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SUMMARY

An analytical and experimental study was conducted to determine the
natural frequencies and forces of liquid oscillations in a spherical
tank. An integral-equation approach was used to study the oscillations
and the natural modes of sloshing in the nearly full to nearly empty
tank. The results of the theoretical calculations are in good agreement
with the experimentally determined slosh forces except at frequencies
very closé to the natural modes and are in excellent agreement with the
experimental frequencies for various liquid depths.

TNTRODUCTION

For space vehicles contalning relatively large masses of liquid pro-
pellants, sloshing is a potential sourcé of disturbance critical to the
stability of the vehicle. Oscillations may result, for example, from
attitude-stabilization-control pulses, and can exert forces and moments
on the vehicle that cause a shift in the center of gravity. The most
critical situation occurs at a point where the excitation frequency and
the fundamental frequency of the contained liquid are nearly the same.

As reported in the literature, the natural frequencies and, to a
lesser extent, the forces of liquid sloshing in specific tank configura-
tions of various sizes have been investigated analytically and experi-
mentally (refs. 1 to 9). Because of the potential of minimum weight for
a given propellant volume, spherilcal tanks are strong contenders for
space-vehicle applications. Prior to this investigation, information on
spherical tanks included: (1) an analytical method for the prediction
of the natural frequencies of contained liquids for the special cases of
empty, half-full, and full tanks (ref. 10), (2) analytical equations to
predict slosh forces (refs. 10 and 11), and (3) experimentally deter-
mined natural freguencies for a full range of liquid depths (reported and



compared with frequencies determlned analytically by the method of item
(2) in ref. 12). Obviously missing are data for experimentally deter-
mined slosh forces and an experimentally verified method for predicting
forces and natural frequencies at arbitrary liquid depths.

An analytical and experimental investigation of liquid oscillations
in a nearly empty to nearly full spherical tank was conducted at the
NASA Lewis Research Center. The analytical investigation assumed a non-
viscous liquid, and the experimental program used liquids having vis-
cosities of approximately 1 centipoise. Both investigations were con-
ducted for unrestricted liquid sloshing; that is, there were no slosh-
suppression devices used. In the analysis the analytical equations of
reference 10, relating to the modes and frequencies of specific liquid
depths, were augmented and modified; and equations applicable at arbi-
trary liquid depths were obtained. These modified equations and the
force equations of references 10 and 11 were then applied to prediction
of the natural frequencies and the slosh forces. Experimentsl verifica-
tion of the analysis was provided by measurement of natural frequencies
and slosh forces from oscillatory frequencies that extended through the
first two natural modes of the contained liquid. The analytical predic-
tions and experimental results are compared herein.

SYMBOLS
A kernel function for spherical tank
a,e,B parameters related to tank depth
Cn,Dn modal parameters
d diameter, ft
E,K elliptic integrals (of first and second kind)
Fg slosh force acting on container, 1b
Fy external transversal forece acting on container, 1b
G velocity potential
g ' vertical acceleration of tank, 32.174 ft/sec2
h liquid depth, ft
i,j,n integers (1,2,3, « . . , N)

L constant
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U=l DackKk

L0

r,Y,6

St

Vx,Vy, Vy,
Wy, ()

X,Y,Z

A
/A
PsPsMN,6,¢

Pr

4

mass of container, slugs
mass of liquid, slugs
order of the matrix
sphere radius, ft
cylindrical coordinate system
rigid wetted boundary surface, sketch (a)
free surface
integrating dlagonal matrix of order N
time
transverse displacement of container, ft
velocities in X-, Y-, and Z-directions, respectively
wave forms for spherical parameters
geometric coordinate system, sketch (a)
amplitude of tank displacement, ft
induced excitation frequency, radians/sec
osclllatory frequency parameter
o/F

1S

+B

NV E}

interval of subdivision (step size), 1/N

p-p

@é R/g

natural frequency parameter, wy, 1/R7g
nondimensional coorainates

density of liquid, slugs/cu ft



Opn slosh height, ft
¢ velocity potential
w circular frequency, radians/sec

EXPERIMENTAL APPARATUS AND PROCEDURE

The experimental apparatus is shown in figures 1 and 2. A 9.5-
inch-diameter spherical tank was formed in a lucite block. The block
was mounted on ball bearings and was free to oscillate in a horizontal
plane. The oscillatory motion of the block was provided by a driving
mechanism powered by an electric motor. The driving amplitude could be
varied from O to 1 inch and the frequency from O to S cycles per second.
The electric motor was wired so that alternating current could be re-
moved from the field and direct current supplied to one of the windings.
Then the oscillatory motion could be "quick-stopped," and the horizontal
forces resulting from the liquid motion only could be measured. These
forces were sensed by a strain gage mounted between the lucite block and
the driving mechanism. The signal from the strain gage was recorded by
a continuously recording strip chart.

