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ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF FORCES

AND FREQUENCIES RESULTING FROM LIQUID

SLOSHING IN A SPHERICAL TANK

By Andrew J. Stofan and Alfred L. Armstead

SUMMARY

An analytical and experimental study was conducted to determine the

natural frequencies and forces of liquid oscillations in a spherical

tank. An integral-equation approach was used to study the oscillations

and the natural modes of sloshing in the nearly full to nearly empty

tank. The results of the theoretical calculations are in good agreement

with the experimentally determined slosh forces except at frequencies

very close to the natural modes and are in excellent agreement with the

experimental frequencies for various liquid depths.

INTRODUCTION

For space vehicles containing relatively large masses of liquid pro-

pellants, sloshing is a potential sourc@ of disturbance critical to the

stability of the vehicle. Oscillations may result, for example, from

attitude-stabilization-control pulses_ and can exert forces and moments

on the vehicle that cause a shift in the center of gravity. The most

critical situation occurs at a point where the excitation frequency and

the fundamental frequency of the contained liquid are nearly the same.

As reported in the literature, the natural frequencies and, to a

lesser extentj the forces of liquid sloshing in specific tank configura-

tions of various sizes have been investigated analytically and experi-

mentally (refs. 1 to 9). Because of the potential of minimum weight for

a given propellant volume, spherical tanks are strong contenders for

space-vehicle applications. Prior to this investigation, information on

spherical tanks included: (1) an analytical method for the prediction

of the natural frequencies of contained liquids for the special cases of

empty, half-full, and full tanks (ref. 10), (2) analytical equations to

predict slosh forces (refs. l0 and ll), and (3) experimentally deter-

mined natural frequencies for a full range of liquid depths (reported and



comparedwith frequencies determined analytically by the method of item
(2) in ref. 12). Obviously missing are data for experimentally deter-
mined slosh forces and an experimentally verified method for predicting
forces and natural frequencies at arbitrary liquid depths.

An analytical and experimental investigation of liquid oscillations
in a nearly empty to nearly full spherical tank was conducted at the
NASALewis Research Center. The analytical investigation assumeda non-
viscous liquidj and the experimental program used liquids having vis-
cosities of approximately 1 centipoise. Both investigations were con-
ducted for unrestricted liquid sloshing_ that is, there were no slosh-
suppression devices used. In the analysis the analytical equations of
reference 10_ relating to the modesand frequencies of specific liquid
depths, were augmentedand modified_ and equations applicable at arbi-
trary liquid depths were obtained. These modified equations and the
force equations of references l0 and ll were then applied to prediction
of the natural frequencies and the slosh forces. Experimental verifica-
tion of the analysis was provided by measurementof natural frequencies
and slosh forces from oscillatory frequencies that extended through the
first two natural modesof the contained liquid. The analytical predic-
tions and experimental results are comparedherein.
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SYMBOLS

kernel function for spherical tank

parameters related to tank depth

modal parameters

diameter, ft

elliptic integrals (of first and second kind)

slosh force acting on container_ lb

external transversal force acting on container, lb

velocity potential

vertical acceleration of tank_ 32.174 ft/sec 2

liquid depth_ ft

integers (i_2_3, . . . , N)

constant
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mass of container, slugs

mass of liquid, slugs

order of the matrix

sphere radius, ft

cylindrical coordinate system

rigid wetted boundary surface, sketch (a)

free surface

integrating diagonal matrix of order N

time

transverse displacement of container, ft

velocities in X-, Y-, 8nd Z-directions, respectively

wave forms for spherical parameters

geometric coordinate System_ sketch (a)

amplitude of tank displacement, ft

induced excitation frequency, radians/sec

oscillatory frequency parameter

2

interval of subdivision (step size), I/N

P - P

natural frequency parameter, mn _

\

nondimensional coordinates

density of liquid, sldgs/cu ft
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G_

slosh height, ft

velocity potential

circular frequency, radians/sec

EXPERIMENTAL APPARATUS AND PROCEDURE

The experimental apparatus is shown in figures I and 2. A 9.5-

inch-diameter spherical tank was formed in a lucite block. The block

was mounted on ball bearings and was free to oscillate in a horizontal

plane. The oscillatory motion of the block was provided by a driving

mechanism powered by an electric motor. The driving amplitude could be

varied from 0 to 1 inch and the frequency from 0 to 5 cycles per second.

The electric motor was wired so that alternating current could be re-

moved from the field and direct current supplied to one of the windings.

