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Frequency parameters for varying ratios of afb
and Dy/D, are depicted in figure 9.5, The figure
is mot completely definitive for the same reason
as that given i the preceding paragraph.

932 RECTANGULAR ORTHOTROPY
The diferential equation for the transverse

bending of a plate having rectangular orthot-

ropy is (see the appendix):

o

ot

The moment-curvature relations are
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Other useful equations are given in the appendix.
The elastic constants are related by (see the
appendix)

If the orthotropic constants D, I, and
D, are known with respect to the 2’ and 4
coordinste axes, it has been shown (refs. 9.6
40 0.7) that the orthotropic constants D., D,
and Dy, can be determined from

D cos ¢-+D, sint 42D, sin g cos’
in' 64D, cos* 620, sin’ 6 cost 6
(3D,+3D,—2D,,) sin’ $ cos'
4D, (cos* g—sin’ ¢)?,
925

When the angle ¢ between the z'- and the
z-axs is u multiple of 22.5°, equations (9.25)
can be used to obtuin the equivalent elastic
constants for equation (9.22). For an angle ¢
not equal to 22.5°, 45°, 67.5% . . ., however,
ion (9.22) is transformed into an equation
having terms of the type 0'/0z 3y and D0z
oy s well

The assumption of simple harmonic motion

w=W(z,y) cos ut (9.26)
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gives for equation (9.22)
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The strain energy of bending and twisting
of u plate having rectanguler orthotropy,
expressed in rectangular coordinates, is
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Fiauas 0.3 —Froquency parameters (or & simply sup-
orted froe anmular plate having polsr orthotropy.
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For rectangular orthotropic plates having
cither clamped or simply supported edges,
Hearmon (ref. 9.8) used the Rayleigh method
to extend Warburton's work (ref. 9.9) for iso-
tropic plates (see chapter entitled “Rectangular
Plates” (ch. 4)) to obtain frequency parameters
for all modes of vibration. The frequencies are
determined from the equation
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where A, B, and O are summarized in table 9.2
for the various boundary conditions and modes.
The terms v, and ¢, in table 9.2 are given by

Yo=mw

’yl=(m+%)1r
'Yz=(m+2)

€=N1
1
el=(’n+z>7r
1
€= n—}-§ s

251

9.2.1  All Sides Simply Supported

This problem of the rectangular plate with
all sides simply supported (SS-SS-SS-SS) has
a simple, exact solution. A coordinate system
is chosen as in figure 9.4. The boundary
conditions are

w=0, M,=0
w=0, M,=0

(for =0, a)

(9.30)
(for y=0, b)
By using equations (9.23) it is seen that

Wpn=A,,5in T sm?ibﬂ—y (9.31)

TABLE 9.2.—Frequency Coefficients in Equation (9.29)

Boundary conditions A B C m n.

LLLLLLLLy 4.730 4.730 151.3 1 1

4 % 4.730 € 12.30e2(es—2) 1 2, 3, 4,

4 7 vs 4.730 12.30v,(v:—2) 2, 3, 4, 1

777777 Y2 P v2e2(y2—2) (e2—2) 2,34, 2,34
LLLLLLL,

/ ’ 4.730 & 12.30¢,(e;— 1,23, 1

1______ 4 T2 «@ ye(ya—2) (9 —1) 1,23, 2,3, 4,

A # 4.730 @ 12.30¢? 1 1,23,

Ao i/ vz € vaeo*(va—2) 2,34 ... 114,23

f~ =

5 ] 3! € 71(1(71_1) (51'—1) 1; 2; 3) o e 11 2’ 3! 5w e

Y

A7 T

ﬁ ______ _J Y1 €0 71501(71"1) l) 21 3; LR 11 27 31 CEER
"3
‘_____-J Yo €0 ‘Yozéo’ 1, 2, 3, “ . 1, 2, 3, P
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satisfies the boundary conditions, where An,

is an amplitude coefficient determined from the

initial conditions of the problem and m and n

are integers. Substituting equation (9.31) into

equation (9.27) gives the frequency

— [ D,mt+ 2D, min? (9)2+D nt (9)4
wmn—‘a2 P zM zy T B v b
(9.32)

This result was obtained by Hearmon (ref.
9.10) and by many others.

The variation of frequency with a/b ratio
was determined in reference 9.8 for several
higher modes. This variation is depicted in
figure .9.5 for a five-ply maple-plywood
plate having D./D.,=1.543 and D,/D,,=4.810.

The accuracy of the Rayleigh-Ritz method
as applied to orthotropic plates was studied in
reference 9.10 by solving this problem using
a deflection function

W(z, y)=z(a—2)y(b—1y) (@’+az—2’)
(b4 by— 1A A+ Az(@—2)y(b—y)] (9.33)

where A, and A4; are undetermined coefficients.
The results obtained by taking only 4, (ie.,

Fi1GURE 9.4.—SS-SS-SS-S88S plate.
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Ficure 9.5.—Frequency parametér wabyp/D,,/n? for
$8-88-88-88, C-C-SS-88, and C-C-C-C five-ply
maple-plywood rectangular orthotropic plates. (After
ref. 9.8) #

A;=0) and both A, and A; are given in table

9.3 for five-ply plywood and veneer square
plates of birch with the orthotropic constants
determined experimentally.

Extensive experimental results are also given
in reference 9.10 for several types of wood ve-
neers and plywoods. In references 9.7 and
9.11, this experimental work is extended to
study the effect on the frequencies when the
grain of the veneer or plywood is not parallel to
the sides of the plate.

Hoppmann, Huffington, and Magness (ref.
9.12) simulated a stiffened plate by taking a
steel plate and milling longitudinal grooves into
it. In one case, the grooves were on only one

TasLE 9.3.—Fundamental Frequency Parameters for a SS-SS-SS-SS Square Orthotropic Plate

Properties watVp
Material
D, D, D,y 1 term 2 terms Exact
Plywood. . ..o _.______. 19. 1X 108 7.1X108 4, 4%108 | 0. 5920X 105 | 0. 5917 X105 | 0. 5916 X 10°
Veneer-_ - eoo._ 2.97 .21 . 69 . 2137 . 2136 . 2135
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side of the plate, and, in the other, they were
on both sides. The dimensions and spacing of
the grooves are given in figure 9.6. The plate
was then considered orthotropic for purposes
of calculation. The statically measured ortho-
tropic constants are set forth in table 9.4.
Nine experimentally measured cyclic frequen-
cies for each of the plates are listed in table 9.5,
along with theoretical results as determined
from equation (9.32) by using the data of
table 9.4.

This work was further extended in reference
9.13 wherein an aluminum plate 11 by 11 inches
by 0.275 inch thick had grooves 0.625 inch wide
and 0.210 inch deep milled into one side of it.
A typical repeating section of the plate was
0.75 inch wide, thereby giving 15 integral
stiffeners each 0.125 inch wide across the width
of the plate. Fifteen cyclic frequencies, both
theoretical and experimental, are exhibited in
table 9.6, where the grooves are assumed to run
in the y-direction (i.e., D,>D,). The corre-
sponding measured mode shapes are depicted
in figure 9.7. The problem was discussed
further in reference 9.14.

TABLE 9.4 —Orthotropic Constants for Grooved
Plates

Orthotropice constants, 1b-in.
Type of plate

D, Du ‘ Dzu ' D,

| | 1
1 side grooved_._.| 33 300 | 26 300 | 25210 | 8920
Both sides
grooved_.______ 23 250 | 11660 | 18 050 | 6480

TasLe 9.5.—Cyclic Frequencies for Grooved
SS-SS8-SS-SS Square Plates

Cyeclic frequency, cps, for plate—
Grooved on 1 side Grooved on both
Mode m/n sides

Theoret- | Experi- | Theoret- | Experi-

ical mental ical mental
) V5 336 366 294 302
A I S— 821 820 657 644
1/3_ ... 1640 1620 1250 1216
b:75 U 884 870 799 810
202 _____ 1345 1330 1175 1152
) 2145 2100 1782 1760
3/1._______ 1806 1700 1643 1580
3/2_ ... 2251 2180 2022 2040
3/3- . 3026 2900 2645 2570

TaBLE 9.6.—FEzxperimental and Theoretical Cy-
clic Frequencies for a Grooved SS-SS-SS-SS
Square Plate

[Theoretical values (from eq. (9.32)) are in parentheses]

Cyeclic frequency, cps, for values of m of—
n
1 2 3 4 5
| . 244 340 538 800 1152
(238) (336) (534) (831); (1220)
2 794 940 1020 1268 1580
(800) (954)] (1100)] (1344), (1689)
3. 1700 1800 1840 2110 2340
(1950)] (2020)| (2150)| (2349) (2638)

‘——o.w —ol' '-—o.nn——d
0.2568" 0.2630"
l I/16R -|o.250 _1_ 1716 R -.'0‘250* E

g\L_J—\S_L
kD 01946

Cross Section of Plate Grooved
on One Side Only

TSC;J:;L{QB?&“

Cross Section of Plate Grooved
on Both Sides

Flovre 9.6.—Dimensions and spacing of grooves in a stiffened plate. (After ref. 9.12)
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Fraure 9.7.—Experimentally observed nodal patterns for grooved SS-SS-SS-S8 square plate. (After ref. 9.13)

Wah (ref. 9.15) made a study in which he
evaluated the accuracy of simulating the gross
vibration modes of a beam-plate system by
means of an orthotropic plate. The cross
section of a plate having stiffeners of a particular
size and spacing is shown in figure 9.8. The
stiffeners are parallel to the z-direction. Both
materials are assumed to be mild steel. First,
an “‘exact” solution to the beam-plate structure
is four.d by using classical isotropic plate theory
for the plate and beam theory for the beams,
including twisting. Continuity conditions are
enforced across the stiffeners. This solution is
compared with the results of orthotropic-plate

“Haif " Stiffener

—Y .. — . N
! Im iﬂ' t-t JL rt " _ji l
# LF\I? L\_:.r—/l uJ J -

Plate Stiffener or Beom Simple Support
Fi1GURE 9.8.—Cross section of a stiffened plate. (After

ref. 9.15)

theory as displayed in table 9.7. hThe ortho-
tropic constants used in the orthotropic-plate
idealization were D,/D=3.396, D, /D=1, and
D,,/D=1.08, where D is the flexural rigidity of
the unstiffened plate. The quantity p, is de-
fined as the mass density per unit volume of
stiffener, and R is the number of stiffeners. It
would appear from table 9.7 that orthotropic-
plate theory gives frequencies that are approxi-
mately 3 percent too high regardless of the
stiffener spacing.

A method for representing a simply sup-
ported gridwork of beams as an orthotropic
plate is discussed in reference 9.16. The
vibration of a SS-SS-SS-SS rectangular ortho-
tropic plate is also discussed in references
9.8 and 9.17 to 9.20.

9.2.2 Two Opposite Sides Simply Supported

Let a rectangular plate have its sides z=0,
zr=a simply supported as shown in figure 9.9.
It is easily seen that the solution originally
suggested by Voigt in 1893 (ref. 9.21) for the
vibration of an isotropic plate having two
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2
TaBLE 9.7.—Frequency Parameters %bﬂ/pb/D Jor a Stiffened SS-SS-SS-SS Rectangular Plate

b2
Fivpo/D for values of bja of—
Mode R
1.0 0.5 0.333
Exact Eq. (9.32) Exact Eq. (9.32) Exact Eq. (9.32)
3 2. 602 2. 660 1. 345 1. 375 1. 150 1. 176
4 1. 464 1. 496 L 757 L 774 . 647 . 662
m=1,n=1 7 . 478 . 488 . 247 . 252 . 211 . 216
12 . 163 . 166 . 0841 . 086 . 072 . 074
20 . 0586 . 0599 . 0303 . 0309 . 0259 . 0265
3 5. 375 5. 501 4. 346 4. 453 4. 181 4. 284
4 3. 026 3. 094 2. 447 2. 505 2. 354 2.410
m=1, n=2 7 . 988 1. 010 . 7995 . 818 . 769 . 787
12 . 336 . 344 L 272 . 278 . 262 . 268
20 . 1211 . 1238 . 098 . 1002 . 0942 . 0964
3 8. 043 8. 310 1. 649 1. 686
4 4. 556 4. 674 . 928 . 948
m=2, n=1 7 1. 492 1. 526 0 * . 303 . 310
12 . 508 . 519 . 103 . 105
20 . 183 . 187 . 0367 . 0379
3 10. 34 10. 64 4. 593 4,706 .
» 4 5. 847 5. 985 2. 587 2. 647
m=2,n=2 7 1. 912 1. 954 U] ) . 8450 . 8643
12 . 651 . 665 . 2815 . 2941
20 . 2343 . 2394 . . 1035 . 1059
s Bame as for b/a=1, m=n=1.
bSame as for bla=1, m=1, n=2,
Y with a=mw/a, which clearly satisfies the
0 boundary conditions w=M,=0 at z=0, a.
: HEE S Substituting equation (9.34) into equation
| ) ' (9.22) yields
]
. : d'y, d’y,,
! ! D,——"—2a*D, 2+ (a*D,— pu®)Y,, =0
| v Iy m
i | ' k3
i arbitrary edge conditions : . (9.35)
! ‘ | which has a general solution
! i .
! ! s Yn=A, sin ¥,y+ By, cos ¥ny

+ Cy, sinh ¢, y+D,, cosh ¢,y (9.36)
F1gURE 9.9.—Rectangular orthotropic plate having two where
opposite sides simply supported.

wee{[(B) () ] (D‘”)}m
opposite sides simply supported is also ap- e D,) " a*D, D,
plicable here. That is, assume D

e { (-Gt ] 3}

W(zy)=2 Faly)sinaz  (9.34) (9.37)
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It is seen that equations (9.34) and (9.36) are
of exactly the same form as equation (4.21)
for isotropic plates, the only difference being
in the definitions of the frequency parameters
¥m and épn.

The standard procedure for satisfying the
boundary conditions along the sides y=0 and
y=>b, whatever they may be, is substitution of
equation (9.36) into these conditions. The
determinant of the resulting four homogeneous
equations in An, Bm, Cn, and D, is then set
equal to zero for a nontrivial solution. This
yields an exact solution for the frequencies.
This procedure was followed by Huffington
and Hoppmann (ref. 9.19), who presented
frequency equations and mode shapes for all
six cases arising from the sides y=0, b being
either clamped, simply supported, or free, and
the case of the sides elastically supported.

It is easily seen that the boundary conditions
for simply supported or clamped sides are
identical to those of the isotropic case. It
was previously mentioned that the solutions
to the governing differential equations also
take the same form. Thus, substitution of
the solution into the boundary conditions for
the three sets of boundary conditions (SS-SS-
8888, SS-C-SS-C, and SS-C-SS-SS) would
yield the same . characteristic determinant
in terms of ¥ and ¢ as that for the isotropic
case. However, ¢ and ¢ are related differently
than they are in the isotropic case; conse-
quently, the eigenvalue results (w’p/a*D) ob-
tained for the isotropic problems in the dis-
cussion of SS-SS-SS-SS, SS-C-SS-C, and
SS-C-SS-SS  rectangular plates (secs. 4.1,
4.2.1, and 4.2.2) cannot be directly applied here.

It should be noted that the form of solution
given by equation (9.36) depends upon ¢ and
# being real, positive constants. However, by
looking at equations (9.37) it is seen that,
depending upon the ratios D,/D, and D.,/D,,
the constants ¥ and ¢ may also take on zero,
imaginary, or complex values. In these cases
the form of equation (9.36) must be modified.
A careful study of this phenomenon was done
in the case of isotropic plates (see the discussion
of rectangular plates with two opposite sides
simply supported (sec. 4.2)), but no systematic

. investigation of this has been made for ortho-

tropic plates.

By using the Rayleigh method, Hearmon
(ref. 9.20) gave an alternate form of equation
(9.29) for determining the fundamental fre-
quency parameters of rectangular orthotropic
plates having two opposite sides simply sup-
ported. Accordingly, the fundamental fre-
quency parameter is determined from

[
A [k ()]
(9.38)

where J, K, and L are given in table 9.8 for
the various cases. Fundamental frequency
parameters for a five-ply maple-plywood plate
determined by equation (9.38) are also given
there.

For the SS-C-SS-C plate (fig. 4.4) the
boundary conditions are given by equation
(4.25). The frequency equation is given in
reference 9.19 as #

az%"sinh $b sin yb-+ ¢y (1—cosh ¢b cos yb)=0
v
(9.39)

with ¢ and ¢ as given in equations (9.37).
The mode shapes are
( )_cosh¢y:(_:os¢y_¢sinh¢y—¢sim[/y
y " coshgb—cosyb ysinhpb—g¢sinyb
(9.40)

where ¥ and ¢ are the roots of equation (9.39).
The fundamental frequency parameters of a
five-ply maple-plywood plate determined by
this method in reference 9.22 are given in
table 9.8.

Kanazawa and Kawai (ref. 9.23) solved this
problem by an integral equation approach and
gave numerical results for the fundamental
frequency parameters of a square having vari-
ous ratios of D,/D, and D,/D,,. These are ex-
hibited in table 9.9. The values computed from
equation (9.29) are found in reference 9.8; these
can be compared with the footnoted values in
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TaBLE 9.8.—Fundamental Frequency Parameters for a 5-Ply Magle-Plywood Rectangular Orthotropic
Plate Having Various Boundary Conditions

Constants in eq. (9.38) wa?vp/D,
Boundary conditions Physical
parameters
J K L Ref. 9.20 Ref. 9.22
LLLLLLL, 2_2 0
b 500. 56 121. 5 121.5 94. 57 94, 56 b -
¢} D
£ 223117
£ 77777 D”
v,,D—z=0.l2
LLLLLLLL v
5l 237. 81 113. 4 113. 4 68. 53 68. 52 Dey_ 0,648
- I By
A =3
I o b 97. 41 97. 41 97. 41 48. 65 48. 65
i I
g B 12. 37 —85 45.9 26. 22 26. 06
/ ///////.
i bl 29. 61 20. 70 20
I T 0 0 y . . 65
T
| . b! 0 0 0 17. 42 17. 39
1 |

TaBLE 9.9.—Fundamental Frequency Parame-
ters wa*/p/D,, for SS-C-SS-C Square Ortho-
tropic Plates Having the Sides x=0 and x=a
Simply Supported

D wa?vVp/D., for values of D,/D,, of—
v

-Dzli

% 1 1 2 3

| A s21. 052 | 21. 440 | 22. 567 | 24. 664 | »26. 595
[ S 23. 049 | 23. 406 | 24. 442 | 26. 397 28. 226
1..._. 28.124 | 28. 422 | 29. 285 | 30. 968 32. 507
L 36. 160 | 36. 383 | 37. 062 | 38. 384 39. 662
[ +42. 690 | 42. 878 | 43. 444 | 44. 589 | » 45. 696

= Compare with values from ref. 9.8.

table 9.9. The values from reference 9.8 are
watyp/Dy,=21.0, 26.5, 42.2, and 45.1.

Frequencies for this problem may also be
determined from equation (9.29).

For the SS-C-8S-SS plate (fig. 4.8) the
boundary conditions are given by equation
(4.32). The frequency equation is given in
reference 9.19 as

é tan yb=y tanh ¢b (9.41)
with ¢ and ¢ as given in equations (9.37). The
mode shapes are

( )_sinhcpy_sinu//y (9.42)

" sinh¢b sinyd
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where ¢ and ¢ are the roots of equation (9.41).
The fundamental frequency of a five-ply maple-
plywood plate determined by this method in
reference 9.22 is given in table 9.8. The case
when a/b=10 was also analyzed for the same
material and gave wa®/p/D,=1546.68 when
equation (9.41) was used and 1546.96 from
equation (9.38).

For the SS—-C-SS-F plate (see fig. 4.10) the
boundary conditions are given by equation
(4.36). The frequency equation is given in
reference 9.19 as

(Y2 — ¢26%) sinh ¢b sin ¢b

+¢yl(v2+8?) cosh ¢b cos ¢¥b+2v8]=0 (9.43)
with ¢ and ¢ as given in equations (9.37) and

7=Dp2;a2D,v, }

5=Dy+a2D,y, ()

The mode shapes are

(y)= coshgy—cosyy  ¢sinh¢y—¢sinyy
Y= coshgbtacosyb yysinh ¢b+¢ sin b

(9.45)

Several roots of equation (9.43) were found
in reference 9.22 for a five-ply maple-plywood
plate having a/b=2.0 and having the material
properties listed in table 9.8. The frequency
parameters for this plate are given in table 9.10.
The corresponding values obtained by the
Rayleigh method from equation (9.29) are also
given in reference 9.22 and are listed in table
9.10. It should be noted that for m=1 and
n=3 the “exact” value is not lower than that
of the Rayleigh method; this indicates round-off
error in these calculations.