In order to cover a range of densities and forces for a given ampli-
tude, water and mercury were used as test liquids.

The block was oscillated at a preselected frequency, amplitude, and
liquid depth and then quick-stopped. The residual horizontal slosh
forces and frequencies were recorded. A typical trace of slosh forces
is shown in figure 3. For each liquid depth, the frequency was varied
from zero through the first two natural modes of the contained liquid.
The amplitude of oscillation was selected so that the wave forms were
clearly defined at the natural modes.

The experimental values of frequency, liquid depth, and slosh forces
were reduced to dimensionless parameters by similitude theory (ref. 1).
The independent variables, liquid-depth ratio h/ZR and oscillatory fre-

quency parameter aw/R?%, were varied from O to 1 and O to 3, respectively.

ANAT.YSIS AND COMPARISON WITH EXPERIMENT
Introduction to Basic Analytical Equations

The motion is that of a liquid bounded by a horizontal free surface
Sr, and a rigid wetted boundary surface Sy; smell harmonic oscillations
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are assumed (sketch (a)). The velocities in the X-, Y-, and Z-directions

5t
]
n
[Lp]
i
; 8y
<
(a) Sketch of spherical tank showing free surface
Sf, and wetted boundary surface Sy -
are defined by the equations (ref. 10)
Vx(X,¥,Z)sin wt (1)
: Vy(X,Y,2)sin at (2)
Vg (X,Y,Z)sin wt (3)

Assuming the motion to be irrotational, a velocity potential ¢ will
exist, where

vy =2 (4)
vy = 2 (5)

and the continuity equation for incompressible flow will be
Ve = 0 (7)

The condition of constant pressure at the free surface Sp, to-
gether with the linearized Bernoulli equation, gives

. S _ o (8)
=59



on the free surface. Sketches (b) and (c) show the geometrical and non-
dimensional parameters, respectively, for the partially filled spherical
tank where the depth of liquid is measured by e varying from -1 for
the empty tank to 1 for the full tank.

Y
aR

e

* P
eR
h
(b) Geometrical parameters for (c) Nondimensional param-
spherical tank. eters for spherical tank.

It is convenient to nondimensionalize the system by introducing

X
= = 9
p= (9)
Y
= 10
n= (10)
Introduction of the cylindrical coordinate system gives
X=1cos 6 (11)
Z =1 sin 6 (12)
For the nondimensional system (p,n,6) = (r,Y,8); then
r
p == (13)
Y
n== (14)

The free-surface condition becomes

§§ = (ha)o | (15)
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The angle B 1is defined as
B = sin-le (16)
and varies from a/z for the full tank to -K/Z for the empty tank.

The governing differential equation for the spherical tank is defined
(in nondimensional cylindrical coordinates) as:

2 2 2
M+;§9+M+_l_6_£=o (17)
apz p 9p anz pz de2
where ¢ 1is the velocity potential denoted by

¢ = £(5)G(p,n,8,5)p dp (18)

The solution then 1s in the form

1
£(p) = ha / &(p,n,0,5)2(F)F & (19)
0

Assume the distribution of a three-dimensional sink along the annulus
(o,p + dp) of strength 2f(p)cos € (sketch (d)).

o+ dp

(d) Sketch of spherical tank show-
ing coordinates of free surface.
Top view. '

The vertical velocities along 1 = 0 wvanish everywhere except on~£he
strips of length dp at p and p. Only the mode for which 6 = 0 is
of interest since the excitation occurs in the X,Y-plane. Equation (19)
becomes

1
£(p) = 7\&_[ 6(p,0,0,m)f(P)p &b - (20)
0



where the characteristic free surface is f(p) and the associated eigen-
values of Aa yield the natural frequencies. Let

