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Introduction

The objective is to derive a Miles equation which gives the overall relative displacement
response of a single-degree-of-freedom system to an applied force, where the excitation is in the
form of a random vibration acceleration power spectral density.

Derivation

Consider a single degree-of-freedom system

where m equals mass, ¢ equals the viscous damping coefficient, and k equals the stiffness. The
absolute displacement of the mass equals x, and the base input displacement equals y.
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The free-body diagram is

Summation of forces in the vertical direction,

D F= mx (1)



mX = c(y —X) +k(y —x) (2)

Substituting the relative displacement terms into equation (2) yields
m(Z+Yy)=-cz—-kz 3)
mz +cz+kz=-my 4)

Dividing through by mass yields,

Z+(c/m)z+(k/im)z=-y (5)

By convention,

(c/m) =2&mp
(k/m) = op?

where wp, is the natural frequency in (radians/sec), and & is the damping ratio.
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2(t) = Zexp(jot) (7)
y(t) = Y exp(jot) 8)
[ 2 2}A e
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Take the Fourier transform of each side.
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Z(w)=

-~ Y(0)
[_ o +or + jzacocon}
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Divide through by fn2 .
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where p=Ff/f,
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Z(f)= P_pzﬂ-zgp}

Multiply each side by its complex conjugate.
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The transfer function H(p)times its complex conjugate is

1/(2nfn )2 ||| [1/(2nfp )2
H(p)H*(p)= [2 : ) (2 : )
pT—J28p-1 p~+]26p-1

Solve for the roots R1 and R2 of the first denominator.
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RLR2 = je+4/1-£2

Solve for the roots R3 and R4 of the second denominator.
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R3,R4=—jet1-£2

R3,R4 =

Summary,

R1=+j&+4 1-&2

R2=+je—1-£2

R3=—j&+41-&2
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R4=—je—+1-£2 (28)

Note
R2 = -R1* (29)
R3 = R1* (30)
R4 = -R1* (31)

Now substitute into the denominators.

1/(2nfp )?
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Hp)H*(p)= (

(32)

H(p)H*(p)= {( /{2y )" ] (33)
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i 1/(2nfp *
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Expand into partial fractions.

1 a
= +
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p
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A
(p+R1%)
o
(p+R1)
(35)
Equation (35) is solved using the method in Reference 1.
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R1=+j&+1-£2 (39)
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The overall relative displacement is found by integration.
o0 ~
[2rus(fn )7 = [ HJH*(p) ¥ apsp (F)df (41)
o0 ~
[zrus(fn . E)]° =t Jo HEH*() ¥ ApsD (F)dp (42)
Assume that the acceleration PSD is constant
Y apsp(f) =A (43)

[ rwms(fn £)1° = Afn [ HH*(p) dp (44)



Equation (45) is solved using the method in Reference 1.
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The RMS relative displacement is finally

A
Zrms (fn. &)= }3—3
64TE &fn

QA

z = | ——
SN a2n31,3

Note that equation for the absolute acceleration response in Reference 2 is

xgrMs (fn. Q)= (gj f, Q A

Thus

XGRMS = [27fn ° Zrms
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