For the SS-SS-SS-F plate (see fig. 4.11) the
boundary conditions are given by equation

(4.40). The frequency equation is (ref. 9.19)
tanyd ¢y
tanh¢b  ¢8° 9.46)

with ¢, ¢, v, and § given by equations (9.37)
and (9.44). The mode shapes are

ysinyy

__singy
Y(y)= ssinyb

sinh ¢b

(9.47)

VIBRATION OF PLATES

TABLE 9.10.—Frequency Parameters wa’y/p/D,
for a SS-C-SS-F 5-Ply Maple-Plywood
Rectangular Orthotropic Plate

wa?V p/D,
m n

Exact value Rayleigh method

(eq. (9.43)) (eq. (9.29))
1 1 26. 06 26. 22
1 2 97. 68 97.70
1 3 254. 68 254. 65
1 4 490. 98 491. 00
3 1 161. 72 162. 67
3 2 212. 04 213. 67
5 1 439. 74 441. 14

Some numerical results for this problem are
given in table 9.8.

For the SS-F-SS-F plate (see fig. 4.12) the
boundary conditions are given by equation
(4.44). The frequency equation (ref. 9.19) is

(YPy*— ¢%8%) sinh ¢b sin ¥b o
+2¢¢y*6*(cosh ¢b cos yb—1)=0 (9.48)

with ¢, ¢, v, and & given by equations (9.37)
and (9.44). The mode shapes are

__ 4 cosh ¢y+v cos Yy
~vyé(cosh ¢b—cos yb)

__ yysinh¢y+¢ssinyy
Vv?sinh pb—¢é®sinyd

Y(y)

(9.49)

Some numerical results for this problem are
given in table 9.8.

Naruoka and Yonezawa (ref. 9.24) rewrote
the differential equation (eq. (9.27)) as

4 2
(9.50)
where
k=D.,/D.D, (9.51)

In this form it is clear that equation (9.50) is
factorable if « is either 1 or 0, and these values
are used in reference 9.24. Furthermore,
symmetry is taken advantage of by using
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the ¥ and y-axes (see fig. 4.12) through the
plate centroid. Finally, the two cases

pw’f a \*
% () >0

pw’/ a \!
%.() >1
are considered, and eight specialized frequency
equations are given which consider k=0, k=1,
the separate cases of equations (9.52), and

symmetric and antisymmetric modes in y.
Particular attention is devoted in reference
0.24 to the first antisymmetric mode and the
second symmetric mode, both taken with
respect to 7. These modes are shown in figure
9.10. Variation in frequency parameter with
D./D, ratio is shown in figure 9.11 for «=0,
k=1, and beam theory. Poisson’s ratio »=
vy=vy is taken as zero and a/b=2. Further
results for varying a/b ratios are given in figure

9.12 for the second symmetric mode. Finally,
the ratio of second and third frequencies to the

(9.52)
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TaBLE 9.11.—Ratio of Second and Third Fre-
quencies to the Fundamental for SS-F-SS-F
Rectangular Orthotropic Plates

a DZ/DII
b
4 100 200
1:1.5:2.6 1:1.1:1.4 1:1.1:1.3
p 2 1:2.4:6.4 1:1.3:2.2 1:1.2:1.9
4 ... 1:4.8:20 1:2.1:5.1 1:1.9:3.9
8 - 1:7.1:73 1:4.0:17 1:3.4:13

fundamental is set forth in table 9.11 for various
a/b and D./D, ratios. Poisson’s ratio and «
are not given in table 9.11 but are presumed
to be 0 and 1, respectively.

For the plate elastically supported on the
edges y=0 and y=a (fig. 4.59) and simply
supported on the other two edges, the boundary:
conditions are given by equations (4.71). The
frequency equation is (ref. 9.19)

W2 (v — K Kyat) — ¢762(8'— K Ka) + Ko K a4[¢2 (8 — K Ka!) — P (v — K Kaa )]
+ a2 (y+8) (K, K¢ — KK 0%} sinh ¢b sin yb+¢¢(2y'8— K Kqa' (v +)
— K. K04 (8*+v*— 2K, Kza*) —a* (K. K+ K K,) (v+8)7] cosh ¢b cos b
+ap(¥+8)[— Ksaty*+ K478 — K,a* (v*— K, Ka*) + K¢* (8 — K K0 ")
+ KK 0t (Ksa'—Ki¢?)] sinh ¢b cos yb+aep(y+8)[Ksa?s+ K™
+ K a2 (8— K Ka*) + Ko (v — K K0 — KK (Kaa*+ Kiy?)] cosh ¢b sin b |

with ¥, ¢, v, and & given by equations (9.37) and (9.44) and the spring constants K, ..
The mode shapes are

determined by equations (4.71).

—2¢y(vé+ K, Ka*) (vé+ K.Ka*)=0 (9.53)
.y K4

Y (y) =[y(v6+ K Ksa*) (v sinh ¢b+Kza cosh ¢b) —¢(s*— K Kza) (8 sin yb— Ksay cos ¥b)
+ Kia¢y (v+8) (8 cos yb+K.ay sin ¥b)] cosh ¢y
+{¥(v*— K, K;a*) (y sinh ¢b+Kza¢ cosh ¢b)+Kiagy(v+8)(y cosh ¢b
+Kaa¢ sinh ¢b) —¢(vé+ K Kza*) (5 sin yb— Kaay cos ¢b)] cos ¥y
+[—y¢(v6+ K, K:a*) (y cosh ¢b+Kra¢ sinh ¢b) +y(v*— K, Ka*)(5 cos b+ K.ay sin yb)

+ K% (v+8) (5 sin yb— Kaay cos yb)] sinh ¢y+[Ksa*(y+8)(y sinh b
+Kaa¢ cosh ¢b)— ¢(6*— K, Kza*) (y cosh ¢b+ Kae sinh ¢b)
+¢(vo+ K Kza*) (8 cos b+ Keay sin ¥b)] sin ¢y (9.54)
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Figure 9.10..—Modes of a SS-F-SS-F rectangular
orthotropic plate. (a) First antisymmetric mode
taken with respect toy. (b) Second symmetric mode
taken with respect to 7. (After ref. 9.24)
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Figure 9.11.—Frequency parameters for SS-F-SS-F
rectangular orthotropic plates having »=0 and
a/b=2; «k=D,D.D, (a) First antisymmetric
mode with respect to 17 (b) Sccond symmetric mode
with respect to y. (After ref. 9.24)

9.2.3 All Sides Clamped

The problem for the plate with all sides
clamped is described by figure 4.18. Frequency
parameters may be calculated from a formula
based upon the Rayleigh method given previ-
ously as equation (9.29). Plots of frequency
parameter variation with a/b ratio for four
modes were given previously in figure 9.5 for a
particular maple-plywood plate.
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Froure 9.12.—Frequency parameters for the second
symmetric mode (with respect to %) of SS-F-88-F
rectangular orthotropic plates for various a/b ratios;
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a/b=38. (After ref. 9.24)
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Another Rayleigh solution is obtained in
references 9.10 and 9.17 by taking the deflection
function

ves-[2-@)[-(@)T oo

which yields the fundamental frequency

2 o G 7)) 0w

This result was also obtained in reference 9.16
by using the Galerkin method and equation
(9.55). In reference 9.17 the function

W(a,y)=(1+cos%x>(1+cos?-;i/> (9.57)

is used, giving

o ZE R 24D (3) +20.(3) ] 059

by the Rayleigh method. Finally, reference 9.8
gives the Rayleigh solution using beam func-
tions described previously as

2236 /1 a\* a\?
w="7 \/—pl:D,—i—I),(E) +0.605D,,,(5>
(9.59)

this latter clearly being the best of the three
results listed, because it gives the lowest upper
bound unless D)., is considerably larger than
D,and D,

Further imnprovement of the theoretical fre-
quencies was obtained in reference 9.10 by
taking the two-term deflection function

ves-[e- () T[]
(e -G} o

and using the Rayleigh-Ritz procedure. The
convergence of frequency parameters when
equations (9.55) and (9.60) are used can be
seen in table 9.12 for two types of square
plates made of birch. Results are also in-
cluded for the isotropic case for comparison
with Tomotika’s “‘exact” solution (ref. 9.25).
(See discussion of the C-C-C-C rectangular
plate (sec. 4.3.1).)

TaABLE 9.12.—Frequency Parameters wa®\Jp for
C-C-C-C Square Orthotropic Plates Made of
Birch

wa?y » for—
Method
Isotropic case | 5-ply plates® Veneer
plateb
, Rayleigh_ 36. 000vD | 12.026X 10 4.244X10°
Rayleigh-
Ritz_._ 35. 996\@2 12. 013X 103 4.241 X108
Exact___. 35.984vD | _____ |l _______.

s D,=19.1X108; D,=7.1X10%; D,,=4.4 X 108.
b D,=2.97X108; D,=0.21 X 10%; D,,=0.69 X 10°.

Many experimentally determined funda-
mental frequencies are also given in reference
9.10 for plywood and veneer plates made of
various wooden materials, In references 9.7
and 9.11 this experimental work is extended
in order to study the effect on the frequencies
when the grain of the veneer or plywood is not
parallel to the sides of the plate.

Huffington (ref. 9.26) postulated the exist-
ence of nonparallel node lines for clamped
orthotropic plates; this idea was based upon
his observations of the numerical behavior of a
two-term Ritz solution using beam functions.
This phenomenon is predicted by the curves
of figure 9.13 which show frequency parameters
as functions of a/b ratio for the case when
D,/D,,=1543 and D,/D,=4.810. The nu-
merical results show that the curves (each
associated with a mode shape) do not cross but
approach each other and veer away. In the
vicinity of the location where the curves ap-
proach each other, there is a rapid change in
nodal patterns, as depicted in figure 9.14. It
must be remarked that this phenomenon has
been observed elsewhere (see discussion of the
C-C-C-C rectangular plate (sec. 4.3.1) and
that of the C-F-F-F rectangular plate (sec.
4.3.12)) and the question exists of whether it
is the result of numerical truncation.

Kanazawa and Kawai (ref. 9.23) solved
this problem by an integral-equation approach
and gave numerical results for the funda-
mental frequency parameters of a square having
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TasLE 9.13—Fundamental Frequency Parameters
wayp/Dy for C-C-C-C Orthotropic Square
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Fi1gure 9.13.—Frequency parameters wat+/p/D,, against
a/b ratio for a clamped orthotropic plate. D./D;,=
1.543; D,/D.,=4.810. (After ref. 9.26)
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Figure 9.14.—Nodal patterns in the vicinity of a
transition point. (a) Nodal patterns for mode
3/1—1/3. (b)) Nodal patterns for mode 3/1+41/3.
(After ref. 9.26)

various ratios of D,/D,, and D,/D,,. These are
exhibited in table 9.13. An interesting plot of
the results of table 9.13 is given in figure 9.15.
It would appear from this figure that the varia-
tion in the square of the frequency with either
D, or D, is linear.

Plates
D wa2Vp/D,, for values of D,/D., of—
Py
D,y
b2 v 1 2 3
Yg_ ____ 25. 034 | 26.741 | 31.235 | 38 674 | 44. 837
} 2 T 26.741 | 28.346 | 32.625 | 39. 775 | 45. 820
) R 31.235 | 32.625 | 36.408 | 42. 939 | 48. 584
D i = 38. 674 | 39.775 | 42.939 | 48. 604 | 53. 661
S 44, 837 | 45. 820 | 48. 584 | 53. 661 | 58. 283
45
40

30 //
]

1 o> P
ST B
:§~ " ///// //VA/

15 - — %

10 //?/ a

N

0o 05 | .5 2 25 3 35

Dy/Dyy

Ficure 9.15.—Fundamental frequency parameters
wlatp/D,, against D./D., and D,/D., for C-C-
C-C orthotropic square plates. (After ref. 9.23)

9.9.4 Other Boundary Conditions

Frequency parameters for C-C-C-SS and
C-C-SS-SS rectangular orthotropic plates may
be determined from the Rayleigh formula given
previously as equation (9.29). Plots of fre-
quency parameter against a/b ratio for four
modes are given for the C-C-SS-SS case in
figure 9.5.
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An integral-equation approach (ref. 9.23)
gave numerical results for the fundemental
frequency parameters of square plates having
C-C-C-SS and C-C-SS-SS edges. These are
listed in tables 9.14 and 9.15.

TaABLE9.14.—Fundamental Frequency Parameters
wa/p/D,, for C-C-C-SS Orthotropic Plates
Having the Sides x=0 and x=a Clamped

D, wa?Vp/D,, for values of D,/D, of—
D,
4 14 1 2 3

4 ____ 22, 848 | 24. 706 | 29. 516 | 37. 239 | 43. 652
14 .. 23.796 | 25. 587 | 30.261 | 37. 864 | 44. 162
) D 26. 361 | 27. 989 | 32. 328 | 39. 542 | 45. 576
P o 30. 786 | 32. 191 | 36. 031 | 42. 634 | 48. 330
b S 34. 604 | 35. 891 | 39.393 | 45.494 | 50. 874

TaBLe 9.15.—Fundamental Frequency Param-
eters wa’y/p/D,, for C-C-SS-SS Orthotropic
Square Plates

D, wa2vp/D,, for values of D,/D,, of—
D.,

14 1 1 2 3
| VO 20. 428 | 21. 483 | 24. 302 | 29. 061 | 33. 056
Yo .. 21.483 | 22,493 | 25.194 | 29. 794 | 33. 749
1o 24.302 | 25.194 | 27.647 | 31.910 | 35. 599
s S 29. 061 | 29. 794 | 31.910 | 35. 681 | 39. 064
3. 33.057 | 33.749 | 35.599 | 39. 064 | 42. 184

9.2.5 Circular Plates Having Rectangular Orthot-
ropy
The boundary conditions for a circular plate
dictate that solutions must be obtained in polar
coordinates. In this case the differential equa-
tion for the case of rectangular orthotropy
(eq. (9.22)) must be transformed into polar
coordinates. It has been shown by Hoppmann
(ref. 9.27) that the resulting equation is
O'w oy O'w a3 0w , ay O'w |, opO'w
“oritroros T oror R oror T on
0w | a; 0w oy O'w
r o' ' 12 Oorf ' 13 Or 0
ay O®w | ayy QW | ay; O*w
tew Pt
a2 %) a3 ow

P or T o

b?
+pb—:f=0 (9.61)

where

011=I3(822865—3§o)

oy =4(815825— 822816)

o= — 2 (812866 — S26818) — 2(S11522—815) ]
ay=—48(81182— 812816)
a5=3(snsss"'sfe)

as=20 (3226‘66—3:5)

ar=—B(811865— S1s)
aa=2ﬂ[(812356—326316)—2(811322_332)]
og=4(811826— 812815)
10=48[(812825— S16522) — (811525~ 812516)]
an=—2B[ (81285 — S12826) — 2 (S11822— $72)

- (811866_8!26)]

a12=ﬂ(811866_'sf6)
a13=—4B[(S12826— S16522) — (S11826— 815512) ]

B=h*/12D(s)

S11 S12 S16
D(s)=1s12 S22 826
S16 826 Sgs

1 oWy 1_) 2 2
s"_-Ezcos 0+< 2E,+G sin’f cos®6
' 1 .,
+E,,Sln 0
s ,:_l_sin4o+<—2ﬁ+l—)sinzacos20
22 Er Ez G
1 4
+—E—VCOS (]
s :4(L+—1—+21”— sin’f cos’6
& E,'E,'E,
+2—1, (cos?6—sin?0)?

(1,1 1\N., 2
sz—(Ez-i-E” G sin?6 cos®6

_W 40 cint
jo (cos?f—sin* @)

. 2 ., 2 5
= I —_——— " 0
8$15=81n 6 cos @ E, sin‘é E, oS

+(—2 Iyi'—y,+}_?> (cos? 6—sin® 0)_]

—al F_g_ 2 _g_ 542
826=sInd cos 6 Eycos ¢ Ezsm (]

—(-—-2 %1+}—;> (cos? —sin® 0)]
(9.62)
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where 6 is the angle measured from the z-axis.
Because of the formidability of equation (9.61)
it appears that no solutions to it exist in the
literature. Nevertheless, it would appear that
convergent solutions in the form of equation
(1.15) are certainly possible.

Experimental results were obtained in ref-
erence 9.27 for a clamped circular plate of
aluminum having longitudinal slots milled
into it to approximate an orthotropic plate.
The cross section of the plate is shown in
figure 9.16. Measured frequencies and nodal
patterns are given in figure 9.17. It can be ex-
pected that the frequencies for higher modes
will be considerably different from those of a
homogeneous, orthotropic plate.

A one-term Galerkin solution (ref. 9.16)
gave the fundamental frequency for the clamped
orthotropic circular plate as

. 41.52 52

= D42 D,,,+D> (9.63)

(see discussmn of rectangular plate with two
opposite sides simply supported (sec. 9.2.2)).

The identical result was obtained in reference

9.17 by using the Rayleigh-Ritz method.

i S, 4 — - - PRI § SN § T,
0625 |-- —‘| l—-0,|25
4 } } —
] T JCiJC _JC _JC _JC T 0
Vosrs oossd  Loers Loz

FiGUure 9.16.—Cross section of stiffened plate; dimen-
sions are in inches. (After ref. 9.27)
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Frequency = 710 ¢cps Frequency=1020 cps

&

Frequency=1380 cps Frequency=1870 cps

=

Frequency * 2380cps Frequency 2900 cps..

Ficure 9.17.—Experimentally observed cyclic frequen-
cies and nodal patterns for a clamped circular plate
having stiffeners. (After ref. 9.27) el

9.2.6 Elliptical Plates Having Rectangular Orthot-
ropy

In reference 9.16 the Galerkin method is
used with the one-term deflection function

2 2\ 2
w(a,9)=(1-5-%)

(see fig. 3.1) to analyze the clamped ortho-
tropic elliptical plate. The resulting frequency
is

(9.64)

el 52(a4+2D’” Dy (0.65)

)

In reference 9.27 experimental results were
obtained for clamped elliptical plates of alumi-
num having longitudinal slots milled into them
parallel to the axes as shown in figure 9.18. A
cross section showing slot dimensions is seen
in figure 9.16. The a/b ratio for the ellipses
was apparently 2.0. Resulting frequencies
and nodal patterns for the two plates are shown
in figures 9.19 and 9.20.
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Figure 9.19.—Experimentally observed cyclic frequen-
cies and nodal patterns for a clamped elliptical plate
having stiffeners parallel to the major axis. (After
ref. 9.27)
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In this section the effects of forces acting in
the plane of the undeformed middle surface of
the plate will be considered. The differential
equation of motion expressed in rectangular

coordinates in this case becomes (see the
appendix) :
otw otw Otw , dw
Dt 2Dn gpat Digatesy
o*w oMw otw
'_N’W+2N’”5z—by+N”b_y“’ (10.1)

where D,, D,, and D,, are the constants of
rectangular orthotropy, as used extensively in
the discussion of rectangular orthotropy of
anisotropic plates (sec. 9.2). Because no pub-
lished results are known for plate vibrations
when both inplane forces and orthotropy are
present, only the isotropic constant D will
appear in the remainder of this section.

The inplane force intensities N,, N,, and N,,
are assumed to be functions of only the spatial
coordinates z, y or r, 6. That is, they do not
depend upon time nor upon the transverse
deflection w. These assumptions are required
in order that—

(1) The vibration be free, not forced

(2) The equation of motion remains linear

Inplane forces not depending upon w can be
realized in one of the following two ways:

(1) The boundary conditions provide no
fixity in the plane of the plate

(2) The deflection is sufficiently small relative
to the initial tension or compression in the
plate so that the inplane forces are not signifi-
cantly affected.