W(p) = +/o f(p) (21)
then
\
W(p) = Na A(p,p)W(p)dp
0
\
where (22)
A(DE) = '\/5?@(9:0:015)]
v
The problem now is to determine A(p,p).
In reference 10 the nearly full case is given as
2 ,_,.1/2 — _
Alp,B) = = (p/0)”" "[K(o/P) - E(o/7)] (23)

and the half-full case as
Alp,5) = %{('p‘/p)l/ 2k(o/5) - Bo/57) + (63)° zx(pa)}

for p<p#1l (24)

Since equations (23) and (24) provide the essentials of the kernel func-
tion at two conditions, full and half full, it is necessary to introduce
a factor that will define the kernel function for all depths. This re-
quires a modification of the Budiansky equation by a multiplyling factor
empirically determined to be vy -1 where

b
Y= (25)
v

so that A(p,p) becomes
ao,5) - £ (ol P [etofm) - (/5] + & (v - Dam) k(o)
for p<p#1 (286)
Mo, = L (tog 22 - 2) + (v - 1) |22 (2)

| €]
for p=p #1 (27)
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Alp,p) = T ;{ l(log 8 + log %) for p~p=1 (28)

The terms K(p/p), E(p/p) are elliptic integrals of the first and
second kind, respectively, (ref. 13) that can be approximated by

K(p/p) =8y + a1t + a2§2 + a3§3 + agtt

+ 1n(1/E)(by + by + bot? + byE3 +1v,64) (29)
where
8y = 1.3862944 by = 0.5000000
8, = 0.0966634 by = 0.1249859
as = 0.0359009 by = 0.0688025

0.033283%5

n

az = 0.0374256 bz

a, = 0.0145120 b, = 0.0044179

E(p/B) = 1 + 213k + ap182 + az k5 + ag 8

+ 1n(1/6)(by1E + bpy2 + bz185 + by t4) (30)
where
a7 = 0.4432514  Dbyq = 0.2499837
ap] = 0.0626060  bpy = 0.0920018
azy] = 0.0475738  bz1 = 0.0406970
a4 = 0.0173651 b,y = 0.0052645

for 0<p/F<1,E&=1- (p/p)"
The solution of equation (22) is essentially "N" simultaneous linear

equations and can be handled easily as an eigenvalue problem. The solu-
tions of the homogeneous integral equation

o
W(p) = %?/r Alp,p)W(p)de (31)
0
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will provide the characteristic free-surface shapes W(p), the eigen-
values MNa, and the function A(p,p). The function A(p,p) is defined
again as

A7) = 2 mﬁcm/a) - eofe] + o - 06w K (52)
for all tank depths B. Note that A(O,p) = A(p,0) = O and that
w(o) = 0. ,
The integral equation is now approximated by the matrix solution
AaT{d} = n{w} _ (33)

where {W} is the column vector with elements W(jA), A= l/N, and
j=1,2,3, . . . , N, T is the integrating diagonal matrix, and

T,

1,0 =1 for 14N (34)

TN,N = 0.5 (35)

The general elements of the symmetrical matrix A are defined by
- . . \3/2
. 2 1 iA iA 1A A AN
A(iA, 34) = E{(——) - E(—.—:)] +(r - 1)(B) " xGa)
T x .;)-172 3 JA
;A for 1 #3#N (36)

A(18,38) = Lflog & + Log(1a) - 2 + 2(r - 1)(18)%(14%)]

for 1= j#N (37)

A(1,50) =1L - l<1og 8 - log %)

for 143 =N (38)
(See appendix A for derivation of eqs. (37) and (38).)

M= (39)

hence

SeVT-H



E-1435

El

11

The eigenvalues and eigenvectors of the matrix AT are found by matrix
stripping (ref. 14). Let Hj = AT; then

H2 = Hl - 7_\l{wl} [W]JT (41)

where {Wl} is a column matrix and is the characteristic shape and ELJ

is a row matrix. This procedure 1s applied for n = 1,2,3 modes.

Figure 4 shows the wave forms W, for various liquid depths. The eigen-
values and eigenvectors are shown in table I.

Comparison of Analytical and Experimental Freguencies

Figure 5 shows the theoretical calculations and experimental values
of natural frequency parameters for the first three modes. The analyti-
cally determined critical frequencies are in excellent agreement when
compared with the experimental results of this investigation and the re-
sults of reference 12. Use of the nondimensional frequency parameter
renders the results independent of the density of the contained liquid
for liquids having viscosities of approximately 1 centipoise. According
to reference 12, the parameter made the results independent of tank size.

