.

In reference 8.9, experimental results are
also given for a cantilevered plate of irregular
shape intended to simulate a marine propeller
blade. Dimensions of the plate and cyclic fre-
quencies are given in figure 8.10. Correspond-

OF PLATES
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FiGure 8.6.—Fundamental frequency parameter for a
completely clamped sectorial plate. (After ref. 8.8)

H

Ficure 8.7.—Nodal patterns for a completely free
semicircular plate. (From ref. 8.4)

The

ing mode shapes are shown in figure 8.11.
material is mild steel.

Ruscoe (ref. 8.10) experimentally found
several “‘complex modes” of a flat plate in the
shape of a turbine vane having a curved edge
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Clamped Edge
/_ p [*]

Ficure 8.8.—Dimensions of a flat-plate model of an
impeller blade; R, radius. (After ref. 8.9)

Fiaure 8.9.—Cyclic frequencies and mode shapes for a flat-plate model of an impeller blade. (From ref. 8.9)
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Frcure 8.10.—Plate dimensions and cyclic frequencies for a flat-plate model of a marine propeller
blade. (After ref. 8.9)
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F1eurE 8.11.—Nodal patterns and cyclic frequencies for a flat-plate model of a marine propeller blade. (After ref. 8.9)
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clamped and two straight edges free as shown
in figure 8.12. Frequencies were given but
plate dimensions were unspecified.

The problem of a plate of epicycloidal shape
clamped on its cohtour is studied in reference
8.11. No numerical results are given.

In reference 8.12, a method for analyzing
~ plates having two parallel edges of general cur-

vilinear shape and simply supported is pre-
sented. No numerical vibration results are
included.

Some bounds on frequencies of clamped plates
of irregular shape are discussed in references

8.13 and 8.14.

F1GURE 8.12.—Some mode shapes of an irregular plate.
(After ref. 8.10)
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No work in the literature has been found for
the case of general anisotropy. Results for
the special cases of polar and rectangular
orthotropy are summarized in the following
sections.

9.1 POLAR ORTHOTROPY

The differential equation for the transverse
bending of a polar orthotropic plate is (see the
appendix) :

ow, Do d'w | Dydw D, 0w
Digat2 i grog T o 127 or
2D, Pw Dpd'w | 2

aZ
— 5o Zor s (De+ Do) “b%f
Dyow |, Qw__
x5, TP =0 (9.1)
Assuming a variables separable solution

w= iW,,(r) cos nf cos wl (9.2)
n=0 .

and substituting it into equation (9.1) give

Chapter 9

The solution to equation (9.3) can be expressed
as a power series

W,=ri }i;, ar (9.4)
=

as was shown first by Akasaka and Takagishi
(ref. 9.1) and later in references 9.2, 9.3, and
9.4. Substitution of equation (9.4) leads to a
recursion relationship among the coefficients a;.

Results exist for circular plates for only two
cases of simple edge conditions—when the
edge is either completely clamped or .simply
supported. V

9.1.1 Clamped Circular Plate

The coordinate system and dimensions for
a clamped circular plate are shown in figure 2.1.
Boundary conditions are stated in equation
(2.2).

For axisymmetric modes (n=0) certain
terms in equation (9.1) disappear; that is,
terms containing derivatives with respect to 6.
Akasaka and Takagishi (ref. 9.1) used the

AW, 2n2D,d*W,  n‘DW,  2D.d'W, .
D=5 — n,.z ? I += ri LI infinite series (eq. (9.4)) to formulate a second-
5 ) . order characteristic determinant for the
+2nrsDro dg:"—% gg?‘" ——2% (Do+D,s) frequencies
Dydw, B an  anl_
+2 =0 (93) o o=0 (9.5)
where
— (w/E)? (w/£)* . 3
=112 - T D@ O—F) B B —F) T
a =14 (w/£)? + (w/£)* + .-
B (3+E)8C+k) T (5+k) (3+k)8(2+k) (9+k) (7+k)16(4+k) (9.6)