The normal forces NV, and N, are-positive in
equation (10.1) if the plate is in tension; the
shear force N,, is positive according to the
accepted convention of the theory of elasticity

Chapter 10

(see the appendix). It is emphasized that the
inplane forces are generally found by first
solving the plane elasticity problem for known
boundary values of N,, N,, and N,,. If these
quantities are constant around the boundary,
it is well known that they are also constant
throughout the plate, and equation (10.1) is
further simplified to the case of constant
coefficients. In the special case of uniform
boundary tension (N,=N,=N; N,=0), the
equation for the isotropic plate simplifies to
2
DV4w—NV2w+p%;—f=0 (10.2)

Assuming sinusoidal time response, equation -

(10.2) becomes -

N r po’ 7__
V4W—D—V2W — ﬁI/I =0

(10.3)
where W is solely a function of the spatial co-
ordinates. Furthermore, it can be seen that
equation (10.3) can be factored into

(V2+a?) (V2= W =0 (10.4)
where
_N 4pw?D 1/2_ ]1

az—é—D-[:(l—*————————Nz 1

N 4 2D 1/2
62=2—1—)|:(1+—p§2 +1] > (10.5)
B2—ao?=N/D
2= pw?/D )

10.1 CIRCULAR PLATES

The main results available for circular plates
are for the case of hydrostatic inplane force.
When V? is expressed in terms of polar coordi-
nates by means of equation (1.10) and Fourier
components in 0 are assumed as in equation
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(1.15), equation (10.4) yields the two second-
order equations

W, 1 dW,,
Tt (G
i (10.6)
den, 1 n, n?
& Trdr "(F+B2>an=0
These equations have solutions
Wnl':Aan(aT)-}" BnYn(ar)
(10.7)

an:‘ On[n(ﬁr) +DnKn(ﬂr)

respectively, where J,, Y., I, and K, are
Bessel functions, as discussed in the section
covering solutions of the classical equations
(sec. 1.1.2), and A,, . . ., D, are undetermined
constants. Thus, the general solution to equa-
tion (10.4) in polar coordinates is

w(r, e)=§ (AT (o) +B,Y u(or)+ CaL(Br)

+ DK (Br)] cos n+ 3 [ART (ar)+ BEY ofar)
+O31,(8r)+DAE(r)]sinnd - (10.8)

10.1.1

The problem of clamped circular plates is
defined by figure 2.1 and boundary condition
equations (2.2). Because all modes of vibra-
tion have symmetry with respect to at least one
diameter, the terms of equation (10.8) involving
sin n8 can be discarded. Furthermore, in
order to avoid singularities at the center of the
plate, B, and D, must be set equal to zero.
The deflection function therefore becomes

Clamped Circular Plates

W(r, e):"go (A, () + CoI(Br)]cosnd  (10.9)

Substituting equation (10.9) into equations
(2.2) yields, for a nontrivial solution (refs.
10.1 to 10.4), the characteristic equation

Jpy1(aa) I,41(ad)
Tolea) TP T (6a) °

Wah (ref. 10.1) determined the roots of
equation (10.10) for mode shapes having 0, 1,

(10.10)

VIBRATION OF PLATES

and 2 nodal circles and nodal diameters for a
range of inplane forces varying from tension to
compression. These results are given in table
10.1. Herein the quantity ¢ is used as a
multiple of the critical buckling load in com-
pression; that is,

Na?

Accordingly, the, vibration frequency of the
fundamental mode goes to zero as ¢ goes to
—1. TFrequency parameter values for inter-
mediate values of ¢ not found in table 10.1
may be obtained from figure 10.1 by using the
last of equations (10.5). In this figure, n identi-
fies the number of nodal diameters and s, the

TaBLe 10.1.—Frequency Parameters wa’yp/D
for a Clamped Circular Plate Subjected to
Inplane Force N

wazx/;fﬁ for values of

Number Na? n of—
of nodal | ¢=— -, -+
circles, s 14.68D
0 w 2
O . 2. 00 17. 37 30. 61 45. 67

. 50 15. 92 28. 59 43. 39
1. 00 14. 30 26. 41 40. 91
.50 12. 44 24. 00 38. 07
.25 11. 39 22. 81 36. 72
0 10. 21 21. 25 35. 05
—.25 8. 91 19. 61 33. 53
—. 50 7.28 17. 94 3175

—

—1.00 0 14. 31 28. 08

| I, 2.00 | 50.60 71. 87 97. 11
1.50 | 48.17 69. 27 94. 09

1.00 | 45.52 66. 38 91. 31

.50 | 42,75 63. 47 88. 04
.25 1 41.29 62. 02 86. 39
0 39. 77 60. 37 84. 82
—. 25 38. 19 58. 81 83. 34
—.50 | 36.55 57. 21 81. 81
1.00 | 33.03 53.79 78. 25
2.00 | 101. 81 | 128. 52 166. 06
1.50 | 98.77 | 125.20 162. 93
1.00 | 95 44 | 121. 99 159. 70
.50 | 92.33 | 118 89 156. 39
.25 | 90.59 | 117. 39 154. 84
0 89.09 | 115.78 153. 26
—.25 | 87.45 | 114. 16 151. 65
—.50 | 85.76 | 112.48 150. 04
—1.00 | 82.28 | 108. 82 146. 48






[image: image21.jpg]PLATES WITH INPLANE FORCES 269

2.0 r T fn i e number of internal nodal circles. On this
g LA | P figure are also shown the limiting values of the
SRl ST s o e membrane frequency parameter u, where
— |l 4+— [ 4 3 Y © © /4 /A -
10 oA 4 =wa+p/N 10.12
T p=wap/ (10.12)
865 Pl %A These limiting values would apply as the in-
\ AL AR plane force becomes extremely large; in partic-
) /3/ P | | ular, the plate frequency approaches that of
88 L2038 (PR | 3818 | 52 | % the membrane as aa—yp and if
ape0, B0 —>
~05 bt = //\ ‘\ (1/2)2DIN< <1 (10.13)
-0 dD A | Reference 10.1 is the most recent work on
te) this problem which solves the exact character-
istic equation (eq. (10.10)). However, much
earlier work (refs. 10.2, 10.3, and 10.4) preceded
2.0 1T I" 7 this and also used equation (10.10). Bickley
ﬁ—Fﬁ *5,‘, a ¥ (ref. 10.3) in an early paper determined the
Lo A e a; z 3 AV frequencies for a clamped circular plate in ten-
L "y 7 // sion by means of equation (10.10). These are
10 4 /’ the exact values listed in table 10.2. Lower
‘ e i V4 and upper bounds on the frequency parameter
¢ 05 \ L\,o‘ wf are calculated in reference 10.3 by means of the .
U /Q\f Southwell (ref. 1Q.5) and Rayleigh (ref. 10.§)
Oy t3s TRV IR e v methods, respectively. These are also dis-
#2 | %2 : 84 25 83] 88 | 3% - 24 | =2\ played in table 10.2. It is observed from table
-05 14 / Btk 10.2 that the Southwell method gives less per-
/,/ L4 ,/ cent error as the mode number is increased.
Lo 4 ‘ The Rayleigh method is well known. A de-
flection function of the form
- w=(a’*—r2)?r" cosnd (10.14)
& '_ = I l /] / . . . . .
@ sl of 21 1a o[V was used in conjunction with the Rayleigh
15 5 — ;f 3l e g // // method. Equating maximum potential and
o . )% A )4 kinetic energies of the system yields
]
v , - 8(n+1)(n+2) (n+4) (n+5)<£
$ 05 ” oY Q; ©= 3 pa’
/ 2
/ / [1 __Na/D 1 (1015
AR DR AR A AR TreEn] O
o3 7 / b ot The Southwell method uses the inequality
// // /1/ 2l w2 2 (10 16)
" «i§ witw:Sw .
where « is the exact frequency of a system
Ficure 10.1.'—Frequency parameters aa, and §,, for a having two forms of strain energy and w; and
clamped circular plate subjected to inplane force N; .
a?f=pw?/D. (a) Zero nodal circles. (b) One nodal w; are the frequencies of the system when each
circle. (¢) Two nodal circles. (After ref. 10.1) form of the strain energy is taken separately.
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TaBLE 10.2.—Frequency Parameters wap/D of a Clamped Circular Plate Subjected to Inplane

Force N
wa’\/;/T) derived by—
n 8 Eq,ﬁ
D Exact method Southwell method Rayleigh method
(ref. 10.3) (ref. 10.5) (ref. 10.6)
0 0 0 10. 216 10. 216 10. 328
1 10. 552 10. 495 10. 646
4 11. 486 11. 291 11. 547
25 16. 527 15. 778 16. 533
100 27. 483 26. 128 27. 809
400 50. 792 49. 169 52. 662
B U 2. 4048V Na?/D 4. 4721y Na?/D
1 0 39. 772 39. 772 e
1 40. 190 BOI52 B cmcmmmime mme S 5 S
4 41, 419 41. 272 | e
25 49, 146 48.396 e
100 69. 916 67.996 oo
400 120. 59 ISP T MRS
P R 5. 5151V N /D |ceoommemee e
2 0 89. 104 89. 104 |
1 89. 550 89. 523 e
4 90. 875 90,770 |
25 99. 648 09,054 |- A
100 126. 01 12421 e
400 198. 53 194. 67 |
TS 8. 6537V NaHD oo
1 0 0 21. 260 21. 260 21. 909
1 21. 652 21. 603 22. 271
4 22. 783 22. 600 23. 324
25 20, 447 28. 619 29. 665
100 45, 563 43. 820 45. 607
400 82. 146 79. 529 82. 946
B | o cmmmm 3. 8317y Na?/D 4yYNa?/D
1 0 60. 828 60,8284  |o e meemeeme
1 61. 263 61. 2307 e
4 62. 550 62. 4259 ool
25 70. 891 70,2182 |
100 94. 733 92. 8547 e
400 156. 49 152.931 |
S P 7. 01555V NG D lecocoo oo
2 0 0 34. 877 34. 877 36. 661
1 35. 296 35. 253 37. 040
4 36. 529 36. 358 38, 158
25 44,117 43. 310 45. 211
100 63. 994 57. 043 64. 374
400 111. 64 108. 47 112. 00
D U 5. 1357y Na?/D 5. 2915y Na?/D
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In the present problem, w; can be taken as the
frequency of a clamped circular plate with no
inplane force and w,, as the frequency of a
circular membrane (no flexural stiffness) having
a fixed boundary and membrane tension 7.
Equation (10.16) then gives a lower bound on
the exact fundamental frequency; for example:
Na?

W2 —%[104.36-{-5.783——

o D (10.17)

Federhofer (ref. 10.4) obtained solutions to
equation (10.10) for a wide range of inplane
forces. These are summarized in table 10.3.
This table is more complete than table 10.1 in
the sense that it utilizes a range of compressive
forces up to the limiting buckling load for each
axisymmetric mode, instead of the fundamental
mode only. Reference 10.4 gives the radii of
the nodal circles for s>>0, and these are also
presented in table 10.3. A plot of the variation
of the frequency parameter as a function of the
inplane force is shown in figure 10.2 for the
first three axisymmetric modes.

A perturbation technique was developed for
the problem in references 10.7 and 10.8. The
parameter N/D was used as a perturbation
parameter, and the plate with no inplane force
was the starting point upon which the pertur-
bation was based. In addition to obtaining
frequency parameters which compared reason-
ably well with the exact values given earlier in

wat/p/0D

T

L% ™~
\\\

60

- 50
I~ a0

- 30 \
20 \

10 1T

-2 -3 -4 -5 -6 -7 -8 -9 -0
a/N/D

Ficure 10.2.—Frequency parameter wa?y/p/D for a
clamped circular plate subjected to inplane force N.
(After ref. 10.4)

+4 +3 +2  +i o -l

TasLe 10.3—Frequency Parameters waly/p/D
and Nodal Circle Radii for a Clamped Circular
Plate Subjected to Inplane Force N

n | s Na*/D wa2Vp/D | Nodal ci;cle radii,
ria
0| o 16 14. 6028 | ________|.__...__
9 s 13215 QN O IR ——
4 11, 4855 locmen s [om o m o o
1 10. 5478 ||l
0 10.2150 | . ___
—1 9. 8TEZ [cos sumes srons v s o
—4 (=737 (11 [ AR (S ——
—9 6.4129 | __________.
—14. 682 0 e ll.-
1 16 45.9954 | 0.38550 [________
9 43.3848 | .38297 ___.____
4 41. 4179 38086 |._.._...
1 40. 1909 BT9AT |
0 39. 7707 37900 . _______
—4 38. 053 37690 |._______
—16 32. 350 36952 |._._____
—36 19. 663 33830 |_._____.
| ~49.219 | 0 26634 | _______
) 16 95. 9824 | 0. 25593 | 0. 58632
9 93. 0392 . 25546 . 58505
4 90. 8766 25511 . 58409
1 89. 5514 . 25490 | . 58349
0 89. 1042 25483 . 58329
-9 84. 985 . 25415 . 58134
—36 71. 226 . 25179 | . 57370
—81 39. 222 24952 . 54473
—103. 50 {1 P ——— . 46875
1] 0 0 21261 |_________ L
—1 20. 862 [one ool e
—14 19:611 | cncorroslocssoses
-9 17.321 o _--
—16 13. 427 |- -
—26. 368 L PR P
1 0 60. 829 | 0.48968 |..____..
—4 59.066 | .. ____|--__.__.
—16 53. 390 48399 |.___._..
- 36 42,295 | oo o am s
—70. 846 0 42228 | _____
2 0 120. 078 | 0. 34974 | 0. 63902
—9 116. 476 || ___
—36 102. 418 34707 63293
—81 TE TS | sods o e
—135. 02 0 . 34760 56604
2 0 0 34, 876 s pon cenifo e stivens
—4 33: 148 | oo semandeame s e
—16 27,267 |eooo |
—36 11.972 | C
—40. 692 [0 S | SO NUS——

#
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this section, the modes having 3, 4, 5, and 6 nodal diameters were also investigated, but the per-
turbation technique did not give accurate results. The Rayleigh and Southwell techniques were
also employed, thereby obtaining bounds. Resulting frequency parameters are given in table
10.4.

The problem was also discussed from a variational standpoint in reference 10.2. A method
for including translational and rotational springs acting at discrete points within the interior of
the plate was proposed and demonstrated for the case of a translational spring of stiffness & at
the center. All terms applying to cos nf are retained in equation (10.8). In addition to the
boundery condition equations (2.2), the conditions of transverse force equilibrium and null slope
at the center are enforced. For the axisymmetric modes, the resulting characteristic determinant

takes the form
S5 YK (";2) Io<§>
2(2+%) |:J0<;> LA (T ABY (X ]=sfari Fe2X () X )

2 2\?

where Frequency pearameters (w’a'p/D)V* obtained

Na? NG as the lowest roots of equation (10.18) are
i YOG 4 \/(__g_ 4t plotted in figure 10.3 as functions of the inplane

2D 2 loading parameter Na?/D and the ggring con-
_ka’ (10.19)  stant parameter { (ref. 10.2). The inplane
$=2:D forces are entirely in the compressive range,
as indicated. The broken curve indicates fre-
quency parameters for the mode having one
nodal diameter. Hence, for a given inplane
compressive force, as the spring constant is
increased the fundamental mode of vibration
will abruptly change from axisymmetric to
antisymmetric. It is obvious that a transla-

(10.18)

N=wa/p/D

TaBLE 10.4.—Frequency Parameters wa®/p/D
for the Higher Mode Shapes (Having no Nodal
Circles) of a Clamped Circular Plate Sub-
jected to Inplane Force N

. tional spring at the center affects only the
2 d d by— ; :
. Nat | w1 Hecivend iy axisymmetric modes of the plate.
D
Southwell Rayleigh 10.1.2 Simply Supported Circular Plates
method method ) .
The problem of simply supported circular
s 0 5. i 51 90 plate_s.ls deﬁne.d by figure 2.2 and boundary
1 51 42 5164  condition equations (2.9).
100 81. 68 83. 82 The only known solution to the problem
e U 69. 72 70.06 a5 derived by Wah (ref. 10.1). Using the
1 70. 13 70. 50 deflecti f . + he f . b
100 103. 03 105. 49 eflection function 1n-.the form given by
B 0 90. 71 91.47 equation (10.9) and substituting it into equa-
"1 9L 13 91.90  tions (2.9) and (1.11) yields the characteristic
100 126. 24 128. 71 i
B 0 115. 13 i35 00  CGMBLOR
1 115. 56 115. 79
5. Jari(ea) | T.i(Ba)  a(e®+5)
100 152, 12 155. 79 nil uhd = 10.
ey TP L)y~ 1= (1020
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(wa*p/D) V4

5

Ficure 10.3.—Frequency parameter A= (w?atp/D)* as
a function of the spring constant parameter {=ka?/
22D for a clamped circular plate having a transla-
tional spring at the center and subjected to inplane
force N. (After ref. 10.2)

The roots of equation (10.20) were determined
in reference 10.1 for mode shapes having 0, 1,
and 2 nodal circles and nodal diameters for a
range of inplane forces varying from tension
to compression. These results are given in
table 10.5 for »=0.3. Herein the quantity ¢
is used as a multiple of the critical buckling
load in compression; that is,
Na*
12D
Frequency parameter values for intermediate
values of ¢ not found in table 10.5 may be
obtained from figure 10.4. For an explanation
of the method of using this figure, see the
preceding section.

(10.21)

10.1.3  Completely Free Circular Plates

The problem of completely free plates is
defined by figure 2.3 and the boundary con-
ditions

M. (a)=0

V,(a)+N,(a) g_‘r"(a)___o (10.22)
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TaBLE 10.5.—Frequency Parameters wa®/p/D
Jor a Simply Supported Circular Plate Sub-
Jected to Inplane Force N; v=0.3

wa’x/;TD for values of
Number Na? n of—
of nodal o=
circles, s 4.2D
0 1 2
L 2,00 855 17. 47 | 29. 55
1.50 | 7.81 16.55 | 28. 62
1.00 | 6.99 15.57 | 27 .62
.50 6.05| 14.55| 26.64
.25 5. 52 13.98 | 26.12
0 4. 94 13.47 | 25.60
—. 25 4.27 12, 86 25. 07
—.50 | 3.46 12.23 | 24.53
—1.00; O 10.95 | 23. 41
) 2.00 | 33.75 | 52.05| 72 97
1.50 3279 | 51.07 | 71. 97
1.00 | 31.80 | 49.94 | 70.96

.50 | 30.78 | 48.92 | 69. 93
.25 30.25 | 4841 69 39
47.89 | 68.89
—.25|29.17 | 47.36 | 68.36
—.50 | 28.62 | 46.78 | 67.83
1.00 | 27.49 | 45.60 | 67.76 -

2 2.00 | 78.28 | 107. 54 | 138. 62
|

1

(=
(]
©
-1
L]

.50 | 77.27 | 106. 52 | 137. 67
.00 | 76.24 | 105. 50 | 136. 65
.50 | 75.21 | 104.49 | 135, 60
.25 | 74.69 | 103. 94 | 135.02

0 74.15 | 103. 43 | 134. 56
—.25 | 73.62 | 102.90 | 134. 16
—.50 [ 73.09 | 102. 37 | 133. 52
—1.00 72.00 | 101.30 | 132. 36

with M, and V, as given in equations (1.11)
and (1.13), and NV, is the radial, inplane tensile
force.

Although the concept of a completely free
plate subjected to inplane forces may be
difficult to visualize at first, there exist at
least four distinct types of problems where
this phenomenon may arise:

(1) A boundary having a strip around it
which is prestressed into tension

(2) Spin about an axis (not necessarily
normal to the plate) causing centrifugal fields

(3) Thermal gradients in the r- and 6-di-
rections

(4) Internal residual stresses due to cold
working or heat treatment
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Figure 10.4.—Frequency parameters ana, and B,, for a
simply supported circular plate subjected to inplane
force N: a?f2=pw?/D; y=0.3. (a) Zero nodal circles.
(b) One nodal circle. (¢) Two nodal circles. (After
ref. 10.1)

Indeed, the preceding discussion is not limited
to circular plates, but can apply to plates of
arbitrary shape. In the case of the circular
plate, results exist for loadings of the second
and third types.

Lamb and Southwell (ref. 10.5) examined
the problem of the completely free circular
plate spinning about its cylindrical axis with
uniform angular velocity . If the terms in
the differential equation (10.1) which represent
the restoring forces due to flexural rigidity are
neglected, equation (10.1) becomes, in polar
coordinates,

7 2 2
where N, and N, are axisymmetric radial and
circumferential forces, respectively, determined
by first solving the uncoupled plane elasticity
problem

No=g(3+) p2(@—1")
. h (10.24)
No=‘—§ sz [(3+V)az—(1+3y)7'2]

The problem is solved by assuming a series
solution

w=n2:02

i=0

Cin <§)i cosnf cos(wt+¢) (10.25)

The frequency of the mode having 7 nodal
diameters and s nodal circles is given by
(ref. 10.9)

o= [+ 252) (14 25) (3-+0) —2 (143)]
(10.26)

and the mode shapes are determined from
A (TN slntst 12(1)”
W= (5) 1= @

s(s—1)(n+s+1)(n+s+2) <Z)"
2 n+1)(n+2) a

+

— :l cosnd (10.27)
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In references 10.5 and 10.9 an approximate
method is formulated for solving the problem
when the terms including the flexural rigidity of
the plate are included within the differential
equation of motion.

Massa (ref. 10.10) analyzed the problem of
a completely free circular plate subjected to
the thermal gradient

r-n[- ()]

This gives rise to inplane forces of the form

vEB)-]
BB (0)-1]

where « is the coeflicient of thermal expansion.