Analytical and Experimental Slosh Forces
Since the natural frequency parameters A, and the wave form

Wn(p) have been determined, the slosh forces Fg can be calculated
using the following equations (see ref. 10):

B, + oy = Lyti(t) ' (42)
(Mg + Mp)u + 7oy (8R)° 37 Dydy = P (43)
Mg - By = Fy (48)

where

al,Dp
C

L, =
1 n

c, f o[in(e] % a0 (46)
0

1
Dn =/ ps/zwn(p)d,o (47)
0
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where o 1s the slosh height at the wall associated with the nth mode,
E:Un is the total height of slosh at the wall, the driving force is

i(t) = Xoal sin at
and
Wn = n %

(See figs. 6 and 7 for Cp and Dp, respectively.) Solution of these
force equations is shown in appendix B.

SevT-d

The results of the analytical slosh-force calculations and experi-
mental data are compared in figure 8 for liquid-depth ratios of 0.50 and
0.40. The slosh forces, which are presented as the dimensionless param-
eter Fs/pLgdS(Xo/d), are shown as a function of the oscillatory fre-
quency parameter @1/R7g. At the natural modes, the slosh force 1s in-
dependent of the excitation amplitude Xg; that is, the excitation ampli-
tude influences only the time required for the waves to build and does
not affect the maximum wave height or slosh forces. The value of Xo/d
used was 0.0066.

The analytical and experimental slosh-force parameters, shown in
figure 8, are in close agreement except at values of the oscillatory fre-
quency parameter that correspond to the natural modes of the contained
liquid. The meximum analytical and experimental velues of the slosh-
force parameter oceur at a value of the oscillatory frequency parameter
that corresponds to the first natural mode of the liquid (dashed lines
in fig. 8). As the difference between the natural frequency and the
driving frequency approaches zero, the analytical wave height op and,
in turn, the analytical slosh force Fg become very large (see sketch
(e) in appendix B). Limiting the wave height to the distance between
the undisturbed surface and the top of the tank in the analytical equa-
tions restricted the maximum force parameters at the first mode, but
they were appreciably higher than the experimental data (>18 for the
half-full tank). Experimentally, it was observed that (1) the slosh-
force parameter was independent of the density of the contained liquid,
"(2) the maximum slosh forces near the first natural mode occurred at the
maximum wave height obtainable without the waves bresking over or swirl-
ing in the tank, and (3) this meximum wave height was appreciably less
than the distance between the undisturbed surface and the top of the
tank. The swirl, or spinning, of the liquid in the tank occurred at fre-
quencies very close to the natural modes, and the rotational frequency
of the swirl was approximately equal to the frequency of the natural mode
of the contained liquid.

Experimental values of slosh-force parameter are presented in fig- -
ure 9 as a function of liquid-depth ratio for the first natural modes.
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The slosh-force parameter increases with depth ratio to a maximum at

the half-full condition (h/ZR = 0.50) and then decreases as the liquid
depth increases. Thus, the maximum slosh forces will occur when a half-
full tank is oscillated at the first natural mode frequency. The maximum
experimental slosh forces were approximately equal to one-fourth the
apparent weight of the contained liquid. It was also of interest to

note that there was very little damping of the slosh forces with time
(see fig. 3); that is, the forces continued for a relatively long period
of time after the tank had been quick-stopped.

The different slosh-force-parameter levels appearing at any given
value of the oscillatory frequency parameter (figs. 8 and 9) are due to
experimental technique. The tank was oscillated, and the waves were
allowed to build to a maximum height (determined visually) without break-
ing and rolling over in the tank; then the tank was quick-stopped. At
frequencies near the first mode, the waves would build very rapidly and
tend to break and swirl in the tank. Maximum slosh forces occurred just
before the waves broke. The scatter of the data is attributed to the
difficulty in quick~-stopping the tank at the proper time.

CONCIUDING REMARKS

The analytical equations of reference 10, relating to the modes and
frequencies of specific liquid depths in the spherical tank, were aug-
mented and modified to achieve equations epplicable to arbitrary liquid
depths. These modified equations and the force equations of references
10 and 1l were applied in predicting the natural frequencies and slosh
forces. Experimentally determined natural frequencies and slosh forces
were compared with the analytically predicted values.