(e (w/8)?

w=g0_ 1T ewe—m T ]
P A 1)

=1Vt nernt
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and where £##=D,/pa* and kK*=Dy/D,. An ap-
proximate formula for the first two axisym-
metric modes is obtained from equatlon (9.5) by
truncating the series and is given in reference
9.1 as

24(3+k)
5tk

AT (T F) (AT 19F T )
ﬂ:\/ { ] o

Fato/D,= [(4+k>(7+k>

where terms of degree (w/f)* and lower are
retained. Letting k*=Dy/D,=1 gives o/t=
10.23 and 34.3 for the first two axisymmetric
frequencies of an isotropic plate; these values
compare with the values of 10.22 and 39.77
from the discussion of the clamped circular
plate (sec. 2.1.1).

Barsuk (ref. 9.2) solved the problem by ex-
pressing the series (eq. (9.4)) in terms of
hypergeometric functions. He presented closed-
form expressions for the frequency equations
for all values of n given in terms of the hyper-
geometric functions. The only numerical result
given is for the axisymmetric case (n=0) and
vVDy/D,=1.4 and is wa’/p/D,=4.55. However,
because this value is much lower than the value
of 10.22 for the isotropic plate and because
values of De/D, greater than unity should
further s stxﬁen the plate, this. result is_clearly
g@estlonable T

The first antlsymmetrlc frequency parameter
(n=1) is given in reference 9.1 as

] (4 i \/Dr+De+2Dra)'

p_ D,

“’“2\/ 17,—4\/ (2 \/D,+Da+2D,o
L A

(9.8)

The fundamental frequency parameter. for

the case when a concentrated mass M is

attached at the center is given in reference
8(3+k)(2+k)

9.1 as
2M\ (3+k)(2+k)

-y
D, 1+<1ra2p (1+k)?

Pandalai and Patel (ref. 9.4) also solved
the problem by using the infinite series (eq.

(9.9)

VIBRATION OF PLATES

(9.4)) and obtained the following characteristic
equation for arbitrary values of n:

(f=§ 8 0"’>‘n+j) [j—oz} . (n+342) D, ;42 n+1+1:|

[ 5, arncurt]( S5 Daar)
(9.10)

j=0,4,8

where
Onl =AnJ/Ano
Dn,1+2=An,1+2/An2
A, =4, - o/{ A+ (n+1—2)[(n+i—1)—
+n?[(n*—2)8—2(a+2y)(n+i—1)"] }
=FE/E,
B=Ey/E,
and
v=G/E,

and where E,, Ej, E4, and G are the material
constants from the stress-strain relationships

o,=F.e,+ FE ¢4 i
0‘0=Ers€r+Ee€e} (9.11)
TrozG'YrO

and

12w%atp

ER

M= (9.12)

If the infinite series of equation (9.10) are
truncated to include terms up to the degree
2n+4, & first approximation for the eigenvalue
A is given by

N=1/(Cos— 3Dn6) (9.13)

which for the fundamental frequency (n= 0)
reduces to

1

N=5(9—8)(25—6) (9.14)

In reference 9.3 the same series solution was
assumed and a frequency equation was written,
but no numerical results were given for the
problem.
9.1.2 Simply Supported Circular Plate

The coordinate system and dimensions for a
simply supported circular plate are shown in
figure 2.2. The boundary conditions are stated
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in equatlon (2.9). Minkarah and Hoppmann (ref. 9.3) solved the problem for axisymmetric modes
by assuming the series solution (eq. (9. 4)) and arrived at the frequency equation

[ Fr 0+ | =R o+ 2R ]

where

(ar)®

(9.15)

_ (ar)®
F=11Gyay =) T @) @)©)6) 0—

(ar)*

YT O

(or)"

e @ (G- T

(ar)®

o a(")”’“”“[Hs;(zwc)<s+k)(5+k> ® O CFHGIH B GEHTTH Ok

(ar)??
TR @) CT R GHH ATH G+ 6+H T+ H LR (1FD 13 +H T ]

ot =a?p/D;, N=ea, E=Di/D;, and v, is the elastic
constant in the axisymmetric relationship

vedw
dr"’+ : )

rdr

M,=—

The primes indicate differentiation with respect
to r.