The problem is solved by the Rayleigh-
Ritz technique. Poisson’s ratio is taken to
be 0.3. For the axisymmetric modes a deflec-
tion function

W(r)=A4 [1 —2.6161(2)2«}—1 .1090(2)4
—0.2464 (2)6] + 3(2)2[1 —2.6805 (92
+1.9940 (2)4—0.5244 (2)6] (10.30)

is taken, where A and B are undetermined
constants. This function satisfies not only the
boundary conditions of the problem but also
the condition that the total momentum of the
plate be null. The first two axisymmetric
frequencies can be found from

(10.28)

(10.29)

En?

2 2
Wory; Wo2= "%
’ p(lf‘

F65.54 /[l - 03489(&T0a )]

—+0.000052

aToa?

72.97—4. 342(

aToa)

(10.31)

where the subscripts of w,, identify the number
of nodal diameters and circles, respectively.
The first axisymmetric mode shape is
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Walr)=C, [1 —2.6696 <g)z+ 1.2525 (2)4

—0.3530(§)°+0.0280(£)8] (10.32)

and has a nodal circle at r=0.6790¢ and an
amplitude at the boundary of Wy(a)=
—0.7423C,. The second axisymmetric mode
shape is

\? \*

—~12.3974 (2>6+3.1952 (2)8] (10.33)

and has nodal circles at r=0.4013¢ and
r=0.8472¢ and an amplitude at the boundary
of Wos(a)=0.5336C..

For the modes having two nodal diameters,
a deflection function

Wi(r,8)= { A(%)zl:l —0.2754 G)z
+0.06225 (2)4]—}—3(—2)4[1 —0.8195 (2)2
+0.2286 (2)4]}0% 20 (10.34)

is taken, which satisfies the boundary condi-
tions. Employing the Rayleigh-Ritz procedure
gives for the squares of the frequencies

aT ()(l2

iy 59.11—1.249(—73—

2 2
Wag, W21 ="
J pd‘

s \/ [1—0 03967 ("‘T L )]2

+0.000011 ("LTJE)

The corresponding mode shapes are

Wao(r)=C, (2)2[1 —0.2885 (2)2
+o.0730(£)‘—0.0030<£)6] (10.36)
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and
Wa(r)=C, (2)2[1— 2.523 (3)2
+1.904 (2)4—0.5138 (2)6] (10.37)

and have a nodal circle at r=0.8279a.

10.1.4 Rotating Disk, Clamped at Center, Outer
Edge Free

Southwell (ref. 10.11) analyzed the problem
of a circular disk which is clamped at its center,
is free at its outer edge, and is rotating with
constant angular velocity @. He again used the
method for finding lower bounds on the fre-
quencies which was discussed in section 10.1.1.
The frequencies are given by

' K Ky
w — 1 +K2 1 (1038)
pa
where K; and K, are given in table 10.6 and
v=0.3.

10.2 RECTANGULAR PLATES
As described in the chapter entitled ‘“‘Rec-

tangular Plates” (ch. 4), there exist 21 pos- -

sible combinations of simple boundary con-
ditions for rectangular plates. Results were
found in the literature for all 21 cases for
isotropic plates not having inplane forces. As
will be seen in the following discussion, pub-
lished results exist for very few cases when
inplane forces are present. Also, it will be seen

OF PLATES

that for rectangular plates results are available
for other types of elementary inplane stress
fields, in addition to hydrostatic.

For the isotropic plate, when sinusoidal time
response is assumed,

w(z, y, )=W(z,y) sin (wi+¢) (10.39)

The differential equation of motion (eq. (10.1))
becomes

N, o'W  _ N, oW N, o'W

4 14
VW= W=1 o127 ss0y T D o
(10.40)
where
2
=22 (10.41)

When N, and N, are constants, say N, and N,

respectively, and N,,=0, equation (10.40)
becomes
N, O*W N,o'W
4“’ 41‘7_ 1 2
v k D bx2+D o 1042)

which is of a form particularly gmenable to
solution.

10.2.1 Plates Having All Sides Simply Supported

The boundary conditions for the problem of
plates having all sides simply supported are
defined by equations (4.18) and figure 10.5. In
figure 10.5, the positive senses of the inplane
forces N., N,, and N, are shown for the special
case when each is constant throughout the plate.

TaBLE 10.6.—Constants for Eq. (10.38) To Determine the Frequencies of a Rotating Disk Which
Is Clamped at Its Center and Free on Its Outer Edge

Nodal diameters
Nodal circles

0 1 2 3

Quicis om o i o B mmimim s mmie K;=0 K,=1 K=2.35 K;=4.05
K;=14.1 K,=0 K,=28.97 K,=155.3

1. K,=3.3 K;=5.95 K,=8.95 K,=12.3
- K;=437.3 K,=421.2 K,=1212 K,=2839
P K;=9.9 K,=14.2 K,=18.85 K;=23.85
K,=3683 K,=23336 K;=7164 K,=11700

U K1= 19.8 K1=2575 K1=3205 K1= 38.7
g K3;=14330 K,=14380 K,=23410 K;=36274
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Ficure 10.5.—Simply supported rectangular plate hav-
ing uniform inplane forces.

For N,=N,, N,=N,, and N,,=0, an ele-
mentary solution exists. Letting W(x,y) be
given by

Wz, )= > A,,sin l’fsin ™Y (10.43)
m,n=1 a b

clearly satisfies the boundary conditions of the

problem. Substituting equation (10.43) into
(10.42) yields the frequency equation

oo ()T
+Z\71<1"a—’r>2+N2<7%r>2 (10.44)

If equation (10.44) is multiplied through by
a*/D, there results the dimensionless form:

2.4 2732
w;) p=[(m1r)*+ (mr)?(%) :l
2 2
+Ni( 1r)2+N12)“ (n7r)2<%> (10.45)
Simplifications that result in equations (10.44)
and (10.45) when, for example, N;=N, or N,
=0 are clearly evident. Tt is also obvious that
if either N, or N,, or a combination of them,
beco mes sufficiently large in a negative sense
(i.e., compression), the frequency can be re-
duc ed to zero, which yields the combinations
of N, and N; which are critical buckling loads
for the problem. For example, let N,=0.
Then the critical buckling load is given by

(N,)u-—D(m,,) [(m> ( ) ]
—?[m“(ﬁ)(Z)]

(10.46)
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If N, and N, are compressive (i.e. , hegative),
then it can be seen from equation (10 44) that
the fundamental mode does not necessarily
occur when m=n=1 but depends upon N,, N,
and the a/b ratio. Thiswasshown by Herrmann
in reference 10.12 for the special case when N,
=0. For this case, substituting equation
(10.46) into equation (10.44) gives

2

pot= (T INH(NDd (1047)
where (V). is clearly a negative quantity.
Thus, the fundamental frequency for this
loading will always occur when n=1, but not
necessarily when m=1. This phenomenon is
llustrated in figure 10.6 (from ref. 10.12)
where the frequency ratio (w/w,)? is plotted as

a function of the ratios N,/(V,),, and a/b. The
quantity o, is defined by
. 4Dr*
s (10.48)

and is the square of the fundamental frequency
of an unloaded, simply supported square plate..

-\%‘5
o mX\msz
N
® 9:4 N
] me \m-4
W ! m=2 \
wg .
m ms| \
. b \\\ e mis
g 2 mz2 m4
— IR

j
i

o 0.25 0.50 075 1.00

Fraction of Critical Loading (Nl;c,

Ficure 10.6.—Influence of inplane force N,=MN,; on
the fundamental frequency of a SS-SS-SS-SS rec-
tangular plate for various plate aspect ratios. (After
ref. 10.12)
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The influence of a body force is also con-
sidered in reference 10.12. The body force is
assumed to be acting in the z-direction and
may be due to the weight of the plate (if it is
in a vertical position), or it may arise from
acceleration in the negative z-direction. Thus,
in this case, all the inplane forces are not
constant but are given by

N,=N,—vbz
N,=Ng=0

(10.49)

where N, is the inplane tension at the end
z=0, and y is the body force (force per unit
area). The Rayleigh method was used to
solve the problem, with the first term (m=n=1)
of the sine series expansion for deflection (eq.
(10.43)) being kept. This yielded the frequency
parameter

2 1 2
O

(10.50)
L L\
e — \

N,
Fraction of Critical Loading m—;—-
e

Ficurg 10.7.—Influence of end loading N, and body
force ratio £ on the fundamental frequency of a
SS-SS-SS-SS rectangular plate for a/b=3. wi=
4D x4/ path?; £= yabl/x2D. (After ref. 10.12)

The frequency ratio (w/w,)? is plotted in figure
10.7 as a function of the ratio N,/(IVy),, and a
parameter ¢ defined by

g:ﬂ—;D“/—F (10.51)
for the particular aspect ratio a/b=3. The
quantity o, is defined by equation (10.48).

Frequency parameters for this problem were
computed in reference 10.13 for use in deter-
mining lower bounds for completely clamped
square plates subjected to hydrostatic tension.
These are listed in table 10.7.

Some experimental results are reported in
reference 10.14. A 24S-T duralumin plate, 12
inches by 12 inches by 0.040 inch thick, was
simply supported along all edges and subjected
to the constant inplane load N,=N, and
N,=N,,=0. It was found that the experi-
mentally measured frequency does not decrease
as rapidly as that predicted by theory when the
compressive loading is increased. This is
shown in figure 10.8. In reference 10.14 this
effect is attributed to the possibility of slight
initial curvature in the plate.

3000
2500< \\
\?\ Experimental
2000 \ 0
o® 1500
\Theoveticul
1000 2
\\
AN
500 \
o N
o] -50 -100 -150 -200 -300

Ny

Ficure 10.8.—Deviation of experimentally measured
frequencies from those predicted by theory for a
§S-88-88-SS square plate loaded in one direction.
(After ref. 10.14)
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TaBLE 10.7.—Frequency Parameters for a Square
Plate Subjected to Hydrostatic Tension and
Having Clamped Boundaries Compared With
Those for a Plate With Simply Supported
Boundaries

Frequency parameters Frequency param-
for simply supported eter wa2Vp/D for
Na? plate clamped plate
D
onatVplD | w2a2Vp/D | Lower | Upper
bound bound
(R 36. 928 69. 788 49. 580 49. 847
100 - 48. 350 85. 473 59. 922 60. 392
150 ... 57. 549 98. 696 68. 580 69. 271
20 65. 467 110. 34 76. 124 77. 088
30:aein 78. 96 130. 56 89. 268 90. 656
50 ... 100. 65 163. 67 110. 60 112. 90
100_...._ 140. 96 226. 14 148. 26 154. 98
200....-. 198. 38 315.98 | 207.79 215. 69

The perturbation technique is demonstrated
in reference 10.15 for the case of hydrostatic
tension. The basic problem used is that of the
unloaded plate. One perturbation gives the
exact solution for the loaded plate.

In reference 10.16 the finite difference method
is applied to the problem. The problem is also
discussed in reference 10.17.

10.2.2 Rectangular Plates Having Two Opposite
Sides Simply Supported

In addition to the case described in the pre-
ceding section, there exist five other cases of
rectangular plates having two opposite edges
simply supported and simple boundary condi-
tions on the other edges. These have been
given previously in the discussion of simply
supported rectangular plates (sec. 4.2).

For uniform inplane forces, equation (10.42)
applies. When the edges =0 and z=a are
simply supported (as in fig. 10.5), a deflection
function which satisfies the boundary condi-
tions of zero deflection and bending moment
along these edges is given by

W(z,y) =§;1Y w(Y) sin ax (10.52)
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where a=mm/a. Substituting equation (10.52)
into equation (10.42) yields

d4y (2 2+N2 dY

+( ‘—k‘+%a2)Y,,.=O

which has a general solution

Y n=A, siny,y+ B, cos ¢,y
+ C,, sinh ¢y+ D, cosh ¢,y (10.54)

(m=1,2,...)
(10.53)

where

ine{[(#30) (w-w)]"
~(#+35)}”

ou={ [(+35) ~(e-r+52)]
+(=+35) } |

(10.55)

It is seen that equations (10.52) and (10.54)
are of exactly the same form as equation (4.21)
for isotropic plates, the only difference being
in the definitions of the frequency parameters
¥ and ¢,,.

The standard procedure to satisfy the bound-
ary conditions along the sides y=0 and y=b),
whatever they may be, is the substitution of
equation (10.54) into these conditions. The
determinant of the resulting four homogeneous
equations in A,, B, C,, and D, is then set
equal to zero for a nontrivial solution. This
yields an exact solution for the frequencies.

Apparently the foregoing straightforward
procedure has not been thoroughly followed in
the literature, as will be seen by the paucity
of numerical results to be presented.

Boundary conditions of plates having loads
acting on free edges are different than those of
unloaded plates because of the component of
inplane force which acts normal to the deflected
middle surface of the plate. That is, the trans-
verse edge reaction is given by

oM,

nt ow
Va=Qut—5;"1TNaz (10.56)
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By looking at equation (10.55), it can be seen
that ¥» and ¢n can be positive real, zero,
imaginary, or complex. The solution form of
equation (10.54) is based upon the assumption
that y» and ¢, are positive real numbers;
otherwise, the form would change. No study
is known in which the character and range of
applicability of the separate forms of solution
have been investigated.

The Rayleigh method is used in reference
10.12 to obtain an approximation for the funda-
mental frequency of a rectangular plate having
the edge y=b free and the others simply
supported. The loading is N.,=N; and N,
—=N,,=0. A deflection function

Wz, y)=ysin%c (10.57)

was used. The resulting expression for the
frequency is

PO N +D w+6(1—) 3)] aoss)

In reference 10.18 the case is considered when
three sides are simply supported, the other is
clamped, and two concentrated, collinear, com-

pressive forces P, act upon the two opposite -

simply supported edges. No numerical results
are given.

Experimental results are given in reference
10.14 for the case when two opposite edges are
clamped. A disagreement with theoretical re-
sults was found, similar to that discussed
previously in the discussion of plates with all
sides simply supported (sec. 10.2.1).

10.2.3 Rectangular Plates Having All Sides
Clamped

The problem of plates with all sides clamped
is defined by figure 10.5 with boundary condi-
tions w=20w/dn=0 on all edges.

Weinstein and Chien (ref. 10.13) used a vari-
ational technique to obtain lower bounds for
the fundamental frequency of a square plate
under the hydrostatic tension N.=N,=N and
N.,=0. Results are listed in table 10.7 for
varying degrees of inplane tension. Upper
bounds were also obtained by the Rayleigh-
Ritz method using the deflection function

W(z, §)=A cos® Z cos® j+B cos® I cos’ J
(10.59)

where # and § are coordinates having their
origin at the center of the plate. (See fig. 4.18.)
For purposes of comparison, the easily deter-
mined frequency parameters when all sides are
simply supported were computed in reference
10.13 and are also given in table 10.7. Also, a
plot was made which compares the frequencies
of a clamped square plate with those of clamped
circular plates having area and circumference
equal to those of the given square plate. The
circular-plate results were obtained from refer-
ence 10.3, as discussed previously for clamped
circular plates (sec. 10.1.1). These curves are
shown in figure 10.9.

In reference 10.19 the Kato-Temple method
(refs. 10.20 and 10.21) was used to derive an
extremely accurate lower bound for the funda-
mental frequency of a clamped square plate
subjected to hydrostatic tension N=10x’D/a’.
Accurate upper bounds were obtained by using
the Rayleigh-Ritz method with beam func-
tions (see discussion of the. C-C-C-C rec-
tangular plate (sec. 4.3.1)), keeping both 6 and
36 terms in the series. These results are com-
pared with those of reference 14413 in table
10.8.

The perturbation technique is used in refer-
ence 10.15 to obtain fundamental frequency

240 //

200

160
Q|

K I#: 120
)

80

40

°

o 20 rT) 60 80 100 120

Na®
»I0

Ficure 10.9.—Frequency parameter variations of
clamped plates as functions of inplane hydrostatic
tension. (After ref. 10.13)
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TasLe 10.8.—Comparison of Lower and Upper
Bounds for the Fundamental Frequency Param-
eter wat/p/D of a Clamped Square Plate
Subjected to the Inplane Tension Parameter
Na*/#'D=10

wazw/;/'D
Lower bounds Upper bounds
Ref. 10.19
Ref. Ref. Ref.
10.13 10.19 10.13
36 terms 6 terms
59. 922 | 59. 98389 | 59. 98488 | 59. 98498 60. 392

parameters for the problem previously discussed.
Results are summarized in table 10.9.

10.3 PLATES HAVING OTHER SHAPES

Lurie (ref. 10.14) showed that for a plate of
any polygonal shape, with all its boundaries
simply supported and subjected to hydrostatic
pressure N,=N,=N=-—p and N;=0, the
vibration mode shapes are independent of the
intensity of p. Hence, the mode shapes are
identical to the buckling modes of the plate and
also identical to the vibration modes of a stretched
membrane having the same shape. Further-
more, the frequency of the loaded plate can be
expressed as

o =T, [1—

TaBLE 10.9.—Fundamental Frequency Param-
eter wa®/p/D Derived From the Perturbation
Method for a Clamped Square Plate Subjected
to Hydrostatic Tension

(pmn)cr] (10.60)

Mo wa*Vp/D
=D
(1 T Y 35. 989
. 49. 628
0 60. 019
2 68. 566

308-337 0-—70——19

where (wmn)o is the frequency of the unloaded
plate in the particular mode identified by the
subscripts m, n and (pp.) e 1is the critical
buckling pressure in the same mode.

Schaefer and Havers (ref. 10.22) showed that
frequencies of an equilateral triangular plate
simply supported on all sides and subjected to
hydrostatic pressure p can be calculated from
the equation

w,a‘p/D
A

+ =M (10.61)

where a is the altitude of the triangle (see
fig. 7.15) and A, are the eigenvalues of the
membrane vibration problem determined from

xizg 2(12+ m2+n"’)

l+m+n=0
I, mn==1, £2,43,...

(10.62)

The first six values of (I>++m?+n?) are given in
table 10.10. A plot of the first six plate fre-
quency parameters as functions of the inplane
compression appears as figure 10.10.
Kaczkowski (ref. 10.23) utilized the fact that
the superposition of certain vibration modes
(having the same frequency) of a simply sup-
ported square plate will give a combined mode
which has a nodal line on the diagonal of the
square. In this way the frequencies and mode
shapes of a plate in the form of an isosceles right
triangle with all edges simply supported can be

80,000
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» 40,000 \ A
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20,000 —~
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F1cURE 10.10.—Frequency parameters w?a‘p/D as func-
tions of inplane hydrostatic pressure for a simply
supported, equilateral, triangular plate. (After ref.
10.22)
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TaBLE 10.10.—Terms for Computing the First
Siz Eigenvalues for the Equilateral Triangular
Membrane

7 l m n B+mi-tn?
1 1 1 —2 6
2 1 2 -3 14
3 2 2 —4 24
4 1 3 —4 26
5 2 3 -5 38
6 1 4 -5 42

found. The frequencies for N,=N,=N,N,,=0
are given by

wnn=(2m*+2mn+n?)

s \/T) Na? 1/2
VN [1 + 2m*+2mn+ni)r*D

(m,n=1,2,3...) (10.63)

and the fundamental frequency occurs when

m=n=1:
52
on=gz [ (1+5HD

The mode shapes of the triangular plate are
(in terms of fig. 10.5):

W a(Z, ¥)=Ama| sin A2 sin MY
a a
—(—1)mtn sinwsinm—fy]
a a
(m,n=1,2,3...) (10.65)
Isosceles right triangular plates having

hydrostatic inplane forces and several other
types of boundary conditions are discussed in
reference 10.23. No numerical results are
given for these problems, but the character-
istic determinants yielding the frequencies are
carefully shown. The determinants are of
infinite order and contain terms having infinite
series. Thus, the accuracy of a solution would
depend upon the numbers of terms kept.
Specific problems set up in detail in reference
10.23 are:

(10.64) |

(1) The side z=0 clamped, the others
simply supported

(2) The sides clamped, the hypotenuse
simply supported

(3) The side =0 free, the others simply
supported

(4) Two sides free, the hypotenuse simply
supported, and the point (0, 0) sup-
ported

(5) One side clamped, one side free, the
hypotenuse simply supported

(6) Two sides simply supported, the hy-
potenuse clamped

(7) Two sides simply supported, the hy-
potenuse free

Pan (ref. 10.24) used the method of images
to show that the square of the fundamental
frequency of a 30°-60°-90° triangular plate
simply supported on all sides (see fig. 7.17)
and subjected to hydrostatic tension NV is

, 287 28D1r
T3pa’\ 3 a?