In consideration of the nearly empty to the nearly full spherical
tank, the experimental results served to verify the analytical methods
for predicting: (1) the natural frequencies of the contained liquid, and
(2) the slosh forces for varying disturbing frequencies except at dis-
turbing frequencies very near the fundamental frequency. The maximum
experimental slosh forces, which are approximately equal to one-fourth
the apparent weight of the liquid, occurred at the first fundamental
frequency of the liquid for the half-full tank. Use of nondimensiocnal
frequency and force parameters made the results independent of the con-
tained liquid density and tank size.

Lewis Regearch Center
National Aeronautics and Space Administration
Cleveland, Ohio, March 13, 1962
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APPENDIX A

SPECIAL CONSIDERATIONS OF LOGARITHMIC SINGULARITIES
OF THE KERNEL FUNCTION A(p,p)

Consideration is given to the special condition of the function
Alp,p) as p = o # 1, where

Alp,B) = £ —_1715@9/5) Cwe/)] + 2 (r - 06 kieE) (a)

T (p/p
Let
r'=opfp (A2)
Equation (Al) then becomes
a(p,8) = £ R - B(r)] + 2 (v - 1e%(P) (43)
where
ﬂ/z
K(T) = i (A4)
Vﬁ.- e sinzw
0
and
ﬁ/Z
E(T) = V1 - 1% sin ap (AS)

0

Thege are complete elliptic functions of the first and second kind, re-
spectively. It is noted that as I' > 1 the K(I') function approaches
infinity, while E(I') -» 1; hence, it becomes necessary to study the
manner in which KX(I') approaches infinity. Let

Z =T sin ¢ (A6)

In order to evaluate the integral, the integrand is expanded by the bi-
nomial theorem

1 1,2 ,1, 354, (A7)
2 27 4

SevT-H
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and then integrated term by term. For I'Z2 < 1 this series will converge
uniformly for all values of ¢@. Substituting for Z yields

/1/2 n/2 /2
= .—.—-—d..ce_._ = .]; si 2
K(I") / m vo/- dop + > ré O/‘ ncep do

/2 /2
L3 e ! 1.3 an-1) on in2
+5x377T sm4<pdcp+...(2x4... Zn)P sinchg deo
0 0

(A8)

which on integration yields

- 1\2
K(P)=g-[l+ (%)21‘2 + (—%—x%)zré’c . .(%x%. . .z—ng-n—-%-)P2n+ . }

(A9)

As T¢ becomes approximately equal to 1, equation (A9), in powers of
M~ 1, yields

K(T') = %En —l‘/——é:—g + én -Vl,ﬁ%? _ 9(%)%\2
+(-21-X%)2<1n ——5—4-—P-2-—%>I‘4 .. J (A10)

If T 1is assumed near unity, the convergence of the preceding series
(eq. (A10)) is such that the first several terms are all that would be
necessary to arrive at K(I') accurate to four decimal places:

K(D) = £ 1n 7o (A11)

Substituting for I’ yields

K(T) = % 1n 58_ - (A12)

hence,

K(I') = log 8 + log p - log|p - o] (A13)

From equation (A5) it is obvious that ag I' = 1
E(1) =1 (A14)
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- = st e

Substitution of equations (Al3) and (Al4) into equation (A3), with
o= p % 1, yields

A(p,P) = % 108 T‘fﬂﬁ -2 42 (r - 1)p%(0?) (A15)

Note that at p = p f 1 the function is undefined; furthermore, a
choice of p - p = € yields

A(p,B) = = log 2R - £+ 2 (v - 1)o%(e?) (A16)

<]

_ -1
41,5 = 1= (log 8 - log .24)

ajoo
R

for p=p =1 (A17)

GePT-d
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APPENDIX B
DERIVATION OF FORCE EQUATION
Consider the system to be governed by the differential equation
6+ afo, = - I1X.o? s
n Wn 0y = 14007 sin ot (Bl)
Gp = - wFoy - T1Xq02 sin at
The general solution is
oy = LZXOaz sin at + Lz sin wyt + Ly cos wpt (B2)
o, = L2X0a3 cos at + Lzwy cos wpt - Lyw, sin wpt (B3)
to =0 \
cn(O) =0 > (B4)
L, =0
4 J
5,(0) = 0 = LpXa® + Lgw, (BS)
3 2Xo oo
Substitution of equation (B6) into equation (B2) yields
0n = LX,o? sin at - LyX, &5 sin wt (B7)
Pn
Oy = - LpX,a* sin at + LyX,a’w, sin Wyt (B8)
Solution for L, wusing equations (Bl) and (B8) yields
“LoX o® sin at + LoX oS sin w,t = ~0fLoX o sin t
2%0% @ 240% ®n ®n Ll i a
+ wpLpXoa® sin wpt - InXeal sin ot (B9)
Finally,
Ly
Lo = - ——=—— (B10)