Then the oscillatory motion could be "quick-stopped," and the horizontal

forces resulting from the liquid motion only could be measured. These

forces were sensed by a strain gage mounted between the lucite block and

the driving mechanism. The signal from the strain gage was recorded by

a continuously recording strip chart.

In order to cover a range of densities and forces for a given ampli-

tude, water and mercury were used as test liquids.

The block was oscillated at a preselected frequency, amplitude, and

liquid depth and then quick-stopped. The residual horizontal slosh

forces and frequencies were recorded. A typical trace of slosh forces

is shown in figure 3. For each liquid depth, the frequency was varied

from zero through the first two natural modes of the contained liquid.

The amplitude of oscillation was selected so that the wave forms were

clearly defined at the natural modes.

The experimental values of frequency, liquid depth, and slosh forces

were reduced to dimensionless parameters by similitude theory (ref. 1).

The independent variables, liquid-depth ratio h/2R and oscillatory fre-

quency parameter _/_/_, were varied from 0 to 1 and 0 to 3, respectively.

!

Q
O

ANALYSIS AND COMPARISONWITH EXPERIMENT

Introduction to Basic Analytical Equations

The motion is that of a liquid bounded by a horizontal free sarface

Sf, and a rigid wetted boundary surface Sb; small harmonic oscillations
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are assumed (sketch (a)). The velocities in the X-, Y-_ and Z-directions

P%

(a) Sketch of spherical tank showing free surface

Sf, and wetted boundary surface Sb.

are defined by the equations (ref. i0)

Vx(X,Y,Z) sin (or (1)

Vy(X,Y, Z) sin cot (2)

Vz(X,Y,Z) sin _t (3)

Assuming the motion to be irrotational, a velocity potential _ will

exist, where

Vx=_ (41
3x

Vy--_ (5)
bY

Vz=_ (6)
8z

and the continuity equation for incompressible flow will be

v2_= o (v)

The condition of constant pressure at the free surface Sf, to-

gether with the linearized Bernoulli equation_ gives

._2 (8)_-- _(1)
g



on the free surface. Sketches (b) and (c) show the geometrical and non-

dimensional parameters_ respectively_ for the partially filled spherical

tank where the depth of liquid is measured by e varying from -i for

the empty tank to i for the full tank.

Y

_rSf X

h

2

i

Sf

pr

(b) Geometrical parameters for (c) Nondimensional param-

spherical tank. eters for spherical tank.

It is convenient to nondimensionalize the system by introducing

X
Q = --

mR

Y
1] ----__

aR

(9)

(iO)

Introduction of the cylindrical coordinate system gives

X = r cos 8 (ll)

Z = r sin (12)

For the nondimensional system (D,1],8) = (r,Y,e); then

r

aR

Y
I] ------

aR

(13)

(14)

The free-surface condition becomes

(is)

!
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The angle _ is defined as

= sin'le (16)

and varies from _/2 for the full tank to -_/2 for the empty tank.

The governing differential equation for the spherical tank is defined

(in nondimensional cylindrical coordinates) as:

_p2 _ ap + +-- = o_2 p2 3e2

where _ is the velocity potential denoted by

(i8)

The solution then is in the form

Jl

f(P) halo
(19)

Assume the distribution of a three-dimensional sink along the annulus

(_ + dp-) of strength 2f(_)cos 8 (sketch (d)).

- d_

P

(d) Sketch of spherical tank show-

ing coordinates of free surface.

Top view.

The vertical velocities along _ = 0 vanish everywhere except on the

strips of length d_ at _ and p. Only the mode for which e = 0 is

of interest since the excitation occurs in the X,Y-plane. Equation (19)
becomes

f(p)= x a(p,o,o,_)f(_)__7 (20)
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where the characteristic free surface is f(p) and the associated eigen-

values of ha yield the natural frequencies. Let

w(p) = -g_"f(p) (21)

then

W(o)= _:_o_A(o,:)w(F)_

where (22)

A(p_)= V_#(p,o,o,_)]

The problem now is to determine A(p,_).