+N) (10.66)

and the mode shape is h

W(, —sm—-—sm———l—sm T2 in2mY
(@) a3 a\/3 a

+s1n — sm—" (10.67)
a

‘/
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Plates With Variable Thickness

In the case of plates with variable thickness,
the governing differential equation of motion is
found to have variable coefficients, and this
fact increases the difficulty of solution. This
added complexity will be demonstrated below
in both polar and rectangular coordinates.
Results are available only for isotropic plates
having no inplane forces.

11.1 CIRCULAR PLATES

If inplane forces and rotary inertia are
disregarded, the equations of motion in polar
coordinates are

ng )
—( Q, )+ hb_t2
——(r]ll) Z\fﬁ-aMﬁ—?‘Qr:O ~ (11.1)
e (Mro)'f‘bMa‘f‘Mre TQ0=0J

Equations (11.1) correspond to equations (A.2)
and (A.8) of the appendix which were derived
In rectangular coordinates and can be obtained
from them by direct transformation; or they
can be derived by summing forces and moments
on a typical, infinitesimal, sectorial area. In
equations (11.1), v is taken to be the mass
density per unit volume of plate, unlike the
constant p used elsewhere throughout this
work.

For an isotropic plate, equations (A.35)

become
[a”” :ba:) 1265792)]\
M,,:——D(l—u)br<law )

where D=EI?/12(1—?) ; that is, D is a function
of the thickness.

To obtain a fourth-order differential equation
corresponding to equation (1.1), it is only
necessary to substitute equations (11.2) into
the last two of equations (11.1) and, in turn,
substitute these into the first of equations
(11.1). However, if the thickness is a function
of r and/or 6, the resulting differential equation
will be quite lengthy and will have variable
coefficients (i.e., functions of r and/or 6). This
expanded equation will not be presented here.
Needless to say, very little has been done
toward obtaining solutions to this differential
equation in all its generality.

Timoshenko and Woinowsky-Krieger (ref
11.1) and Conway (ref. 11.2) showed that, for
the axisymmetric problem (no variation with
6), the equation of motion becomes

bw 10w
rbr{ [Dbr rbr

ar rbr)]}+'¥h SE=0 (11.3)

Conway (ref. 11.2) gave some special solutions
of equation (11.3) when the flexural rigidity
varied according to

+br

D=Dg™ (11.4)
where
Ehd
Dy= B (11.5)

and when the boundary of the circular plate is
clamped. Poisson’s ratio was restricted to

vz%(2m—3) (11.6)

which simplified the solution of equation (11.3)
considerably.
In reference 11.2 exact solutions to equation
(11.3) were obtained for several values of m in
285
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equation (11.4). For m=2, »=1/9, and a solid
plate, the solution takes the form

W(r)y=r"*#[CJ(w)+ CoI(u)]

u =br*#
b4=907‘°2

ERz

(11.7)

where

(11.8)

and J, and I, are the regular and modified
Bessel functions of the first kind of order one.
Applying the boundary conditions (egs. (2.2))
gives the characteristic equation

Ji(wo) __Ii(u)

Ti(u) ™~ T (o) (119

where the primes indicate differentiation with
respect to the argument u and

ug="ba?’? (11.10)
where @ is the boundary radius. The first
10 roots of equation (11.9) were given in
table 2.1 (n=1), the lowest root being

60 vy’

1/4
U= —E—h?)—') a2/3:—“(21.26)”2 (11.11)

Consider a clamped circular plate having a
constant thickness equal to the maximum
thickness (at the boundary) of the variable
thickness plate previously described (m=2,
»=1/9). Then, according to reference 11.2,
the ratio of the fundamental frequency of the
constant-thickness plate to that of the variable-
thickness plate is 1.08.

For m=18/7 and »=5/21, the frequency
equation

uo(tan uo+tanh up) =2 tan uo tanh uo (11.12)

was given, where now

2\1/4
uo=(§g—7 }’7:‘%(2)) at’ (11.13)
The first root of equation (11.12) was given
as u,=>5.27. The ratio of the fundamental
frequency of the constant-thickness plate to
that of the variable-thickness plate having
the same thickness at the boundary was
found to be 1.13.

For m=3 and »=1/3, there is the important
case of linearly varying thickness, which is
discussed in reference 11.3 as well as in refer-
ence 11.2. The characteristic equation for a
solid circular plate is found to be

Jo(uo) Iy (o) =y (wo) In(wg)  (11.14)
with
512 2\ 1/4
Up= ?%’Eg) a?  (11.15)

Equation (11.14) is also the characteristic
equation for the transverse vibrations of a
cantilever beam having a circular cross section
and linear taper. Thus, by analogy with
results for beams, the first three roots of
equation (11.14) are found to be u,=5.906,
9.197, and 12.402.

The ratios of the first three axisymmetric
frequencies of the constant-thickness plate
to those of the variable-thickness plate having
the same thickness at the boundary are found
to be 1.17, 1.88, and 2.31.

The case when m=6 and » is itrary is

also discussed in reference 11.2, but no numer-

ical results are given.

It is interesting to observe that in the case
of variable-thickness plates the frequency pa-
rameter depends upon Poisson’s ratio for
clamped as well as for other boundary conditions.

In reference 11.4 the work just described
was extended to annular plates of linearly
varying thickness which are clamped on both
the inner and outer boundaries (fig. 11.1).
The solution for the linearly tapered beam
again applies when Poisson’s ratio for the
plate is 1/3. The characteristic determinant
yielding the frequencies is

J2(8) Y:(8) 1,(B) K,(B)
e B —Le KO,
lJo(e) Y () () K;(a)
@)  Yi@) —hLi@ K
(11.186)
where
" 32 v 1/2
B=4wa\ % 773
<;2Eh° . (11.17)
2__ o4 ¥
a —4wa( 3 Eh?,)
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FiGure 11.1.—Annular plate with linearly varying
thickness and both boundaries clamped. (After ref.
11.4)
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TaBLE 11.1.—Azisymmetric Frequency Param-
eters (wa?/H)(2y/3E)"* for an Annular Plate
Having Linearly Varying Thickness and
Clamped on Both Boundaries; v=1/3

(wa?/H) (27/1)?71'7)”2 for values of

a of—
Mode no.
b4 % Y Ho
} 16. 5 8 04 5. 84 3. 32
2 e 45.2 | 21.9 15. 8 8. 71
b S 88.4 | 42.6 30. 6 16. 7
4 146 70. 3 50. 4 27. 3
L 211 104. 8 75.0 40.5

-~
~——
-

\
\
*‘h
\
\
NN
e

Figure 11.2.—Circular plate with both constant and
linearly varying thickness and clamped on the
boundary. (After ref. 11.4)

Frequency parameters for various ratios of
b/a are listed in table 11.1.

Also examined in reference 11.4 was the solid
circular plate which has a linearly varying
thickness in the interval b <r <« and a constant
thickness in the interval 0 <r<b (see fig. 11.2)
and is clamped along its edge. Using the
separate solutions for the variable- and con-
stant-thickness regions and enforcing two
boundary conditions at r=a and four con-
tinuity conditions at r=b lead to the charac-
teristic determinant:

—Jo(£)
Ji(¥)

4]

(11.18)

#
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where
(11.19)
k=a/b

Again, Poisson’s ratio is restricted to a value of
'1/3. Frequency parameters for various a/b
ratios are given in table 11.2.

Thurston and Tsui (ref. 11.5) investigated
the problem of a linearly tapered circular
plate which is supported elastically on a central
supporting area as shown in figure 11.3. The
Rayleigh-Ritz method was used with a deflec-
tion function of the form

W(r) =A+Br+Cr® (11.20)

TapLe 11.2.—Axisymmetric Frequency Param-
eters (wa?/h) (2v/SE)'? for Clamped Circular
Plate Having Linearly Varying Thickness in
Interval b<r<a and Constant Thickness h
in Interval 0 ST <b;v=1/3

(wa2/h) (2v/3E)1 2 for values of
b/a of—

Mode no.
1 1/2 1/3 1/4
s S s 2. 55 3.97 6. 33 8. 81
D e i mimimimimimilis & 9. 95 14. 21 17. 03 20. 89
K 22.23 28. 00 37.70 44. 89

={—(Bp’—2a'\— 2a\’)
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-

F1cURE 11.3.—Linearly tapered circular plate supported
elastically on a central supporting area. (After ref.
11.5)

for axisymmetric vibrations. Equation (11.20)
satisfies the condition of zero slope at the
origin; in addition, the condition
b
fW(r)r’dr=Ov (11.21)
0

was imposed. This latter condition is designed
to relax the condition of rigid clarhbing along

the central core and replace it by one of “no

net volume flow back and forth’ across the
surface of attachment. Equation (11.21) leads
to the relationship

B, Ch
amar(34

and reduces the system to two degrees of
freedom. The Rayleigh-Ritz procedure yields
the two frequencies given by

(11.22)

:i:[(ﬁﬁ'—2a’)\—2a)\')2—(4a’)\’—6’2)(401)\—62)]”2}+(4a’)\’—6’2) (11.23)





[image: image40.jpg]PLATES WITH VARIABLE THICKNESS
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and where the thickness is defined by
h=h, (0=r=h)

()] o

J
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(11.24)

(11.25)
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Detailed calculations were made for an
aluminum disk having the following constants:
a=1.00 inch, 6=0.375 inch, E=10.6X10° psi,
and »=0.33. These results are plotted in figures
11.4 and 11.5 for various tapers k and are
compared with experimental results for k=4/5.
In figure 11.4 the theoretical values are plotted
directly as they arise in the computations.
In figure 11.5 the values are adjusted to account
for additional cement and a barium titanate
element used in the experiment.

Kovalenko (ref. 11.6) made a study of the
annular plate having thickness varying accord-
ing to the equation

Tr
"=’l°(1‘r:>

(11.26)

20

fin KC/Sec

a4t o Computed Volue
X Computed Value for k2§

A A A A A A A A A A d . e
0.0 0.5 020 028
h, in inches

Ficure 11.4.—Uncorrected cyclic frequencies f for a
linearly tapered, circular aluminum plate. (After
ref. 11.5)

20

tinKC [Sec
o

@

o Computed Value
X Measured Value for k= §

P | i
0.0 Q45 0.20 0.25
hg ininches

Figure 11.5.—Adjusted cyclic frequencies f for a
linearly tapered, circular aluminum plate. (After
ref. 11.5)
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(see fig. 11.6). His primary work was a direct
attack upon the differential equation by assum-
ing a series form of solution. Boundary con-
ditions led to an infinite characteristic determi-
nant, which was truncated for an approximate
solution. Detailed numerical results were given
for the special configuration where the boundary
r=b=0.1r, was clamped and the boundary
r=a=0.5r, was completely free. A Poisson’s
ratioof 1/3wasused. Byuseof theseries method
the lowest axisymmetric frequency parameter
was found to be

— D,
w(,o_lg.oo\/mr6 (11.27)
where D, is as defined in equation (11.5). The

lowest antisymmetric frequency (i.e., cos nf
mode, with n=1) was found to be
D,

Yhers

w=18.24 (11.28)
When equations (11.27) and (11.28) are com-
pared it can be observed that, as in the
case of certain b/a ratios for constgnt-thickness
annular plates (see discussion for annular
plates (sec. 2.2.7)), the fundamental mode is
antisymmetric. In table 11.3 are given the
mode shapes corresponding to these two fre-
quencies and the ratios of bending moments.

Rayleigh-Ritz solutions were also obtained
in reference 11.6 by using the radial variation
in deflection

W(r) =A,(r—b)*+A4,(r—b)® (11.29)
giving the frequencies
as D,
0)00—19.2 m
5 (11.30)
. 0
w 0=18.47 by
fo }
n f '
—

Figurg 11.6.—Annular plate with thickness variation
h=ho[l— (r/ro)].
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TaBLE 11.3.—Mode Shapes and Ratios of Bending Moment Jor First 2 Modes of Linearly Tapered
Annular Plate Shown in Fig. 11.6; a=0.514; b=0.1r,

. Symmetric (n=0) Antisymmetric (n=1)
™
0 w Mr __?l_)___‘ Mr MO
(w) r=g (Mr)'-b (Mﬂ) r=}b (w) r=q (Mr) =} (MO) r=5
0. ___________ 0 1 0 1 1
0.2__________. . 112 . 382 . 988 . 112 . 319 . 713
03 ______ . 362 . 149 . 552 . 359 . 120 . 334
04___________ . 677 . 032 . 245 . 671 . 025 . 121
0.5___________ 1 0 . 094 1 0 . 035
|

An integral-equation approach to the problem
of circular plates of variable thickness is
presented in reference 11.7, but no numerical
results are given.

A method of handling variable-thickness
circular or annular plates is discussed in
reference 11.8 whereby the plate is represented
by circumferential strips of constant thickness
and lumped mass. A demonstration of the
method on a constant-thickness plate is given,
but no numerical results for variable-thickness
plates are included.

11.2 RECTANGULAR PLATES

In the case of rectangular coordinates it is
shown in the appendix that the governing
differential equation of motion for an isotropic
plate of variable thickness having no inplane
forces is , ,

5 i *D  d*w
V2 (DViw)—(1 —y)< 500 bs s

FDw
oy or*

2°D d*w o*w

where the mass density per unit volume v has
been substituted in place of p.

Very little has been done in solving equation
(11.31) as it stands because of the variable
coefficients arising when D is not constant.
Appl and Byers (ref. 11.9) studied the case
when the thickness varied only in one direction,
sayz. In that case, equation (11.29) simplifies to

i dDo_,  dD/dw, dOw

2,
+7h%—t‘f=0 (11.32)

Furthermore, for a plate having parallel edges
simply supported, a solution in the form of
equation (1.33) can be taken, thereby exactly
satisfying the boundary conditions along the
parallel edges and reducing equation (11.32) to
an ordinary differential equation having variable
coefficients. :

In reference 11.9 extensive calculations were
made for the rectangular plate having all sides
simply supported and a linear thickness varia-
tion in the z-direction given by

h—_-b0<1+a§) (11.33)
where z is measured from one edge, the length
of the plate is a (cf. fig. 4.4), and « is a constant
determining the rate of taper. A special tech-
nique (ref. 11.10) was used for obtaining both
upper and lower bounds for fundamental fre-
quency parameters. Results thus obtained are
presented as table 11.4 for »=0.3 and for various
aspect ratios. In this table, in addition to upper
and lower bounds, a mean value is computed
along with 2 maximum possible error in this
mean value. For purposes of comparison, an
upper bound was also determined by the
Rayleigh method by using a deflection function
of the form

Wiz, y)=[(§>‘—2(§)3+g]sin% (11.34)

A representative fundamental mode shape is
depicted in figure 11.7 for a/b=1.0 and a=0.8.
The sine curve for the case of uniform thickness
(@=0) is also shown for purposes of comparison.
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TaBLE 11.4.—Fundamental Frequency Parameters «a‘*yho/D, for Linearly Tapered Rectangular
Plates Simply Supported on All Edges; v=0.3

w’a‘-yho/ Do
a
13
Upper Lower Mean Maximum Rayleigh
bound bound value error, percent method

0. 25 . 1 121. 112 121. 067 121. 089 0. 0187 121. 081
.2 132. 437 132. 434 132. 436 . 00103 132. 435
.3 144. 144 143. 792 143. 968 . 122 144. 026
.4 155. 899 155. 828 155. 863 . 0228 155. 853
.5 167. 925 167. 891 167. 908 . 0102 167. 913
.6 180. 243 180. 145 180. 194 L0273 | eemmeeee
« 7 192. 857 192. 586 192. 721 L0705 |eo oo
. 8 206. 045 204. 949 205. 497 L267 o ea-

0. 50 .1 167. 657 167. 656 167. 657 0. 0000596 167. 656
.2 183. 585 183. 577 183. 581 . 00234 183. 579
.3 199. 979 199. 964 199. 972 . 00382 199. 970
.4 217. 902 216. 262 217. 082 . 379 216. 825
.5 234. 463 233. 968 234. 215 . 106 234. 143
.6 252. 126 251. 763 251, 944 0723 | semsnes
7 270. 394 269. 883 270. 139 L0946 |-
.8 289. 317 288. 256 288. 786 184 | i e

0.75 . 1 262. 051 262, 003 262. 027 0. 00921 262. 036
.2 287. 200 287. 098 287. 149 . 0178 287. 132
.3 313. 325 312. 989 313. 157 . 0538 £ 313103
.4 340. 388 339. 718 340. 053 . 0986 339. 941
.5 367. 708 367. 591 367. 650 . 0160 367. 703
.6 396. 506 395. 625 396. 066 s LB L smecmme e e o
.7 426. 062 425, 125 425, 593 I 1 [ N
.8 457. 397 454. 239 455. 818 348 -

1. 00 . 1 429. 349 429. 339 429. 344 0. 00124 429. 346
.2 470. 556 470. 521 470. 539 . 00372 470. 549
.3 513. 379 512. 930 513. 154 . 0437 513. 220
.4 557. 816 556. 573 557. 195 . 112 557. 355
: 5 603. 180 602. 841 603. 011 . 0281 603. 006
.6 650. 563 649. 540 650. 051 0788 e sow semmemen s 2
.7 699. 732 697. 235 698. 483 I 1 [ S
.8 751. 416 745. 011 748. 214 L4300 |-

1. 25 . 1 704. 866 704. 696 704. 781 0. 0120 704. 752
.2 773. 000 771. 784 772. 392 . 0787 772. 191
.3 842. 034 841. 884 841. 959 . 00892 842. 013
.4 914. 608 913. 618 914. 113 . 0542 913. 759
.5 988. 921 987. 612 988. 267 . 0663 988. 424
.6 1066. 211 1063. 428 1064. 819 B 4 T i B
.7 1146. 985 1139. 781 1143. 383 JB18 | emmemme s
.8 1229. 929 1218. 858 1224, 393 454 |-

1. 50 . 1 1133. 669 1133. 338 1133. 504 0. 0146 1133. 456
.2 1242. 578 1239. 000 1240. 789 . 144 1241. 395
.3 1353. 687 1350. 576 1352. 131 . 115 1352. 379
.4 1468. 157 1465. 250 1466. 703 . 0992 1467. 138
.5 1586 689 1583. 145 1584. 917 LI12 |isecees s s s
. 6 1709. 603 1701. 686 1705. 645 D83 s s e s
.7 1837. 799 1820. 621 1829. 210 472 |-
. 8 1967. 569 1948. 622 1958. 095 486 | mammee
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TaBLE 11.4.—Fundamental Frequency Parameters w*a*vhy/Dy for Linearly Tapered Rectangular
Plates Simply Supported on All Edges; v=0.3—Continued

a wiatyho/ Do
b @
Upper Lower Mean Maximum Rayleigh
bound bound value error, percent method
1.75 0.1 1771. 579 1770. 158 1770. 869 0. 0401 1770. 631
.2 1939. 753 1934. 993 1937. 373 . 123 1938. 224
.3 2110. 977 2108. 915 2109. 946 . 0489 2109. 667
.4 2288. 368 2284. 341 2286. 354 . 0882 2288. 320
.5 2471. 362 2461. 928 2466. 645 192 oL
.6 2660. 680 2641. 065 2650. 873 37 el
.7 2850. 204 2831. 734 2840. 969 N5 S P ——
.8 3054. 910 3031. 066 3042. 988 398  |romeoseeseoeeoes
2. 00 0.1 2685. 834 2679. 248 2682. 541 0.123 2681. 525
.2 2935. 362 2930. 935 2933. 149 . 0755 2935. 547
.3 3193. 446 3187. 392 3190. 419 . 0950 3203. 400
.4 3458. 506 3446. 658 3452. 582 . 172 3489. 606
.5 3734. 808 3702. 730 3718. 769 L4383 |l
.6 4012. 388 3979. 820 3996. 104 < (1t LU R ——
.7 4283. 839 4266. 413 4275. 126 : 208  |eecrrecroweswes
.8 4556. 204 4539. 970 4556. 204 B T e
Lo Pl ~ .
/,// I 'a o where the constants A, B, C, and D are given
WL ! ;
9.8 7 - \\ N in table 11.5 for the types of boundary condi-
_— AN NS, tions depicted in the table. The thickness
2 Y .
g /1 B parameter A is defined by
% il a=08-R N ’
S04
/4 o/b=1.0 \ hi—ho
= N i
o2l ¥:0.3 \\\ A= » (11.36)
0

o] 0.2 0.4 0.6

x/a

0.8 1.0

F1eure 11.7.—Fundamental mode of a simply sup-
ported square plate having linear thickness variation
in the z-direction; »=0.3. (After ref. 11.9)

Gumeniuk (ref. 11.11) used the finite-differ-
ence method to derive a formula for the fun-
damental frequency of a simply supported
rectangular plate having linear thickness vari-
ation. This work was extended by Gontkevich
(ref. 11.12) to plates having other boundary
conditions. Fundamental frequencies are de-
termined from the formula

S\ o (A+D— (4= DY F4B0)

(11.35)

w=

where the thicknesses h, and &, are as shown
in table 11.5.