Axisymmetric frequency parameters for vari-
ous combinations of elastic constants are given
in table 9.1 taken from reference 9.3.

Experimental frequencies were also measured
in reference 9.3 for the plate of table 9.1 having
k=1.50, »,=0.50, and D,=11500. The cor-

TaBLE 9.1.—Axisymmetric Frequency Param-
eters for a Simply Supported Circular Plate
Hawving Polar Orthotropy

Elastic constants wayp/D,
k vy D, Mode 1} Mode 2 | Mode 3
0.25 | 0.22 | 10.70X104 | 2.500 |________|.__-__.
. 50 . 40 4.75 3.629 | | ...
. 50 .30 5.20 3.452 | .| ..._._
.75 .70 2. 64 4.765 | 28.249 | 71.572
1.00} .75 1. 88 5.518 | 30.206 | 74. 132
1.00| .75 1. 60 5.518 | 30.206 | 74. 132
1.25 | 1.00 1. 33 6.472 | 32. 524 | 76. 562
1. 25 . 80 1. 50 5.934 | 31.843 | 76. 318
1. 50 .75 1. 08 6. 906 | 34. 047 | 81. 000
1.50 | .50 1. 15 6. 646 | 33.791 | 79. 924
1.75 .35 .95 7.188 | 35. 557 | 83.174

responding frequency parameters and nodal
patterns are shown in figure 9.1 for the first
five axisymmetric modes and the first four
nonaxisymmetric modes.

In reference 9.4 the frequency equation is
written as

®> o,wﬂ){ N [nhj42) (hi+14a)
=0,4,8 j=0,4,8
_anZ]Dn, j+2)\n+l}:<' i Dn'j+2)\n+j+2>
=0,4,8

{j > [(nt5) (o5

=0,4,8
-1+a)—an2]0,,,v+f—2} (9.16)

where the terminology is the same as that used
in the discussion of clamped circular plates
(sec. 9.1.1). Equation (9.16) is obviously ap-
propriate for general vibration modes of the
plate. Truncating the infinite series contained
in equation (9.16) to include terms up to the
degree 2n+4 gives the following equation for
frequency parameters: '

2n+14«
2t 5L )“

Here Ags and A; are the frequency parameters
(12w%a*p/Eh%)"* for the simply supported and
clamped cases, respectively, and the symbol «
is defined in the discussion of the clamped
circular plate (sec. 9.1.1)." The paraméter &,
is glven by equation (9.13).

Ms= (9.17)





[image: image44.jpg]248

|
wa? p/Dz=7.80 =27.70

=27.74
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2 3

=64.93 =116.3
(a)
3 4
=45.44 =66.12
(b)

Fiaure 9.1.—Experimentally determined frequency parameters wa?y/p/ D, and nodal patterns for a simply supported

circular plate having polar orthotropy.

A frequency determinant for the problem
is also presented in reference 9.2, although no
numerical results are given.

9.1.3 Other Shapes

Pyesyennikova and Sakharov (ref. 9.5)
treated the problem of the annular plate having
inside radius @ and outside radius b for the
axisymmetric modes of two cases of boundary

(a) Axisymmetric modes.

(b) Nonaxisymmetric modes. (After ref. 9.3)

%
conditions by using the Boobn(;,v-Galerkin
“method.