In reference i0 the nearly full case is given as

2
A(p,_-) = 7 (_'/P)I/2[ K(_/#) - E(P/'_ (23)

and the half-full case as

(24)

Since equations (23) and (24) provide the essentials of the kernel func-

tion at two conditions_ full and half full, it is necessary to introduce

a factor that will define the kernel function for all depths. This re-

quires a modification of the Budiansky equation by a multiplying factor

empirically determined to be y - i where

(25)

so that A(p,_) becomes

2 2 _ i)(_)3/2K(_)

for p < _ _ 1 (26)

I (log8_e__2_ + (r-l)[_-_3 _(_2_A(p,_)= _ i_I
for p _ _ _ i (27)

oq
cq
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A(p,_) = T_-l_°g 8 + log _) for p_ _= 1 (28)

The terms K(p/_), E(p/_) are elliptic integrals of the first and

second kind, respectively, (ref. 13) that can be approximated by

K(p/_) = a0 + all + a2_ 2 + a5 _3 + a4_ _

+ ln(1/_)(b 0 + bl_ + b2_2 + b5_3 + b4_4 ) (29)

where

a0 = 1.586294_

aI = 0.0966654

a2 = 0.0559009

a5 = 0.0574256

a4 = 0.0145120

b 0 = 0.5000000

b I = 0.1249859

b 2 _ 0.0688025

b 5 = 0.0332835

b4 = 0.0044179

E(p/_) = i + al1_ + a21_2 + a31_3 + a41_4

+ ln(1/_)(bll_ + b21 _2 + b51_5 + b41 _4)

where

all = 0.4452514

a21 = 0.0626060

a51 = 0.0475738

a41 = 0.0175651

(3o)

bll = 0.2¢99S37

b21 = 0.0920018

b31 = 0.0_06970

b41 = 0.00S2645

for o!pIT<l, _=l- (pl_)2

The solution of equation (22) is essentially "N" simultaneous linear

equations and can be handled easily as an eigenvalue problem. The solu-

tions of the homogeneous integral equation

W(p) = Za I A(p,F)W(_)dp-- (51)

Jo



l0

will provide the characteristic free-surface shapes W(p); the eigen-

values ha, and the function A(p,_). The function A(p,_) is defined

again as

A(p,_-)= ff _/_)l/2

for all tank depths

W(O) = O.

_. Note that A(O;_) = A(#,O) = 0 and that

(s2)

The integral equation is now approximated by the matrix solution

A_{w]= _n{W} (33)

where {W} is the column vector with elements W(j£_); _ = l/N; and

J = 1,2;3; _ N; T is the integrating diagonal matrix; and

Ti; i = 1 for i _ N (Z4)

_N,N= o.s (3s)

The general elements of the symmetrical matrix A are defined by

2 i KiLk

for i _ j _ N (3s)

for i = j _ N (37)

-A(1, jZ_) = r _ og 8 - log

for i _ j = N (3s)

(See appendix A for derivation of eqs. (37) and (38).)

T_ = _ (39)
ah n

hence

N (_0)

!

c_
o]
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The eigenvalues and eigenvectors of the matrix AT are found by matrix

stripping (ref. 14). Let H1 = AIT j then

H2 Hi- {Wl} T (4i)

where {WI} is a column matrix and is the characteristic shape and [W_

is a row matrix. This procedure is applied for n = 132,3 modes.

Figure 4 shows the wave forms W n for various liquid depths. The eigen-

values and eigenvectors are shown in table I.

Comparison of Analytical and Experimental Frequencies

Figure 5 shows the theoretical calculations and experimental values

of natural frequency parameters for the first three modes. The analyti-

cally determined critical frequencies are in excellent agreement when

compared with the experimental results of this investigation and the re-

sults of reference 12. Use of the nondimensional frequency parameter

renders the results independent of the density of the contained liquid

for liquids having viscosities of approximately 1 centipoise. According

to reference 123 the parameter made the results independent of tank size.

Analytical and Experimental Slosh Forces

Since the natural frequency parameters

Wn(p) have been determined, the slosh forces

using the following equations (see ref. 10):

hn and the wave form

F s can be calculated

Nn + c°2an : LlU( t ) (42)

where

(MC +ML)_ + _PL(aR)5 _ Dn_n = Ft

_M C - F t = F s

Cn =% p[Wn(P)_ 2 d_o

D n p3/2Wn( p )cl$

(45)

(44)

(45)

(46)

(47)
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where _n is the slosh height at the wall associated with the nth mode,

is the total height of slosh at the wall, the driving force is

_(t) _ Xo_ 2 sin _t

and

(See figs. 6 and 7 for Cn and Dn, respectively.)

force equations is shown in appendix B.

Solution of these

The results of the analytical slosh-force calculations and experi-

mental data are compared in figure 8 for liquid-depth ratios of 0.50 and

0.40. The slosh forces, which are presented as the dimensionless param-

eter Fs/pLgd3(Xo/d),____ are shown as a function Of the oscillatory fre-
quency parameter _-/_. At the natural modes 3 the slosh force is in-

dependent of the excitation amplitude Xo_ that is, the excitation ampli-
tude influences only the time required for the waves to build and does

not affect the maximum wave height or slosh forces. The value of Xo/d
used was 0.0066.