Plunkett and Wilson (refs. 11.13 and 11.14)
measured the frequencies of linearly tapered
steel cantilever plates, with the taper occurring
between the free edges as shown in figure 11.8.
Figure 11.8 shows the variation in the frequency
parameter

(11.87)

wa?  [12y(1—)
e

with the wedge angle 8, where h, is the greatest
thickness and a is the span of the plate (5 inches,
in fig. 11.8). The values shown for zero wedge
angle (constant thickness) were computed by
elementary beam theory. Fundamental fre-
quency parameters for the various wedge
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Complete Wedge
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FigURe 11.8.—Experimentally measured fundamental
frequency parameters for different values of wedge
angle ¢ for linearly tapered, rectangular cantilever
plates; material, steel; numbers indicate modes.
(After ref. 11.13)

angles are tabulated in table 11.6. The effect
of changing aspect ratio is shown in figure 11.9.
In this figure a/b is varied by removing ma-
terial from the thin side of the plate, so that
the cross section becomes trapezoidal. The
wedge angle 6 remains a constant 2.4°. Fun-
damental frequency parameters for this case
are presented in table 11.7.

400

200

4=
B
20~ +— 3
Q/+/Q

4
g
Im_’_ﬁ-
alol I 1 1 ] § |
2 4 6 7 8 9
a/b

Figure 11.9.—Experimentally measured fundamental
frequency parameters for different values of a/b for
linearly tapered, rectangular cantilever plates; ma-
terial, steel; 6=2.4°; numbers indicate modes.
(After ref. 11.13)

Methods for solving the free vibration
problem for rectangular variable-thickness
plates are also presented in references 11.15
to 11.18, but no numerical results are included.
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TaBLE 11.6.—Ezperimentally Measured Funda-
mental Frequency Parameters for Linearly

Tapered, Rectangular Cantilever  Plates;
Material, Steel
Wedge angle, 6, ° | 1.35 | 2.4 | 37 | 59 | 118
¢ (eq. (1137)____| 2.52 | 2.57 | 2.47 | 2.32 | 228

TasLe 11.7.—Variation in Fundamental Fre-
quency Parameter With Aspect Ratio for Line-
arly Tapered, Rectangular Cantilever Plates;
Material, Steel
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2.00
2. 57
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11.3 OTHER SHAPES

Except for the work in references 11.19 and
11.20, virtually nothing’ has been done for
variable-thickness plates when their shapes are
other than circular or rectangular. A method
is presented in reference 11.19 for analyzing
cantilever variable-thickness plates having an
arbitrary quadrilateral shape. Reference 11.20
gives a method for analyzing clamped variable-
thickness plates of arbitrary shape.
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The effects of the following complications will
be considered in the present chapter:

(1) Surrounding media

(2) Large deflections

(3) Shear deformation and rotary inertia

(4) Nonhomogeneity

Generally, because of the complexity of the
resulting theory, there are not many numerical
results showing the effects of these complica-
tions. Indeed, in many cases the technical lit-
erature deals mainly with the development of
the needed theory. Nevertheless, it will not be
the purpose of this chapter to repeat those deri-
vations; the reader is referred to the references
themselves for this. The primary purpose of
this chapter, as of the preceding ones, is the
presentation of numerical results, where avail-
able, with explanatory material as necessary for
an understanding of their significance.

It will be assumed in this chapter that the
reader will already be reasonably familiar with
the coordinate systems, notation, boundary
conditions, and so forth, used in the preceding
chapters, and so, much tedious redefinition will
be omitted.

12.1 EFFECTS OF SURROUNDING MEDIA

In general, it has been the practice in this
work to discuss plates in bending which are
uncoupled from other elastic structures having
mass. In this way only a single differential
equation of motion—that of the plate—is
involved. Yet it is apparent that practical
experiments are conducted in air, and that the
mass of the air thus moved has the effect of
decreasing the vibration frequencies of the
system. The difference between experimental
and theoretical results for this reason has been
alluded to in many places in the preceding
chapters and, indeed, corrections of one or the
other to obtain comparable values were even
made in a few places (and so identified). In

Chapter 12

the present section some of the papers that
deal primarily with this problem will be sum-
marized. The topic is generalized to include
other media in addition to air—notably, water.

12.1.1  Circular Plates

In an early paper Lamb (ref. 12.1) considered
a clamped circular plate which is in contact on
one side with an infinite expanse of water. The
Rayleigh method is used with a deflection
function
w=C[1—(r/a)*? (12.1)
The kinetic energy is computed on the assump-
tion that the water is incompressible. The -
resulting formula for the fundamental fre-
quency parameter is

10.33

\/ 140.6689 (”—7"’) (%)

where v,,/v is the dimensionless ratio of the mass
density of water to that of the plate and a/h
is the radius-thickness ratio. Of course, equa-
tion (12.2) can be applied to any incompressible
fluid. If both sides are to be exposed to the
infinite fluid, then the 0.6689 in equation (12.2)
is replaced by 2X0.6689.

The frequency of the second mode (having
one nodal diameter) was also calculated in
reference 12.1 with the use of

waty/p/D= (12.2)

w=C[1— (r/a)*)* cos 6 (12.3)
and resulted in
wat D= 21.909 (12.4)

‘/ 140.3087 (1—;) (%)

Hence, the effect of the water’s inertia is less

upon the second mode than upon the ﬁl:st.

In order to check the accuracy of the foregoing
299
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results, & two-term Ritz solution was carried
out in reference 12.1 for the first and second
modes of a particular iron plate; this calcula-
tion yielded results which differed from those
calculated from equations (12.2) and (12.4) by
less than 1 percent. The effects of damping
due to the water are also discussed.

Experimental results for the preceding prob-
lem are given in reference 12.2.

McLachlan (ref. 12.3) extended Lamb’s
work to the case of a circular plate having
a free boundary. For a plate having both sides
immersed in an infinite fluid, he shows that the
ratio of the frequency of the system w to the
frequency of the plate in a vacuum w, can be
determined from the formula

w 1
2o (L)
where, for the case of one nodal circle,
_16_ 3
M1—35'y,a (12.6)

and, for the case of a point support at the
center,

80

—— 3
M1—63'Y/(11 (127)

and, in both cases,

M,=1§r‘ya’h (12.8)
where v, is now the mass density of the
surrounding fluid. In reference 12.3, equation
(12.5) is applied to the problems of an aluminum
plate vibrating in either air or water.

The previous work was extended further by
Peake and Thurston (ref. 12.4), who applied
the Rayleich method to the problem of the
simply supported circular plate having water
loading on one side. A deflection function

w=1—1.245(r/a)?*40.245(r[a)*  (12.9)

was used; the result is the frequency parameter

formula
4.94 (12.10)

\/ 141.045 (%")(%) ,

Bycroft (ref. 12.5) studied the problem of
transverse vibration of a circular plate which

wa*yp/D=

is perfectly attached to a massless, elastic, infi-
nite half space. The Rayleigh-Ritz approach is
used, with the potential energy of the half space
being added to that of the plate. Clamped,
free, and simply supported edge conditions are
considered for the plate. For the clamped case
a deflection function for the plate is taken in
the form of equation (12.1). The square of the
fundamental frequency parameter is found to
be:

watp 4.37G(1—+H)a?
D _106'7+P—_D~ (12.11)
where
G
I .
T={12q (12.12)

and A and G are Love’s (ref. 12.6) elastic
constants for the half space:

A B

(1+»)(1—2) (12.13)
g=_E

2(1+v)

"
For the free plate, a two-term solution function
is assumed as & constant plus the first term
of a Dini series; that is,

w=Ay+AiJo[M(r/a)]

where \;is the firstroot of Jo(\) =0. By applying
the Ritz method, the two resulting frequencies
are determined from

(12.14)

o'atp

D
(9.21—{—4.791:—{—1.5906)A"{+2.248BA0A1+4BA?,
(01355424 0.4334,4,40.543)

(12.15)
where
_Ga¥(1—1")
p=—"—p (12.16)
and the amplitude constants Ao and A; are

related by

j—i—l= —[(4.61+2.39v+0.2558) = (21.2+5.684*
0

—i—0.29852—{-22v+4.766+2.486v)”2]
+(3.98+42.07v+-0.3838) (12.17)
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Finally, the simply supported plate is analyzed
by using equation (12.14) with A,=0. The
square of the fundamental frequency parameter
is found to be

2.4
AP 21.70+11.25047.4608

D (12.18)

12.1.2 Rectangular Plates

An interesting experimental and theoretical
study of the vibration frequencies of rectangular
cantilever plates (see fig. 4.40) immersed in
water was reported by Lindholm, Kana, Chu,
and Abramson (ref. 12.7). Cyclic frequencies
are listed in table 12.1 for 15 plates made of type
1080 cold-rolled steel having various aspect
ratios and ratios of thickness to width. Theo-
retical values are based upon Barton’s work
(see discussion of rectangular cantilever beams
(sec. 4.3.12)), where applicable, and elementary
beam theory. These pertain, of course, to the
case of a vacuum. Frequencies are measured
both in air and in water.

A correction formula of the form given in
equation (12.5) was derived in reference 12.7 by
means of hydrodynamic strip theory to account
for the added ““apparent mass” of the surround-
ing fluid. The ratios M;/M, to be used in
equation (12.5) are given in table 12.2 for six
modes of the cantilever plate (see definition
of modes in table 12.1).

A further correction is suggested in reference
12.7 to account for the effect of plate thickness
on the apparent mass of the air. In this case
equation (12.5) becomes

L. 1 (12.19)
Wo 1+f]‘7;
where
___2(a/b)
f_2(a/b)+k (12.20)

and K is obtained from figure 12.1 for modes 1,
3, and 6.

A comparison of theoretical and experi-
mental results for frequency parameters is
made in figure 12.2 for the six modes. The
effects of corrections for aspect ratio AR, a/b and
thickness ratio b/h are clearly seen.
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Figure 12.1.—Thickness correction factor of a rectan-
gular cantilever plate for modes 1, 3, and 6. (After
ref. 12.7)

The variation of node-line location in going
from air to water is shown in figure 12.3.
Frequency variation with depth below the sur-
face is set forth in figure 12.4 for plate 11 of
table 12.1. Finally, the effect on frequency
due to partial immersion is shown in figure 12.5
for plate 8. It is stated in reference 12.7 that
the angle of inclination of the plate to the sur-
face seems to have an effect only for very
shallow angles. _

Greenspon (refs. 12.8 and 12.9) has proposed
a correction formula to account for the effects
of water on one side of a rectangular plate for
all boundary conditions. The frequency ratio is

AN POOE

(12.21)
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TaBLE 12.2.—Mass Correction Factors for Ey.
(12.5)

Mode M,
M,

S HE) )
2 )G
HS) )
‘e 0.0803x(2=)(3)
B #(5)(3)
HEO)

where f is a ‘virtual mass function” for plates
of rectangular shape and is plotted as a function
of a/b in figure 12.6. The coefficients A4,, and
B, are determined from the formulas

1
Au—&z Lmawu dA

; (12.22)
Blj:‘—l—b. fAreang d4

where the w,, are mode shapes which are the

products of beam functions (see discussion of

rectangular plates (ch. 4)); that is,

wy=X(2) Y ,(y) (12.23)

and the dimensions of the plate in the z- and
y-directions are a and b, respectiv ely. The
integrals given by equations (12.22) are readily
evaluated by means of the tables of reference
12.10. The coeflicients for seven modes of rec-
tangular plates having all edges clamped or
simply supported are given in table 12.3.

In reference 12.8, equation (12.21) was shown
to become

w

o_ )
“ \/1+0.2798(1’$)(’-’i) 5

(12.24)

TaBLE 12.3.—Correction Coefficients for 2 Cases

of Water-Loaded Rectangular Plates
Mode c-C-Cc-C 8S-SS-SS-S88

7 ] A,',' B 55 Aii Bt’i

1 1 0. 6904 1 0. 4053 0.25
2 0 1 0 .25
3 . 3023 1 . 1351 .25
5 . 1924 1 . 0810 .25

3 1 . 3023 1 . 1351 .25
2 0 1 0 .25
3 . 1324 1 . 0450 . 25

for the case of a rectangular plate having the
sides z=0, @ simply supported and the sides
y=0, b clamped.

12.2 EFFECTS OF LARGE DEFLECTIONS

The term ‘large deflections” when applied
to plate theory is somewhat misleading, for
the deflections involved are generally not
large relative to the inplane dimensions of the
plate; indeed, they are usually of a smaller
order of magnitude. Use of this term usually
implies that the transverse deflection is suffi-
ciently large to cause further stiffening of the
plate because of membrane forces generated
by the deflection. The magnitude of deflec-
tion required for this effect to be significant
depends upon, for one thing, the precise
boundary conditions of the plate. Thus, for
example, the term ‘‘simply supported’” is no
longer completely definitive, for the degree of
restraint placed upon the two inplane com-
ponents of displacement must also be specified.

In deriving the equations of equilibrium in
the appendix the assumption is made that the
slope of the middle surface relative to its
undeflected plane remains small in order that
the sines of the angles between the normals
of the deformed and undeformed middle sur-
faces can be replaced by their tangents dw/0x
and Ow/Oy and the cosines can be replaced by
unity. This assumption is usually retained in
the large deflection theory of plates and
gives equilibrium equations (A.5), (A.6), and
(A.8) found in the appendix. However, strain-
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Figure 12.2.—Experimental and theoretical frequency
parameters in water, air, and a vacuum. (a) Mode 1.
(b) Mode 2. (¢) Mode 3. (d) Mode 5. (e) Modes
4 and 6. (After ref. 12.7)

displacement equations (A.11) are generalized
to include terms of the next order; that is

] _%_ bzw 1( A
Y

bvo 2'w 1 /dw\?

(eI ouy O%w +bwbw
LY oy bx Oy ' 0z 0y J

Equations (12.25) are then substituted into
equations (A.18) or (A.19) and then into
equations (A.6). It isfound that the additional
terms in equations (12.25) which are even in
z drop out in the bending moment integrations,
namely, equations (A.20(d)), (A.20(e)), and
(A.20(f)), leaving the fourth-order equilibrium
equation (A.27) unchanged.

Ll ldl Ll 2L L d L L L LL Ll Ll L L LLLLLL

——— s e e ]

2 3
Lt 2l Led LlLedsdt LLLLL Ll LLLLLLLLSL
| 1
] 1
l %
I |
[ S——
a4 5

Fieore 12.3.—Comparison of node-line locations in air
and water. Plate 10; a/b=1; h/b=0.0131. (After
ref. 12.7)

Another equation is obtained from the equa-
tion of compatibility of strains for the middle
surface. By using equations (12.25), this is
found to be:

2 Q'wdtw

O%, , 0%, _ Q*'wo'w
0x* oyt

oy’ "oz’

az’qu

oo (12.26)

bxby

The formulation is simplified when an Airy
stress function ¢, defined by

_9%
Orz— by2
2
oy g :’ q (12.27)
__ 9%
=T dz oy )

is introduced. This guarantees that the inplane
equations of motion (egs. (A.5)) are identically
satisfied. Substituting equations (12.27) into
equation (12.26), using equations (A.19),
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Figure 12.6.—Virtual mass function for rectangular
plates. (After ref. 12.8)

(A.20(a)), (A.20(b)), and (A.20v(c)), gives for the
isotropic plate:

o' % [< b”w?ip
+2bx2 ot Ty 2| \oz0y) "o oy
(12.28)
The equilibrium equation becomes
o’w Pwdp  dwd
4 oW _,(QWoP, GO®
Dviwte5m=m 37 oy oy ot
’w %
—25;09000y) 122V

It is observed that equations (12.28) and (12.29)
are both nonlinear.

Equations (12.28) and (12.29) were derived
for the static case by Von Kérmén (ref. 12.11).
They were extended to the dynamic case and
generalized further by Herrmann (ref. 12.12).

12.2.1 Circular Plates

Wah (ref. 12.13) used the Berger (ref. 12.14)
simplication of the Von Kérmén equations to
study the problems of the circular plate having
either a clamped or simply supported boundary.
The plate is constrained against inplane dis-
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‘placement at the boundary in both cases. The
differential equation to be solved is
4 2 o*w
DVw—NVwtpsz=0  (12.30)

where, for the axisymmetric modes, N is defined

by
_12D (/2
Nz ), (57) rer

(12.31)

For the solution of equations (12.30) and

(12.31), a Galerkin procedure is proposed that
uses a deflection function

w=2‘ CR(r)r () (12.32)

where the terms R, are the normal modes of
the linearized, small-deflection problem (cf.
ch. 2). For the nonlinear problem, the
7; will not, in general, be sinusoidal functions
of time. By taking only the first term of equa-
tion (12.32), the following nonlinear differen-
tial equation in time is found:

dt2+ T+[12D(h) x] =0 (12.33)

where p is the small-deflection frequency as-
sociated with B, and

Ly
f Rirdr

The solution of equation (12.33) is in terms of
elliptic integrals. The resulting ratio of linear
frequency to nonlinear frequency as a function
of the rdtio of center deflection to plate thick-
ness is shown in figure 12.7.

Further information is given in reference
12.13 for estimating stresses during vibration.
A nondimensional radial bending stress 7. is
plotted in figure 12.8 as a function of the
amplitude-thickness ratio. Similarly, a non-
dimensional radial membrane stress & is
plotted in figure 12.9. Superposition of these
stresses gives the total stress.

Yamaki (ref. 12.15) applied the Galerkin
method to the Von Kérmén equations (12.28)
and (12.29) themselves. When only axisymmetric

(12.34)
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FiGURE 12.7.—Ratio of linear (small-deflection) fre-
quency to nonlinear (large-deflection) frequency as a
function of amplitude-thickness ratio for circular
plates; v=0.3. (After ref. 12.13)

deformations in polar coordinates are con-
sidered, they become:

Edwdw
g OO
"a?’ a:zbdabz (12.35)
4 o'w__Nhopodw
DViwtegp=r35 o

Altogether, four sets of boundary conditions
were considered; the particular ones used de-
pended upon the degree of restraint placed
upon both the transverse and inplane displace-
ments. The cases considered were

Case I(a): w=M,=N,=0
Case I(b): w=M,=u=0
Case 11(a): w=dw/dr=N,=0
Case 11(d): w=0w/dr=u=0

(on boundary)

(12.36)
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Deflection functions were taken in the form

w(r)=hr(t) |:1+01 (3)@@(2)‘] (12.37)

where C, and C, were chosen to satisfy the
transverse boundary conditions exactly; that is,

o 642
Casel: C= 5ty
_It
02—5+v (12.38)
CaseIl: C\=—2
Oz=1

Substituting equation (12.37) into the first of
equations (12.35) and letting

. o=f ()7t
give

F(r)=—ER? [03<§)2+Il?é 1% ((’—;)4
+haersa()] oo

(12.39)
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where C; is a constant determined from the
inplane boundary conditions of equations
(12.36) ; that is,

Cases I(a) and I1(a): A
Ov=— 23 (3CI+4C,C0r+20Y)

Cases 1(d) and T1(b): >
03= )[3(3 V)02

+4(5—»)C,C;+-2(7—») (7] )
(12.41)

24(1

Finally, the Galerkin technique is applied to
a.pprommate the second of equations (12.35);
the result is the ordinary differential equation

d*r

W (12.42)

Tatdr+airt=
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where o? and B are given in table 12.4 for the
four cases defined by equations (12.36). The
solution of equation (12.42) results in figure
12.10, which shows the effect of amplitude-
thickness ratio upon the ratio of linear-to-
nonlinear frequency for the four cases for v=0.3.

TasLE 12.4.—Coefficients for Eq. (12.42) for the
4 Cases Defined by Eqgs. (12.36)

. Value for case—
Coefficient
I(a) I(b) { Il(a) I I1(b)
a2pat/ER3__ _____ 2. 242 2. 242 9. 768 9. 768
Bpat/ER3_______ . 591 4, 148 1. 429 4. 602

Further discussion of the application of the
Galerkin method to the problems just described
was given in reference 12.16.