For the case of the inner boundary free and
the outer boundary clamped, a deflection
function :

Wl(f) = AuJo(af) +42 Yo(aé)
+ AISIO(C‘E) +A14Ko(a$)
was chosen, where £=r/b, a*=w?p/D,,

(9.18)

Yo(a) Io(a) —Ko(a) ]

Ay= —Yl(a) 11(01) Kl(a)
—Yo(a,a/b) Iy (a,a/b) —Kyla,a/b)

Jo(e) Io(a) Ko(e)

A= _Jl(a) Ix(a) _Kl(a)
—Jou(a,a/b) Io(a,a/b) K (a,a/b)

Jo(a) Yy(a) —Ko(a)

Ap= '—Jl(a) "'Yl(a) Kl(a)
—Jula,alb) —You(a,a/b) —Ku(a,afb)

Jola) Yi(a) Iy(a)

Au=| —Ji(a) —Yl(a) Ii(a)
—Jn(a,a/b) —You(a,a/b) Io(a,alb)
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Jula, a/b)=J(aalb)— /b Jl(aa/b) Ioy(e, a/b) =1 (aa/b)— /b Il(aa'/b)

Yo(a, a/b)=Y o(aa/b)— bY(aa/b) Ko(a, a/b)= Kr(aa/b)+ Kx(aa/b)

aa/

and the terms J,, Y,, I,, and K, are the regular and modified Bessel functions. (See discussion
of solutions of classical plate equations (sec. 1.1.2).) The characteristic determinant giving « is

Jo(a) Yo(e) Iy(e) Ky(a)

~di(a) —Yi(a) Ii(a) —Ki(a) =0 (9.19)
—Jn(e,afb) —Y o (a,afb) Iy (a,a/b) Ky (a,a/b) '
(1—A)Ji(eafb)  (1—A)Yi(aa/h)  (14A4)I(aa/b) —(1+A4) K, (aa/b)
where definitive, the value of either », or vy must be
AEI—'(DO/Dr) known. Unfortunately, neither is given in
(ad/b)* reference 9.5.

Frequency parameters for varying ratios of a/b For the case of the inner boundary free and

and Dy/D, are depicted in figure 9.2. In order  the outer boundary simply supported, a deflec-
for the results of figure 9.2 to be completely  tion function

3 L B Wa(e) = Ano(at) + A Vo(art)
y / + Baslo(ad +8aiKolal)  (9.20)
I /éz.: ,
b—s=a+| // / ,
/ / was chosen, where
25
/ ' ~Yo(a) I(a) Ko(a)
/ An=| Yy(e,1) Ig(e,1) Koy (e, 1)
wb?,/p7D; B;7D; =10 Yo(a,a/b) Iy (e, a/b) Ky (e, a/b)
2.01= 1.0 Ju(a) (@) Ko()
1 A ola ol olx
15 .75 // 0.75 An=| —Ju(a,1) Ty (e, 1) Ky(e, 1)
—Jou(e,a/b) Iy(e,a/b) Ky (a,a/b)
0.5
—Jo(a) Yo(a) Ko(a)
A23= JOI (a7 1) - YOl(al 1) KOI (a; 1)
5 Joi(a, a/b) —Yu(a,a/b) Ko (a,a/b)
0.1 0.3 0.5
o/b Jola) Yo(a) Io()
Ficure 9.2.—Frequency parameters for a clamhed-frec Byy=| —Jule,1) —Ya(e,1) Ty (e, 1)
annular plate having polar orthotropy. —Jula,a/b) —Yu(a,a/b) In(a,a/b)

and where the remaining symbols are as defined earlier in this section. The characteristic deter-
minant giving « is

Jo(a) Yo(d) Io(a) Ko(a)
"‘Jm(a,l) "'Ym(a,l) 101(01; 1) Km(ayl) =0 (9 21)
—Ju(a,a/b) —Yu(e,a/b) I (a,a/b) Ky (e, afb) '

(1—A)Ji(aa/b) (1—A)Yi(aa/t)  (1+A)i(aa/b)  —(1+A)K(aa/b)
308-337 0—70——117