The analytical and experimental slosh-force parameters, shown in

figure 8, are in close agreement except at values of the oscillatory fre-

quency parameter that correspond to the natural modes of the contained

liquid. The maximum analytical and experimental values of the slosh-

force parameter occur at a value of the oscillatory frequency parameter

that corresponds to the first natural mode of the liquid (dashed lines

in fig. 8). As the difference between the natural frequency and the

driving frequency approaches zero_ the analytical wave height an and,

in turn, the analytical slosh force Fs become very large (see sketch

(e) in appendix B). Limiting the wave height to the distance between

the undisturbed surface and the top of the tank in the analytical equa-

tions restricted the maximum force parameters at the first mode_ but

they were appreciably higher than the experimental data (>18 for the

half-full tank). Experimentally, it was observed that (i) the slosh-

force parameter was independent of the density of the contained liquid,

(2) the maxi_slosh forces near the first natural mode occurred at the

maximum wave height obtainable without the waves breaking over or swirl-

ing in the tank, and (5) this maximum wave height was appreciably less

than the distance between the undisturbed surface and the top of the

tank. The swirl, or spinningj of the liquid in the tank occurred at fre-

quencies very close to the natural modes, and the rotational frequency

of the swirl was approximately equal to the frequency of the natural mode

of the contained liquid.

Experimental values of slosh-force parameter are presented in fig-

ure 9 as a function of liquid-depth ratio for the first natural modes.

!

oi
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The slosh-force parameter increases with depth ratio to a maximum at

the half-full condition (h/2R = 0.50) and then decreases as the liquid

depth increases. Thus, the maximum slosh forces will occur when a half-

full tank is oscillated at the first natural mode frequency. The maximum

experimental slosh forces were approximately equal to one-fourth the

apparent weight of the contained liquid. It was also of interest to

note that there was very little damping of the slosh forces with time

(see fig. 3); that is, the forces continued for a relatively long period

of time after the tank had been quick-stopped.

The different slosh-force-parameter levels appearing at any given

value of the oscillatory frequency parameter (figs. 8 and 9) are due to

experimental technique. The tank was oscillated, and the waves were

allowed to build to a maximum height (determined visually) without break-

ing and rolling over in the tank; then the tank was quick-stopped. At

frequencies near the first mode, the waves would build very rapidly and

tend to break and swirl in the tank. Maximum slosh forces occurred just

before the waves broke. The scatter of the data is attributed to the

difficulty in quick-stopping the tank at the proper time.

CoNcLUDING REMARKS

The analytical equations of reference i0, relating to the modes and

frequencies of specific liquid depths in the spherical tank, were aug-

mented and modified to achieve equations applicable to arbitrary liquid

depths. These modified equations and the force equations of references

i0 and ii were applied in predicting the natural frequencies and slosh

forces. Experimentally determined natural frequencies and slosh forces

were compared with the analytically predicted values.

In consideration of the nearly empty to the nearly full spherical

tank, the experimental results served to verify the analytical methods

for predicting: (i) the natural frequencies of the contained liquid, and

(2) the slosh forces for varying disturbing frequencies except at dis-

turbing frequencies very near the fundamental frequency. The maximum

experimental slosh forces, which are approximately equal to one-fourth

the apparent weight of the liquid_ occurred at the first fundamental

frequency of the liquid for the half-full tank. Use of nondimensional

frequency and force parameters made the results independent of the con-

tained liquid density and tank size.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, March 13_ 1962
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APPENDIXA

SPECIALCONSIDERATIONSOFLOGARITHMICSINGULARITIES

OFTHEKERNELFUNCTIONA(p,E)

Consideration is given to the special condition of the function
A(p,_) as p _ E _ 1, where

2 _ 2A(p,E) = _ (p/)I/R_:(p/_) - E(p/E)] + _ (r - 1)(p_)3/gK(p_) (A1)

Let

r = p/_ (A2)

Equation (AI) then becomes

A(o,E) = E (:r') - E (r - 1)p3K(P 2) (A3)

where

_l - p2 sin2_

(A_)

and

/2E(D) = _l - _ sin2_O d_ (AS)