The nonlinear case of the completely free
circular plate having inplane forces caused by
the thermal gradient

r-n-(3)]

was examined by Massa (ref. 12.17) as an
extension of his previous work (see discussion
of completely free circular plates (sec. 10.1.3))
for the linear problem. A deflection function

(12.43)
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Ficure 12.10.—Ratio of linear to nonlinear frequency
as a function of amplitude/thickness ratio for circular
plates having boundary conditions defined by
cquations (12.36); »=0.3. (After ref. 12.15)
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w(r, )=R(@)r{) (12.44)
is taken for the first axisymmetric mode,
where R(r) is the mode shape of the linear
problem; that is,

\2 \¢ \6
R(r)=1—2.6161 (—) 41.1090 (-) —0.2464 (-)
a a a

(12.45)

and 7(f) is an unknown function of time. An
energy formulation of the problem is made by
means of Hamilton’s principle for »=0.3.
Solutions for the nonlinear frequencies are in
terms of elliptic integrals, but approximate
expressions of a more useful type are also
found.

For aT?/h?<(aTwa?/h?) e, or for aTwa?/h?
= (aT?/h?) ., 'in the range Wy 2+/2W,, the
square of the nonlinear frequency can be
approximated by

Woy —7 4273 @ 1 (0 2759aT0a2/h2)

10.6772 (W‘") ] (12.46) |

where « is the coefficient of thermal expansion,
and (aTwa*/h?) . is the critical value of the
parameter aT.a?/h? at which buckling occurs,
according to the linear theory; that is,

(aToa?[h?) (s=3.62 (12.47)

The term Wy defines the nonlinear deflection
amplitude measured at the center, and W, is a

parameter defined by

Wo=1.05241h+/0.2759(aToa?/h?)—1 (12.48)

For aT.a*h?=(aTw?h?), and W<Wn=
v2W,, the corresponding expression is

wi?=3. 353Eh (W"‘) [1+1 1075 (Wm)

(0 2759°‘T°“ -1)] (12.49)

In figures 12.11 and 12.12 the square of the
ratio of the nonlinear frequency to the iso-
thermal linear frequency (we,="7.4273ER*/pa’,






[image: image60.jpg]310 ' VIBRATION OF PLATES

/

Ficure 12.11.—Effect of temperature upon the non-
linear frequency of a completely free circular plate
for various amplitude/thickness ratios; »=0.3; one
nodal circle.

Ficure 12.12.—Effect of amplitude/thickness ratio
upon the nonlinear frequency of a completely free
circular plate for various temperature parameters;
»=10.3; one nodal circle.

with one nodal circle) is plotted against the
parameters aZoa?h and Wa/h, respectively.

The first mode having two nodal diameters
is also studied in reference 12.17 for the same
thermal gradient given by equation (12.43). A
deflection function

w(r, 8,t)=R(r) (cos 20)7(?) (12.50)

is chosen, where

. (£>z[1.2709_0,3500 (2)2+0.07911 (2)4]

(12.51)

For aTwa?/h? < (aTwa?/h?) :=3.62, the square of
the nonlinear frequency is approximated by

3 2 2
w;‘3=2.6294% 1+0.3772‘."—€;ﬁ+0.3164(u—,?9)]

(12.52)

and for aTa?/h*> (aTo@*/h?) e thereih results

3 2 '
w::=6.2169%(1+0.000345°‘1,;°2“) (12.53)

The variation in the square of the ratio of the
nonlinear frequency to the isothermal linear
frequency (%,;=2.6294Eh/pa*, with two nodal
diameters) is depicted in figures 12.13 and
12.14.

12.2.2 Rectangular Plates

The earliest paper dealing with large-ampli-
tude vibrations of rectangular plates was pub-
lished by Chu and Herrmann (ref. 12.18) in

1956. In this paper the general equations

derived in reference 12.12 were specialized to
the Von Kérmén form of equations (12.28)
and (12.29) and were approached by means of
the perturbation technique. The problem of
all edges simply supported was studied in
detail. For this problem, the boundary con-
ditions involving w are given in equations
(4.18).
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FIiGUre 12.13.—Effect of temperature upon the non-
linear frequency of a completely free circular plate,
for various amplitude/ihickness ratios; »=0.3;
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Ficure 12.14.—Effect of amplitude/thickness ratio
upon the nonlinear frequency of a completely free
circular plate for various temperature parameters;
v=0.3; two nodal diameters.

Partly in accordance with the later work by
Yamaki (ref. 12.15), four cases of inplane
restraint will be defined (see fig. 10.5):

Case (¢): N;.=N_,=0 on =0, a 3
N,=N,,=0 on y=0, b
Case (b): u=N,,=0 on z=0, a
v=N_,=0 on y=0, b .
Case (¢): P,=N,,=0,u=Constant on z=0,a
P,=N,,=0, v=Constant on y=0,b
Case (d): u=v=0 on z=0, @
u=v=0 on y=0, b )
(12.54)

where P, and P, are defined by

1]
P,Ef N, dy
[1]

Thus in case (¢) there are edges which are kept
straight by a distribution of normal stresses,
the resultant of which is zero.

In reference 12.18, case (b) was treated. A
transverse deflection function

P,,EfaN,, dz (12.55)
0

nr . T

w-—Ao-r(t) sm—sm T (12.56)

was taken; the result is a nonlinear equation for
7 in the form of equation (12.42). The ratio of
linear frequency to nonlinear frequency is given

by
2[1+(a/b)*1K

{(‘+ 5) +3(5) -
{ED) (53]}

(12.57)

where K=K(k) is the complete elliptic integral
of the first kind and

)

Equation (12.57) is plotted in figure 12.15 for
»=0.318. The maximum membrane stress is

given by
Om= 8(1—-v2)(A0) (2+v——v ) (12.59)

(12.58)
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Ficurg 12.15.—Effect of large amplitudes on the
frequency of a SS—-SS-SS-8S° rectangular plate;
v=0.318. (After ref. 12.18)

and the maximum bending stress by

"°=§('A}To)<§)z”2(1'111+O‘353%“z) (12.60)

That is, the membrane stress increases with the
square of the amplitude, whereas the bending
stress increases only linearly. The problem was
also formulated in reference (12.18) by the
principle of conservation of energy.

Yamaki (ref. 12.15) extended the work to
include the first three cases of inplane restraint
given in equations (12.54). A deflection func-
tion like that of equation (12.56) was used, and
the stress function was obtained from equation
(12.28). Equation (12.29) was approximated

by the Galerkin method. The equation in
time which results for a/b=1 is

2 3
gt—z alih [3(1 L s T+ar ]—O (12.61)
where a takes on the values 0.06492, (3—v)/
8(1+»), and 1/8 for cases (a), (b), and (c¢),
respectively. The ratio of linear to nonlinear
frequency for the square plate is plotted in
figure 12.16 for the three cases. For case (b)
the results are identical with those of reference
12.18.

In reference 12.15, the problem of all edges
transversely clamped (cf. eq. (4.25)) was also
analyzed. A deflection function

w(z,y, t)y=hr(2) cosz%coszllr—;/ (12.62)
(see fig. 4.18) was used. The equation in time
which results is

4 3
dt’ 15" ﬁh 3(1 57 +Hom ]—0 (12.63)
where « takes on the values 0.14903, 0.16656 +
(0.14063)/(1—v), and 0.16656 for cases (a),
(b), and (c), respectively. The ratio of linear
to nonlinear frequency is plotted in figure 12.17
for the three cases when a/b=1.
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FigUure 12.16.—Effect of large amplitude on the
frequency of a SS-SS-SS-SS square plate for three
cases of inplane edge restraint; »=0.3. (After ref.
12.15)
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Nash and Modeer (ref. 12.19) and Wah (ref.
12.20) extended the Berger (ref. 12.14) simpli-
fied formulation for the large-amplitude static
deflection of plates to the nonlinear vibration
problem. The first paper used an energy for-
mulation with Hamilton’s principle; the second
used a modified form of the Galerkin method.
Both papers solved the problem of the rectan-
gular plate having simply supported edges of
the type given by case (d) of equations (12.54).
Both obtained results for frequency ratio versus
amplitude ratio which were in substantial
quantitative agreement and, in contrast with
those of reference 12.18, these results do not
depend upon the aspect ratio a/b of the plate.
These results are shown in figure 12.18 (from
ref. 12.20). In this figure & curve is also
plotted for the infinite strip, in accordance
with elementary beam theory.

In reference 12.20 the problems of the
SS-C-SS-SS and SS-C-SS-C plates were also
studied. Deflection functions for w were
taken which are the fundamental mode shapes
of the linear problem (see secs. 4.2.2 and
4.2.1). The effect of amplitude upon fre-
quency is shown in figures 12.19 and 12.20 for
these two problems.

The existence of normal modes for the non-
linear problem of. the SS-SS-SS-SS plate is
discussed in reference 12.21. Large-amplitude
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Figure 12.17.—Effect of large amplitude on the
frequency of a C-C-C-C square plate for three
cases of inplane contraint; »=0.3. (After ref. 12.15)
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Figure 12.20.—Effect of amplitude upon frequency
for SS—C-88-C rectangular plates; »=0.3. (After ref.
12.20)

vibration of rectangular plates is also discussed

in references 12.22 and 12.23.

12.3 EFFECTS OF SHEAR DEFORMATION
AND ROTARY INERTIA

In 1877 Lord Rayleigh (ref. 12.24) showed
how the addition of “rotatory’ (in the language
of his day) inertia effects to those of classical
transitional inertia affected the flexural vibra-
tion frequencies of beams. Timoshenko (ref.
12.25) in 1921 showed that the effects of shear
deformation, previously disregarded, were
equally important. It is well known that both
effects serve to decrease the computed fre-
quencies because of increased inertia and flexi-
bility of the system.

An extension of plate theory to account for
shear deformation was proposed by Reissner
(vef. 12.26) for the static deflection of plates,
and a significant number of papers by others
have followed this approach. A first presenta-
tion of a consistent theory for the dynamic
behavior of plates, including the effects of
shear deformation and rotary inertia, was made
by Uflyand (ref. 12.27). However, Mindlin’s
1951 paper (ref. 12.28) unquestionably made
the most profound impact upon the subject.

In this paper a consistent set of equations re-
lating moments and transverse shears to
transverse deflection and bending rotations was
presented. The basic sixth-order system of
partial differential equations of motion was
derived, along with potential and kinetic
energy functions. A part of this paper will be
summarized below.

In addition to exposing the theory, Mindlin
and his colleagues have done much to apply
the theory and to develop it further, as observed
by references 12.29 to 12.46. In references
12.29 through 12.32 the theory is applied to the
cylindrical bending of AT-cut quartz crystal
plates. The crystal plates are idealized as an
anisotropic material having constants defined
by equation (A.12) of the appendix in which

0/14———0'24=0434=a'15=a‘25=0'35=a46=asa=0

and the thickness is taken in the z-direction.
Crystal plates are also discussed in references
12.36 to 12.46. Because of the highly special-
ized form of anisotropy involved $he numerous
results reported in these papers will not be dis-
cussed here. The only results from references
12.28 to 12.46 which will be discussed in this
section will be those dealing with isotropic
plates.

The essential features of Mindlin’s theory
(ref. 12.28) will now be discussed. The discus-
sion will be limited to the bending (with no
inplane forces) of isotropic plates. When the
effects of shear deformation are included, the
kinematic relationships given in equations

(A.9) become
u=—2¥.(2, Y, t)
U=—‘le/y($, Y, t) }

w=w(z, Y, t)

(12.64)

where ¥, and ¢, are the local rotations (changes
of slope) in the z- and y-directions, respectively,
of lines originally normal to the midplane
before deformations. That is, the rotations
¥. and ¢, are due to bending. The deflection
of the middle surface w is then composed of
two parts—one due to bending and the other
due to shear deformation. These modes of
deformation are shown in figure 12.21. Equa-
tions (12.64) are substituted into strain-
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displacement equations (A.10), then into stress-
strain equations (A.19), and the bending mo-
ments are integrated by means of equations
(A.20(d)), (A.20(e)), and (A.20(f)), giving

wmp(%)
M,=—D(%“;’/—”+u%”’§) > (12.65)

__Da—n %, 2%
M=—=1 (az+by

4

The transverse shearing forces are obtained
by integrating the transverse shearing stress
over the thickness; that is,

b2
szf Tex dZ

—h/2

n/2

Q= 2 dz

—h/2

(12.66)

315

Substituting the stress-strain relationships

i)

and the strain-displacement equations

(12.67)

ou , ow
V=3 +b_x_

ow , Ov
7v2—6§'+'b_"2

(12.68)

into equations (12.66) and wusing equations
(12.64) gives

Q.=—e6h(y.—5r

(12.69)
o=—r6h(—3
where «* is a constant which is introduced to
account for the fact that the shear stresses
7z and 7,, are clearly not constant over the
thickness —h/2<z<h/2 as the simple kinematic
relationships, equations (12.64), would lead
one to believe. In Reissner’s static theory
(ref. 12.26) «* was taken as 5/6. Mindlin
(ref. 12.28) chose « so as to make the dynamic
theory consistent with the known exact fre-
quency for the fundamental ‘“thickness shear”
mode of vibration. More will be said about
this in the following discussion.
The right-hand sides of moment equilibrium
equations (A.8) -are made consistent with
the present theory; they become

Qz—_——_‘—"—’ )
oz dy 12 ot (12.70)

=z Ty 12 of2

When inplane forces and transverse external
loading or body forces are neglected, equation
(A.6) becomes

2Q. , 29, w

50T o =P o (12.71)
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Substituting equations (12.65) and (12.69)
into equations (12.70) and (12.71) yields the
fundamental set of equations for the system

g[(l—vw%ﬂw”) 2(or %%)] |

__Ow\_ph’ %,
—« G"("” ax)“ 12 ot

Y

Pla—nmwtatng( e+

2w\ ph? o}
"‘ZG}”("” % ‘12 a;:p?
_ O O\ _
x”Gh(V”w 45 ) patz J
(12.72)

where V? is the usual Laplacian operator. It
is observed that the system of equations
(12.72) is of the sixth order in the three de-
pendent variables ¥., ¥,, and w. Thus, with
this higher order plate theory, three boundary
conditions are enforced along each edge.

In reference 12.28, equations (12.72) are re-
written into a form much more amenable to
solution by the introduction of three potential
functions. It is from this form that many of
the useful results obtained from references
12.33 to 12.37 and given later in this section
were derived. The reader is referred to the
individual papers for the details of these ma-
nipulations and solutions. Similarly, the exten-
sions of the theory to include inplane forces,
large deformations, and thermal effects (refs.
12.12, 12.40, 12.47, and 12.48) will not be
discussed here.

Thickness-shear vibration is defined by
modes of the form (ref. 12.29)

u=f(2)e**"* }

i (12.73)

It can be shown (ref. 12.29) that, for a plate
having infinite dimensions in the z- and y-
directions, the exact frequency of the first
antisymmetric mode of thickness-shear vibra-

tion is
srf2
eh

(12.74)

It can be further shown (ref. 12.28) that, for
equations (12.72) to give results consistent
with equation (12.74), «* must be chosen for
an isotropic plate to be

(12.75)

Further theoretical discussion of the effects of
shear deformation and rotary inertia upon the
vibration of plates can be found in references
12.49 to 12.61. For the most part, these ref-
erences give alternative derivations of sys-
tems of governing equations, in some cases
concluding with Mindlin’s equations and in
other cases obtaining substantially different
formulations.

192.3.1 Circular Plates

Consider first a circular plate having a
clamped boundary. (See fig. 2.1.) For axi-
symmetric modes of vibration' the sixth-order
system of differential equations (12 72) (when
converted to polar coordinates) rgduces to a
fourth-order system. The boundary condi-

" tions are

w(a)=¢«,\(a)=0 (12. 76)
That is, the change in slope due to bending
is zero at the boundary. Applying equation
(12.76) to the solutions of the differential
equations, which are in terms of Bessel func-
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Ficure 12.22.—Ratio of plate frequency to thickness-
shear frequency for a clamped circular plate derived
from classical theory; »==0.312. (After ref. 12.35)
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tions (see refs. 12.33, 12.34, and 12.62), yields
a set of characteristic equations for the
frequencies.

Results for the axisymmetric modes were
presented by Deresiewicz (ref. 12.35). The fre-
quency ratio w/e derived from the classical
theory of platesis plotted in figure 12.22. With
the use of the notation of the chapter entitled
“Circular Plates” (ch. 2), the circular fre-
quencies of the plate can be obtained from

@@/ p/D=\}

where \, are the eigenvalues determined from
the characteristic equation. By using equa-
tions (12.74) and (12.77), it is easily seen that
the ratio of the plate flexural frequency to the
thickness-shear frequency @ is

9_(]1, Z\2 \/ 8
i ﬁ) =~ V30—
where the subscript ¢« on « and N has been
dropped but is implied. Figure 12.22 is conse-
quently a plot of equation (12.78) for a par-
ticular value of Poisson’s ratio »=0.312.

Figure 12.23 is a corresponding plot with the
plate frequencies w obtained by the theory of
this section, although this figure is plotted over
a smaller range of w/w, thereby emphasizing
the region in the vicinity of w/w=1. In com-
paring figures 12.22 and 12.23, it is obvious that
consideration of shear deformation and rotary
inertia has the effects of—

(1=1,2,...) (12.77)

(12.78)
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Ficure 12.23.—Ratio of plate frequency to thickness-
shear frequency for a clamped circular plate derived
from the Mindlin theory; »=0.312. (After ref. 12.35)
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(1) Lowering the fundamental frequency for
a given diameter-thickness ratio

(2) Rendering more frequencies in & given
range of w/@ for a particular plate

(3) Completely altering the curves in the
high-frequency range w/w>1

The case when the circular boundary is
simply supported was attempted by Tomar (ref.
12.63). Again, when only the axisymmetric
modes are sought, only two boundary condi-
tions are required ; namely,

w(a)=M,(a)=0 (12.79)

In reference 12.63 the equations of motion (egs.
(12.72)) are retained in rectangular coordinates,
and their finite-difference equivalents are writ-
ten. Because of the choice of coordinate
system, a rectangular finite-difference grid must
be fitted to a sector of the circular plate. This
is accomplished by using nine mesh points’
within one octant obtained from a square grid
having elements of dimension ¢/4. Fundamental
frequency parameters 4w’a’p/Eh for various
thickness-radius ratios given in table 12.5 and
figure 12.24 for »=0.3 are taken directly from
reference 12.63. In addition, the frequency
parameter wa’/p/D is presented in table 12.5
for direct comparison with the classical result
wa’/p/D=4.977 (see sec. 2.1.2) which applied
for very small values of h/a. From this com-
parison it appears that the accuracy of the
results given in table 12.5 and figure 12.24 is
highly questionable.

Numerical results for the completely free cir-
cular plate were found by Mindlin and Deresie-

TaBLE 12.5.—Fundamental Frequency Param-
eters for a Simply Supported Circular Plate
According to the Mindlin Theory; v=0.3

hla 40%a%p wa*Vp/D
Eh
0.2 0. 43365 5. 4403
.4 1. 44326 4. 96242
.6 2. 53474 4. 38426
.8 3. 49852 3. 86308






[image: image68.jpg]318

20— —————————p————7

/

Classicol
Plate Theory—y

1.5 /

|.OF / Classical Plate

/ Theory + Shear

y) and Rotary Inertia
Corrections

According to Mindlin's
Theory

2wa./p/Eh
~

0.5

e o e - — - - ——— ————— —— ———— -

o i 1 1
0 01 02 03

S
2a
Ficure 12.24—Fundamental frequency parameters

for a simply supported circular plate; »=0.3. (After
ref. 12.63)

04

wicz (refs. 12.33 and 12.34). In this case the

boundary conditions are

M (a)=M(a)=Q,(@)=0  (12.80)

The twisting-moment condition is identically
satisfied by symmetry for the axisymmetric
modes. In reference 12.34 frequency param-
eters for axisymmetric modes were deduced
when »=0.312. Plots of the frequency ratios
w/@ discussed earlier in this section are depicted
in figures 12.25 and 12.26 for the classical
theory and the Mindlin theory, respectively.
Results for the antisymmetric modes (having
one nodal diameter) were computed in refer-
ence 12.33 and are presented in figure 12.27,
again for »=0.312.

In reference 12.64, Callahan used the Mindlin
theory to derive characteristic determinants
corresponding to eight separate sets of con-
tinuous boundary conditions for circular plates.

VIBRATION OF PLATES

All sets are presented in forms conducive to
computer programing and for general vibration
modes. No numerical results were given.

