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Figure 1.  PID Controller Diagram 
 

As an example, the PID controller could be used to read a sensor, and then to compute the 

desired actuator output by calculating proportional, integral, and derivative responses and 

summing those three components to compute the output.  
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Variables 

 

e tracking error 

pK  proportional gain 

iK  integral gain 

dK  derivative gain 

R desire input 

u controller output, process input 

Y process output 

SP setpoint 

PV process variable (plant output) 

Y process variable (plant output) 

 

 

 

 

Introduction 

 

A proportional–integral–derivative controller (PID controller) is a generic control loop feedback 

mechanism controller, widely used in industrial control systems.  It is also called a three-mode 

controller or process controller. 

 

A PID controller calculates an "error" value as the difference between a measured process 

variable and a desired setpoint. The controller attempts to minimize the error by adjusting the 

process control inputs. 

 

 

Equations 

 

The error is 

 

PVSPe                                                                                                               (1) 

  

 

The output of the PID controller is 

 

 
dt

de
KdteK)t(eK)t(u dip

t

0
                                                                        (2) 
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Take the Laplace transform 
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The transfer function is 

 
 

s

ss
s

s

ipd
d

i
p

KKK
K

K
K

)s(E

)s(U
)s(C

2 
                                                         (4) 

 

 

 

Proportional Term 

 

The proportional term makes a change to the output that is proportional to the current error 

value. The proportional response can be adjusted by multiplying the error by a constant Kp, 

called the proportional gain. 

 

)t(eKP pout                                                                                   (5) 

 

A high proportional gain results in a large change in the output for a given change in the error. If 

the proportional gain is too high, the system can become unstable.  In contrast, a small gain 

results in a small output response to a large input error, and a less responsive or less sensitive 

controller. If the proportional gain is too low, the control action may be too small when 

responding to system disturbances. Tuning theory and industrial practice indicate that the 

proportional term should contribute the bulk of the output change. 

 

 

Integral Term 

 

The contribution from the integral term is proportional to both the magnitude of the error and the 

duration of the error. The integral in a PID controller is the sum of the instantaneous error over 

time and gives the accumulated offset that should have been corrected previously. The 

accumulated error is then multiplied by the integral gain (Ki) and added to the controller output 

 

 

  
t

0out dteKI i                                                                                   (6) 

 

 

The integral term accelerates the movement of the process towards setpoint and eliminates the 

residual steady-state error that occurs with a pure proportional controller. However, since the 
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integral term responds to accumulated errors from the past, it can cause the present value to 

overshoot the setpoint value 

 

 

Derivative Term 

The derivative of the process error is calculated by determining the slope of the error over time 

and multiplying this rate of change by the derivative gain Kd.  The magnitude of the contribution 

of the derivative term to the overall control action is termed the derivative gain, Kd. 

The derivative term is given by 

 

dt

de
KD dout                                                                                         (7) 

 

 

The derivative term slows the rate of change of the controller output. Derivative control is used 

to reduce the magnitude of the overshoot produced by the integral component and improve the 

combined controller-process stability. However, the derivative term slows the transient response 

of the controller. Also, differentiation of a signal amplifies noise and thus this term in the 

controller is highly sensitive to noise in the error term, and can cause a process to become 

unstable if the noise and the derivative gain are sufficiently large. Hence an approximation to a 

differentiator with a limited bandwidth is more commonly used. Such a circuit is known as a 

phase-lead compensator. 

 

 

Manual Tuning 

 

Effects of increasing a parameter independently 

 

Parameter Rise time Overshoot Settling time Steady-state error Stability 

pK  Decrease Increase Small change Decrease Degrade 

iK  Decrease Increase Increase 
Decrease 

significantly 
Degrade 

dK  
Minor 

decrease 

Minor 

decrease 
Minor decrease 

No effect in 

theory 

Improve 

if dK is small  
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General tips for designing a PID controller 

 

The following steps can be used to obtain the desired response when designing a PID controller. 

1. Obtain an open-loop response and determine what needs to be improved  

2. Add a proportional control to improve the rise time  

3. Add a derivative control to improve the overshoot  

4. Add an integral control to eliminate the steady-state error  

5. Adjust each of Kp, Ki, and Kd until the desired overall response is obtained.  

Not that a control system may not need all three modes.  

 

For example, if a PI controller gives a good enough response, then a derivative controller is 

unnecessary.  Keep the controller as simple as possible.  
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APPENDIX A 

 

SDOF Vibration Example 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              Figure A-1.  SDOF System Subjected to an Applied Force 

 

 

 

m mass 

c viscous damping coefficient 

k stiffness 

y absolute displacement of the mass 

f(t) applied force 

 

 

The SDOF system in Figure A-1 is the process block in Figure 1. 