2 - g2
wg - @
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Let In = a)\n(Dn/Cn); then equation (B7) becomes

L
1 ) In SR
oy = -WXOQZ sin at +._2___2_XO(%r_151na>nt
U.)n -
(B11)
Ly
2/ L .
g, = ——— X a°f— sin awpt - sin qt)
n (Drzl _ 0,2 o] (@n
for a # ay
Let a — wp; then
4 (3 sin w,t - a® sin at)
lim oy = 'l . > 1%, (B12)
a > Wp aa (U)n - @ )
op = -[% LT)%I sin w,t + sin at + % t cos cx,t] INPA (B13)
Since a = Wy,
sin w,t + wyt cos wyt
On = - ( 5 ) 1%, (B14)
or
L
lim oy = —%?9 (wnt cos w,t - sin o, t) (B15)

a > dp

The following sketches show the theoretical slosh forces and the

envelope of the slosh forces for the two conditions a # onp and a = Wn.

r~Envelope Envelope —
7 AN
[l /h\ |
o i
£ ] y Time
[o]
|
| \a\
a = Wy
a # oy

(e)

GePT-H
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TABLE I. - EIGENVALUES AND EIGENVECTORS FOR

SPHERTCAL TANK

Liquid-depth | Tank-depth Eigenvalue Netural frequency
ratio, parameter, parameter
h/2R a
N R T R =
0.1 0.6 0.670814,6230(8.1145|1,0573{2.7758]3.,6775
.2 .8 .95714.978718.4136|1.0938{2.4947| 3.2430
.3 .9165 (1.1850]5.1612|8.5773|1.1370{2.3731}3.0592
s .9798 |1.3858(5.2883|8.6923]11.1893(2,3232|2.9785
.5 1.0000 ]1.5728(5.3910|8.784711.2540(2,3218|2.9639
.6 .9798 [1.7532(5.482718.8658}1,3376|3.3655| 3,0080
.7 L9165 |1.9345|5.57128.9425|1.4528|2.4655(3.1236
«8 .8 2.1254|5.6638{9.0209|1.6300(2.6608|3. 3580
.9 .6 2.345115.773219.1114(1.9770|3,1019]3.8969
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Figure 5. ~ Theoreticel and experimental values of natural
frequency parameters for first three modes.



28

0°T

E-1435

*0798x yadep-pTNbIT Jo UOTIOUNI S8

Un  roqeuersd TRPOW - ‘9 sandTd

¥z/u ‘o3 yidep-pInbrl

/
/
//
4, \\
| 7
T, j\\ \,\ \kQ
"
_ | | &\\
L
_ R gd
[ m
\\ \ "0 %
Dzl |
AREE e
| | L

)
dp [(d)un]d / = Uy ‘r1sqoumaed TEPOKW
2
T



29

*0738I U3dep-pInbIT Jo uotjouny se W Joqswetsd TBPOW -~ °/ oanITd

4z/u ‘o138 y3dep-prnbT
\n . @ . m . ¢ . m . N . ._” .O

e ———

I|||\||\I||||\|||.

O.
dp(d)Um z/gd '['./ = Ug ‘roqowered TepPOW

\

SeYT-H



Slosh-force parameter, Fg/oig ds(xo/d)

30

14
) o] Water
12} — _ A Mercury
Theoretical
_ | R ,
10 — Sl
1
I DV I T S A R 1 ]
6 +- A . u oy -
é .
4 [ ) \Ko | / ‘‘‘‘‘ |
o
: & -
/ o [° e <
8 . 2 °8
4——dr"”— Fi??t m?di, Sefond m?de
0 .4 .8 1.2 1.6 2.0 2.4

Osclllatory frequency parameter, a~/R/g

(a) Iiquid-depth ratio, h/2R, 0.50.

2.8

Figure 8. - Slosh-force parameter as function of oscillatory frequency paremeter.
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