12.3.2 Rectangular Plates

It was shown in reference 12.28 that equations
(12.72) can be uncoupled (after the time is
taken out by assuming harmonic response) by
defining three potentials wy, w;, and H by the
equations:

dw, OH
pe=(ti=1) 24 (4,1 924 3

dw, °H ,
%=(A1-—1)9%+(A2—1)%__a; (12.81)

=W+ Wy

where
A;=2[1+g—(—1)’BjJ* (=1, 2)
B,=[(1—g)*+49(@/w)1? (§=1,2)  (12.82)

=k*(1—v)/2

and where w/a is the ratio of plate frequency
to thickness-shear frequency used earlier in this
chapter (@ is defined by eq. (13%74)), « is

“given by equation (12.75), and » is Poisson’s

ratio. Substituting equations (12.81) and
(12.82) into equations (12.72) results in the
three uncoupled equations

(V248w =0

(V+83)w,=0 (12.83)
(V4-+¥)H=0
SEERRARRNNANNNNN
NELLLARAINANNANN
13 o,sL \ \\ ‘\E\\; Q\
30.4 \ ‘\\\\\§
S I N N R, S e s S

16 20 24 28 32 36 40
2a/h

0O 4 8 12

Fioure 12.25.—Ratio of plate frequency to thickness-
shear frequency for the axisymmetric modes of a
completely free circular plate derived from classical
theory; »=0.312. (After ref. 12.34)
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FicUre 12.26.—Ratio of plate frequency to thickness-shear frequency for the axisymmetric modes of a completely
free circular plate derived from the Mindlin theory; »=0.312. (After ref. 12.34)
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Ficure 12.27.—Ratio of plate frequency to thickness-shear frequency for the antisymmetric modes of a completely
free circular plate derived from the Mindlin theory; »=0.312. (After ref. 12.33)

where Thus the potentials wy,, w;, and H may be
. . regarded as uncoupled vibration modes having

8 =6(w/0)'[1+g—(—1)/BJh~* (j=1,2) the frequencies wj, w;, and w;, respectively.
V=1 (ws/®)2—1}h2 The problem of the rectangular plate simply
supported on all edges was solved by Mindlin,
(12.84)  Schacknow, and Deresiewicz (ref. 12.36) by
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means of the approach just given. In terms of
a coordinate system Z, ¥ having its origin at the
center of the plate (cf. fig. 4.4), the boundary

conditions are:
(on T=+a/2)
/ (12.85)

’w=Mz=¢’u=0
w=M,=y,=0  (on y==%b/2)
It is easily seen that
wy=sin 7z sin B,y
wy=sin a,Z sin By (12.86)
H=cos a3 sin B3y

are solutions to equations (12.83), provided that
a+=08

o +6=15;
a+B=""

(12.87)

Substituting equations (12.86) into equations

(12.85) gives
.88
(j=1) 2, 3)} -

a;=r,mla
B;=s8;x/b
where r, and s, are even integers. The modes
given by equation (12.86) are then odd in both
zandy. Formodes even in 2, sin a2 and cos oz
are interchanged in all three of equations
(12.86) and the r, are odd integers. Similarly,
for modes even in ¥, sin B and cos By are
interchanged, and the s, are odd integers.
Substituting equations (12.88) into equations
(12.87) and solving for the frequency ratios

give
w 2
2(§)=L+§u+m%++—nm, (7=1,2)

(&)

(12.89)
where
=R (G=1,2,3)
(12.90)

o= {[1+2a+om] ¢

s 1
—d 4}
p 12

(7=1,2,3)
/

In figure 12.28 (taken froms ref. 12.36) the
three sets of frequency ratios given by equations
(12.89) are plotted against the length-thickness
ratio as a function of the parameter ¢; where

o, =[r1+(a?b)?  (j=1,2,3) (12.91)

and where »=0.312. From figure 12.28 it can
be seen that for a given plate and for a given
mode number j the frequencies are ordered
according to w;<ws<ws and that w; and ws are
much greater than w; except for very thick
plates.

In figure 12.29 (taken from ref. 12.36) a
more detailed plot of the frequency ratios is
indicated in the vicinity of w/@ =1 for a fixed
ratio ¢;2/b=0.2 and for »=0.312. This cor-
responds to the particular case when the dis-
tance in the y-direction between node lines
(including the boundaries) is five times the
plate thickness. In this figure r=m, ry=n,
and r;=g; that is, the curves m, n, g=constant
give the frequencies of the w, w;, and H modes,
respectively. In this case, each mode has a
low-frequency cutoff given by

o\ 2 B
2(2) —1+up+(-1yer(=1,2)
(‘%3 =1+ ()"
| (12.92)
=3 5 7 9 1 13 15 17
120 R

: \ N
0.2

9
N

N
N
~

Ficure 12.28.—Ratio of plate frequency to thickness-
shear frequency for a SS-SS-85-88 rectangular plate
derived from the Mindlin theory; »=0.312. (After
ref. 12.36)
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Ficure 12.29.—Ratio of plate frequency to thickness-shear frequency for a SS-SS—SS-SS rectangular plate when -

the distance between nodes along the width is five

where ¢} and QF are given by equations
(12.90) with 74/a=0. These formulas give
the values 1.0198 and 1.0704 shown in figure
12.29.

The mode shapes corresponding to w;, w;,
and H are depicted in figure 12.30 (taken from
ref. 12.36). The mode shape corresponding to
classical theory is shown in figure 12.31, which
is also from reference 12.36. Of the three
modes, the w; mode most closely resembles the
classical mode; hence, it is called a “flexural”’
mode. As ¢/h—w, this mode approaches the
classical mode, and its frequency approaches
the classical frequency given by equation
(4.20). For the w, mode the thickness-shear
deformation predominates. The H mode shape
(fig. 12.30(c)) contains no average deflection,
but twists the plate; hence, it is called a ‘“‘thick-
ness twist”’ mode.

In references 12.65 and 12.66 the problem of
the simply supported plate is attacked by the
finite-difference method. Mindlin’s equations
are the basis for this method in reference 12.65,
whereas in reference 12.66 an alternate set is
used. Numerical results for frequencies are
given in both papers, but they are inconsistent

times the thickness; »=0.312. (After ref. 12.36)

with classical theory and will not be repeated
here.

A stiffened plate was treated as an ortho-
tropic plate for purposes of analysis in refer-
ence 12.67. The effects of rotary inertia were
considered, but shear deformation was ignored.
In this case the system of governing differential

equations remains fourth order. Equation
(9.22) is generalized to
o'w dlw o'w
D. 5t 2 nt D
0’ 'w . O*w\ _

where I, and I, are the moments of inertia of
the stiffened plate about axes parallel to the
y- and z-directions, respectively.

For a rectangular plate simply supported
along the edges =0, a and y=0, b, it is appar-
ent that the boundary conditions will be
satisfied by the deflection function

W(z, y)=sin az sin By (12.94)

where a=mx/a, B=nx/b, and m and n are
integers. Substituting equation (12.94) into
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FigurE 12.30.—Mode shapes for a SS-SS-88-SS
rectangular plate with consideration of shear de-
formation and rotary inertia. (a) w; mode. (b) w3
mode. (¢) H mode. (After ref. 12.36)

equation (12.93) and assuming harmonic time
response give the frequency equation

s _ Dt 42D+ Dt
T ot Lt L

It is seen that the effects of rotary inertia enter
as terms in the denominator of equation (12.95)
with a resultant decrease in frequency from
the classical theory.

In reference 12.67, theoretical results were
obtained from equation (12.95) and compared
with experimental data for an aluminum square
plate having the cross section and dimensions

(12.95)

Y 2m
2w oo

a
Figure 12.31.—Mode shape for a SS-SS-SS-88

rectangular plate, derived from classical theory.
(After ref. 12.36)

"]
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FicurE 12.32.—Dimensions of stiffened plate. (After
ref. 12.67)
Eel

shown in figure 12.32. A comparison of
theoretical and experimental results for this
plate is given in table 12.6.

The problem of the SS-F-SS-F rectangular
plate was also analyzed in reference 12.36.
The boundary conditions are:

MI=MZ”= Q==0
w=M,=¢,=0

(on &= +a/2)
(ong=1bj2) § 2%
It should be noted that here the simply sup-
ported edges are along y= 45/2; this is unlike
the previous convention used in section 4.2.5.
Solution functions in the form of equations
(12.86), which exactly satisfy the simply
supported edge conditions, were again used. It
is most interesting to note that the free edge
conditions are also satisfied ezactly (unlike in
the classical theory) by this simple solution
set upon substituting equations (12.86) into
the first three of equations (12.96). This yields
a characteristic determinant of the third order
which is solved for the frequencies. Thus the
modes w,, ws, and H do not remain uncoupled
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TaBLE 12.6.—Theoretical and Ezxperimental Cyclic Frequencies for a SS-SS-SS-SS Stiffened

Rectangular Plate
Cyclic frequency, cps, for values of mode
no. m of—
Mode no. n Derivation
1 2 3 4 5

) D Experimental ... _____ . ___.___________ 244 340 538 800 1152
Rotary inertia neglected.._.______________ 238 336 534 831 1220

Rotary inertia included_ .. _______________ 237 332 520 793 1135

Dovwe o Experimental . __________________________ 794 940 1020 1268 1580
Rotary inertia neglected_.________________ 880 954 1100 1344 1689

Rotary inertia included. . _____________.__ 877 941 1070 1282 1570

E S Experimental . __________________________ 1700 1800 1840 2110 2340
Rotary inertia neglected__________________ 1950 2020 2150 2349 2638

Rotary inertia included __ . _______________ 1940 1983 2090 2238 2451

as in the SS-SS-SS-SS case discussed previ- 12.3.3 Other Shapes

ously in this section. Callahan (refs. 12.64 and 12.68) treated the
The ratio of plate frequency to thickness- problem of the elliptic plate, including the

shear frequency is plotted in figure 12.33 for the  effects of shear deformation and rotary inertia.

particular ratio s;4/6=0.2 (as in fig. 12.29). Mindlin’s equations were transformed into
The broken and solid curves are for modes odd elliptic coordinates, and series solutions to the ,
and even, respectively, in z. differential equations were found in terms of
* it RN ) \ W
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Figure 12.33.—Ratio of plate freqﬁency to thickness-shear frequency for a SS~F-SS-F rectangular plate when the
distance between nodes along the direction parallel to the free edges is five time the thickness; »=0.312.
(After ref. 12.36)
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Mathieu functions. The boundary conditions
are satisfied by finding the roots of an infinite
determinant, each element of the determinant
being an infinite series of Mathieu functions
containing the frequency within their argu-
ments. In reference 12.68 the infinite charac-
teristic determinants are displayed for eight
types of boundary conditions, but no numerical
results are given.

12.4 EFFECTS OF NONHOMOGENEITY

A brief survey of the literature dealing with
the vibration of nonhomogeneous plates will
now be given. Nonhomogeneity may arise
in many ways. Overall material properties
themselves may vary in a continuous manner
(e.g., a continuum representation of a fibrous
composite plate). Inclusions or holes may
occur within the plate. As can be seen from
earlier chapters, the effect of a “classical” (i.e.,
cylindrical) hole, even if small, can cause a
significant effect upon the vibration frequencies
of a plate.

Some practical and commonly used types of
nonhomogeneous plates are sandwich plates
having a honeycomb, corrugated, or Styrofoam
core. These plates consist of a core material
bonded between two face sheets. Because of
the relative geometric complexity of these
structures, the theoretical analysis of their
vibrational behavior almost always assumes
that the core material can be represented as a
homogeneous, elastic continuum and, con-
sequently, the overall structure can be treated
as alayered plate. Indeed, if this representation
were not made, the plate would have to be
analyzed as a structure and, hence, would fall
beyond the scope of this work. Even with
these assumptions, the complexity of the
results and the number of parameters required
to describe the sandwich make it impractical
to report detailed numerical results in this
section.

In the most simple case, a layered plate is
made up of several layers bonded together, each
layer being homogeneous and isotropic, and the
Kirchhoff hypothesis of normals to the middle
surface remaining straight and normal is as-
sumed valid. In this case the mathematical
complication of the plate theory is minimal.

The necessary modifications of the theory are
discussed in the section of the appendix entitled
«Force and Moment Integrals” (sec. A.5). This
is the type of nonhomogeneity discussed in
reference 12.69.

Bolotin (ref. 12.70) generalized the model
for the layered plate by assuming that the plate
is composed of both “hard” and “soft” layers.
The hard layers obey the Kirchhoff hypothesis
while slippage occurs in the soft layers. In the
soft layers the inplane stresses o, oy, and 7.,
are assumed to be zero, while the transverse
shear stresses 7,, and 7. are constant within
the layer. On the basis of these assumptions,
a complete plate theory is developed in refer-
ence 12.70. Another formulation, based upon
the three-dimensional equations of elasticity, is
given in reference 12.71.

The theoretical work of Yu on layered plates
(vefs. 12.72 through 12.83) is particularly sig-
nificant. This effort is primarily devoted to the
incorporation of shear deformation and rotary
inertia effects into the layered-plate theory.
1t is shown that these effects, particularly shear
deformation, are especially important when one
deals with conventional sandwich?plates com-
posed of a relatively soft-core material con-
tained between two relatively rigid, thin face
sheets. The statement is made (ref. 12.79) that
shear-deformation effects can become impor-
tant for a sandwich plate at a flexural frequency
which may be only 1 percent of that of the
corresponding solid, homogeneous plate. It is
shown furthermore that, for ordinary sandwich
plates, the shear effect on the faces, the rotary
inertia of the faces about their own midplanes,
and the flexural rigidity of the core are negligi-
ble; of importance are the shear effect in the
core, the rotary and translatory inertias of the
core, the translatory inertia of the faces (in-
cluding the rotary effect of the faces about the
midplane of the sandwich plate), and the flex-
ural and extensional rigidities of the faces (ref.
12.75).

A one-dimensional theory was developed in
references 12.72 to 12.76, which is applicable
to the vibration of plates in modes of plane
strain. The transverse displacement w, as in
the Mindlin theory, was assumed to be con-
stant through the plate thickness. The dis-
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placements in the plane of the plate are assumed
to vary linearly through the thickness, with the
slope in the face sheets not necessarily the
same as the variation in the core.

The theory is generalized to a two-dimen-
sional variation in w in references 12.77 and
12.78 and is applied to the problem of a rec-
tangular plate simply supported on all edges.
In references 12.78 and 12.83, sets of formulas
are presented for the calculation of natural
frequencies of the simply supported rectangular
plate. Those formulas will not be reproduced
here because of their inherent complexity
(arising from the relatively complicated geom-
etry and material properties of the sandwich
plate) and the amount of explanation which
would be required.

The theory is extended to the nonlinear
(large-deformation) domain in references 12.80
to 12.82. It is shown that the basic behavior
is the same as that for homogeneous plates;
that is, the membrane stiffening due to large
deformations causes the overall stiffness of the
system to be like a ‘hard” spring, thus causing
an increase in frequency with increase in ampli-
tude. (See section 12.2 of this work for back-
ground information.) In particular, the non-
linear theory is applied to a rectangular plate
having immovable, hinged edges.

Further theoretical derivations of equations
for the vibrational behavior of layered plates
are made in references 12.84 to 12.86. In
both references 12.84 and 12.85 the analyses
are generalized to include orthotropic core
materials, and explicit frequency equations
are developed for the case of a plate simply
supported on all edges.

Experimental results for sandwich plates
having honeycomb and Styrofoam cores are
given in reference 12.87. Experiments were
conducted in a vacuum and data were compared
with analytical frequencies obtained from a
finite-difference solution of the classical plate
equations. It wasfound that the classical theory
is adequate for obtaining frequencies and mode
shapes, except in cases of extremely low core
stiffness.

Circular sandwich plates with linearly vary-
ing thickness were examined in reference 12.88.
Experimental frequencies were compared with
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theoretical values obtained by a simple analysis
by using the Rayleigh method.

In reference 12.89 radial nonhomogeneity in
circular plates is accommodated by treating the
plate as a composite of homogeneous, isotropic
annuli and enforcing continuity conditions
across the internal junctions.

The plate consisting of a thin face sheet
stiffened by corrugated sheet (see fig. 12.34) is
analyzed in reference 12.90. It is shown that
this configuration cannot be treated as ortho-
tropic plate because the twisting-moment rela-
tion M, =M, is no longer applicable. A
theory for this case is derived.

In reference 12.91 an inflatable plate is
analyzed. This plate consists of two woven
cover membranes joined to each other by
closely spaced perpendicular filaments. The
space between the covers is pressurized, and the
filaments hold the cover membranes together *
(see fig. 12.35). A variable-thickness plate is
obtained by using variable-length connecting
filaments. The theory developed in reference
12.91 was applied in reference 12.92 to obtain
natural frequencies of square plates having
simply supported edges. Results were com-
pared with experimental ones.

Ficure 12.34.—A corrugation-stiffiened plate.

WOVEN COVERS7

s~ CONNECT ING
FILAMENTS

FicurE 12.35.—Typical inflatable plate construction.
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The purpose of this appendix is to present
the notation, conventions, assumptions, and
fundamental equations upon which the main
part of this work is based. The effects of

(1) Anisotropy

(2) Inplane forces

(3) Variable thickness

will be explicitly included. Where other com-
plicating effects (e.g., large deflections) enter
the formulation, they will be pointed out.
Basic derivations are, for the sake of simplicity,
carried out in rectangular coordinates.

A.1 NOTATION

A notation will be developed which is con-
sistent with that of elasticity theory; that is, at
a point the directions of positive stress will be
taken as shown on the element of figure A.1.
Positive normal stresses are tensile. Positive
shear stresses are directed in the positive z-, y-,
and z-directions if they lie on “positive faces”
of the element; that is, those faces of the three
parallel sets whose 2-, y-, and z-coordinates are
the largest. The three well-known (ref. A.1)
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FIGURE A.1.—Notation and positive directions of stress.

APPENDIX

moment equilibrium equations 7z,=7ys;, Tv.=
Tay, a0d 7,.=1,, (Deglecting couple stresses) have
already been introduced in figure A.1.

Figure A.2 shows a plate element of thickness
b and incremental dimensions dz and dy. The
z- and y-axes are chosen to contain the unde-
formed middle surface of the plate. This plane
is called the “neutral plane.” More will be
said later about its location when layered
plates are discussed. For a plate homogeneous
through its thickness, the neutral plane lies
midway through its thickness. The z-axis is -
normal to the undeformed middle surface.
The z-axis is shown, for convenience only,
as acting along one edge of the element. Thus, -
it is noted that the zyz coordinate system is
space fized. The transverse shearing force
intensities Q. and @, the inplane normal
and shearing force intensities N, N,, and
N,, and their incremental changes are shown
acting on the sides of the element, with positive
forces acting in positive directions on positive
faces. These quantities have dimensions of
force per unit length. As will be seen later,
these forces arise from the integrals of the
even componen's of positive normal and shear-
ing stresses. The shearing forces N., are
identical on the faces z=0 and y=0 because
the shear stresses causing them are equal.
Also shown is the transverse external force
g¢=q(z, y) which has the dimension of force
per unit area and arises from, for example, a
gravitational field or an external pressure. It
will be understood that, as the plate deforms,
all the forces shown in figure A.2 will be
measured in directions tangent to or normal to
(as the case may be) the deformed middle
surface of the plate. _

Figure A.3 shows the same element with
bending moment intensities M, and M,,
twisting moment intensities M, and their
incremental changes; all these are indicated as
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Figore A.2.—Forces (intensities) acting on a plate element.
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Figurs A.3.—Moments (intensities) acting on a plate element.

right-hand vectors in the figure. These quan-

tities have dimensions of moment per unit
length. As it will be seen later, these moments
arise from the integrals of the odd components
of positive normal and shearing stresses. These
stress variations are depicted typically on
two faces of theelement. Thetwistingmoments
M,, are identical on the faces =0 and y=0

because the shear stresses causing them are
identical.

The middle surface of the element after
deformation is shown in figure A.4. The origin
of the space-fixed coordinate system is taken
at one corner of the element for convenience
only. The displacement in the z-direction is
taken as w. Slopes, along with their incre-
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Figure A.4.—Deformed middle surface of a plate element showing slopes and their changes.

mental changes, are shown at all corners of
the element, with positive changes assumed in
positive dlrectlons For small displacements
it will be assumed later that the slope (tangent
of the angle) and the sine of the angle are
equivalent.

A.2 EQUILIBRIUM EQUATIONS

Considering small deflections (or, more
precisely, small slopes), summing forces in the
e-direction yield the equation (refer to figs.
A2 and A4)

ow
ox

ow bw
oz Toz &*
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dz (bw
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ow

where p is mass density per unit area and
0*w/0 is the acceleration in the z-direction.
The technique of generalizing the above equa-
tion to account for large deformations (slopes)
is self-evident. Expanding the terms involving
products, discarding resulting third-order differ-
ential terms, dividing through the equation by
the area dz dy, and simplifying yield:

= aQ"+az(N‘ax +by(N v

b w
+az(Nlllby)+by(Nzll ax

(A.2)

Equation (A.2) can be simplified by consid-
ering the well-known equilibrium equations
of the three-dimensional theory of elasticity

Do‘, asz b"'zz b ,u’

oz + + btz
T | an
angi aTyl 1 ba’l a w

oz | by T2z bt"’ J