 

The equation of motion is  

 

                                                                                                                             

)t(fkyycym                                                                                            (A-1) 

 

 

Take the Laplace transform with zero initial conditions 

 

 

              )t(fLkyycymL                                                                                       (A-2)      

                                                   

 

)s(F)s(kY)s(Ycs)s(Ysm 2                                                                       (A-3) 

 

  )s(F)s(Ykcssm 2                                                                                     (A-4)   
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The transfer function is 
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The corresponding block diagram is 

 

 

 

                                                     

                                                      

 

 

 

 

Figure A-2.  SDOF System Transfer Function 

 

 

 

 

Add the PID controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-3.  SDOF System with PID Controller, System Block Diagram 
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Let L(s) be the open loop transfer function. 
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dp
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The closed loop transfer function G(s) is    
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Figure A-4.  Open Loop Transfer Function using PID Controller 

 

 

 

The transfer function can also be written as 
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There are three poles.  Place one pole at n  along the imaginary axis, as shown in Figure A-

5. 
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Figure A-5.  Pole Placement 

 

 

 

Model the transfer function denominator as 
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Equate coefficients.   

 

    nd 2Kc
m

1
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2
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The PID parameters are thus 

 

 

  cm2K nd                                                                                      (A-20) 
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mK 3
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The u(t) may be the unit step function or any arbitrary time-varying function.    

 

A unit step function will be used for this example. 

 

Set the variables for the sample system as 

 

 

Variable Value 

M 1 kg 

C 10 N sec/m 

K 20 N/m 

n  17 rad/sec 

  0.1176 

  5 

pK  308.9680  N/m 

iK  2888.8  N /(m sec) 

dK  3.9944 N sec/m 

 

 

Note that the frequency n  is not the natural frequency of the SDOF system.  It is rather the 

natural frequency of the combined PID controller & SDOF system. 

 

(The natural frequency of the SDOF system by itself is 4.5 rad/sec.) 

 

The response of the mass is found using the formula derived in Appendix B.  The resulting time 

history is shown in Figure A-6.  The transfer function magnitude is given in Figure A-7.  The 

calculations were made using Matlab script:  pid_sdof.m. 



 13 

 

 

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Unit Step Set Point
Response

TIME (SEC)

D
IS

P
L

A
C

E
M

E
N

T
 (

IN
C

H
)

UNIT STEP RESPONSE  PID CONTROLLER SDOF RESPONSE

 
 

 

Figure A-6. 
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Figure A-7. 
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APPENDIX B 

 

Response Time History Equation Derivation 

 

 

Apply a unit set function to the transfer function.  The Laplace transform of the unit step function 

is 1/s. 
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Simplify the combined Laplace transform as follows. 
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Perform a partial fraction expansion. 
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Equation (B-10) yields four equations. 
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Solve for E, Q, R, V using a numerical software algorithm. 

 

The Laplace transform becomes 
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Substitute equation (B-18) into (B-16). 
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The inverse Laplace transform via Reference 3 is                                                  
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APPENDIX C 

 

Impulse Response Function 

 

 

 

The transfer function is 
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Expand into partial fractions. 
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nn

22

VVs

sWWs

Rs2RRsCBssA







                   

                     (C-8)                                                          

 

               

WRA                                                                                                                (C-9)                                                                

                      

V)(W)2(RB nn                                                                                 (C-10) 

                                                                     

n
2

n VRC                                                                                                 (C-11)                                                          

                      

 

Assemble the equations in matrix form. 

 

 























































C

B

A

V

W

R

0

12

011

n
2

n

nn                                                                              (C-12) 

 

 

 

The transfer function can be written as 

 

  





















2
d

2
nn s

)W/V(s
W

s

R
)s(G                                                                (C-13) 
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The inverse Laplace transform via Reference 3 is                                                  

 

 

      ,tsin
)W/V(

tcostexpW)t(xpRe)t(g d

d

n
dnn





























     

 

                                                                                                                                     t > 0                                                 

 

(C-14) 

     

 

The displacement for an arbitrary set point can then be found via a convolution integral. 

 

 

 
t

0
dt)t(g)(u)t(y                                                              (C-15)       

 

 

The function u may be the unit step function or any arbitrary function. 

 

Note that a small dt is needed for numerical accuracy in the case that the convolution integral is 

represented via a series.                                                    