These are complete elliptic functions of the first and second kind_ re-

spectively. It is noted that as P _ 1 the K(P) function approaches

infinity, while E(P) * l; hence, it becomes necessary to study the

manner in which K(P) approaches infinity. Let

Z = P sin _ (A6)

in order to evaluate the integral, the integrand is expanded by the bi-

nomial theorem

1 z2 1 3 z_ + (AT)i =i+_ +_x¥

bJ

Oq
O]
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and then integrated term by term. For p2 < 1 this series will converge

uniformly for all values of @. Substituting for Z yields

/2K(r) _ d_
_0 _i - Z2 "0 2 _0

sin2_ d_

3 7/2+ _×7 p4 sin_ d_ + 2n-l.)_n r2nf _/2 sin2n_ dq0

v0

(AS)

which on integration yields

K(P) = + 2r2 + x 2r4 . . . x ¥ . . . "2n pZn + ]
(A9)

As p2 becomes approximately equal to l, equation (Ag)_ in powers of

p2 _ l, yields

4

+ (½X _)2( In _-_ " 7> F& ]

K(P) = _ n _ rz

(AIO)

If P is assumed near unity, the convergence of the preceding series

(eq. (A10)) is such that the first several terms are all that would be

necessary to arrive at K(P) accurate to four decimal places:

z 8 (All)
K(P) _ _ in 1---__

Substituting for P yields

K(P) = i in 8p (Ai2)

hence,

K(P) = log 8 + log p -logl_- Pl (A13)

From equation (AS) it is obvious that as P _ 1

E(1) = 1 (A14)
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Substitution of equations (AIS) and (AI_) into equation (AS), with

_ p # i, yields

1 8p
A(p,_) = _. log/7 ' ol

2 + _ (_ _ z)p:%:(p2) (AIS)

Note that at _ = p _ i the function is undefined} furthermore, a

choice of _ - p = e yields

A(1,_) "r- l(z _)= _ og 8 - log

for _ _ p = i

(AI6)

(roT)

b_
I

O_
£n
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DERIVATION OF FORCE EQUATION

Consider the system to be governed by the differential equation

_n + _n = - LIXo _2 sin st _ (BI)

J"6n = - _n - LIXoa2 sin at

The general solution is

an = L2Xos2 sin st + L5 sin O&nt + L4 cos _n t (B2)

°n = L2Xos3 cos st + L3o_n cos a_nt - L_o_n sin O_nt (B3)

to=O

_n(O)= o (_4)

L4=0

bn(0) = 0 = L2Xo $3 + L3_ n (BS)

ss (B6)
T,S= - _2Xo

Substitution of equation (B6) into equation (B2) yields

_n = L2Xo _2 sin st - L2X o ___3sin o_nt (B7)
_n

"°n = - L2Xo_ sin st + L2XosS_n sin _n t (BS)

Solution for L2 using equations (B1) and (BS) yields

-L2Xo SA sin at + L2Xos3O_n sin O_nt = _L2Xo $2 sin st

+ _nL2Xo $5 sin a_nt - LiXo $2 sin _t (B9)

Finally, L1 (BlO )

L2 = _2n - $2
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Let LI = _hn(Dn/Cn); then equation (B7) becomes

LI LI Xo _5 sin COnt

on = -_2 n _ a2 Xo(_2 sin st + _ _2

= LlCrn a>2 - c_2 Xo c_2
n

Let _ _ _n; then

\

sin o>nt - sin _t)

for / %

, (Bli)

(a5 sin L0nt -a 3 sin at)

llm on = d ,u)_ LIX° (BI2)
_n

!

c_
(n

a t cos at] LIX oqn = - -_-_sin _n t + sin at + _
_n

Since a =U_n_

sin _nt + a_nt cos _n t) LIXo(_[i : - " 2

(Bi3)

(Bi )

or

lim _n = X_LI_.____ (COnt cos COnt - sin (Ont )
2 (BI5)

The following sketches show the theoretical slosh forces and the

envelope of the slosh forces for the two conditions _ _ con and a = ton.

/-Envelope

/

Z

Time

(e)

i

Envelope -_\ /

\
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TABLEI. - EIGENVALUESANDETGENVECTORSFORSPHERICALTANK

Liquid-depth
rat±o_
h/2R

0. i
.2
.3
.4
.5
.6
.7
o8
.9

Tank-depth
parameter_

a

0.6

.8

.9165

.9798

i. 0000

.9798

.9165

.8

.6

Eigenvalue

0.6708

.9571

1.1850

1.3858

1.5728

i. 7532

i. 9 345

2.1254

2.3451

ah 2

4.6230

4.9787

5.1612

5.2883

5.3910

5.4827

5.5712

5.6638

5.7732
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