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Introduction 

 

Dynamic systems can be characterized in terms of one or more natural frequencies.  The 

natural frequency is the frequency at which the system would vibrate if it were given an 

initial disturbance and then allowed to vibrate freely. 
 

There are many available methods for determining the natural frequency.  Some 

examples are 
 

1. Newton’s Law of Motion 

2. Rayleigh’s Method 

3. Energy Method 

4. Lagrange’s Equation 
 

Note that the Rayleigh, Energy, and Lagrange methods are closely related. 
 

Some of these methods directly yield the natural frequency.  Others yield a governing 

equation of motion, from which the natural frequency may be determined. 
 

This tutorial focuses on Rayleigh’s method, which yields the natural frequency. 
 

Rayleigh's method requires an assumed displacement function.  The method thus reduces 

the dynamic system to a single-degree-of-freedom system.  Furthermore, the assumed 

displacement function introduces additional constraints which increase the stiffness of the 

system.  Thus, Rayleigh's method yields an upper limit of the true fundamental 

frequency. 

 
Definition  
 

Rayleigh's method can be summarized as 

 

   maxmax PEKE      =   total energy of the system                            (1) 

 

 where 

  

KE = kinetic energy 

 PE = potential energy 



 2 

 
 

Note that potential energy is also referred to as strain energy for the case of certain 

systems, such as beams. 
 

Equation (1) can only be satisfied if the system is vibrating at its natural frequency. 
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APPENDIX A 

 

Pendulum Example 
 

Consider a conservative system.  An example is the pendulum shown in Figure A-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

                   Figure A-1. 

 

 

The kinetic energy becomes zero when the pendulum reaches its maximum angular 

displacement.  The kinetic energy reaches its maximum value when the pendulum passes 

through  = 0, which is also the "static equilibrium point." 

 

On the other hand, the potential energy reaches its maximum level as the pendulum 

reaches its maximum angular displacement.  The potential energy reaches its minimum 

value when the pendulum is at its static equilibrium point.  For simplicity, the potential 

energy can be considered as zero at the static equilibrium point. 
 
  

Let  

 m = pendulum mass 

 L = length 

 = angular displacement 
 

 Assume a small angular displacement. 

L 

g 

  

m 
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The potential energy is 
 

)cos1(mgLPE                                                                             (A-1) 

 

 

The kinetic energy is 
 

2)L(m
2

1
KE                                                                                (A-2) 

 

Assume a displacement equation of  

 

 tnsin)t(                                                                                (A-3) 

 

max                                                                                          (A-4) 
 

 

The velocity equation is 
 

 tncosn)t(                                                                            (A-5) 

 

nmax                                                                                       (A-6) 

 

  )cos1(mgLmaxPE                                                                          (A-7) 

 

Consider the expansion 

 




















 

!4

4

!2

2
1cos                                                                           (A-8) 

 

 

Consider the maximum potential energy.  Substitute equation (A-8) into (A-7). 

 

 
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
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11mgLmaxPE                                                  (A-9) 

 

 

 


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






 





!4

4
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 















2

2
mgLmaxPE                                                                             (A-11) 

 
 

Consider the maximum kinetic energy.  Substitute equation (A-6) into (A-2). 

 

   2nLm
2

1
maxKE                                                                          (A-12) 

 

 












 


2

2
mgL2

nLm
2

1
                                                                  (A-13) 

 

Simplifying, 

L

g2
n                                                                                    (A-14) 

 

The pendulum natural frequency is thus 

 

L

g
n                                                                                    (A-15) 
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APPENDIX B 

 

Cantilever Beam with End Mass 
 

Consider a mass mounted on the end of a cantilever beam, as shown in Figure B-1.  

Assume that the end-mass is much greater than the mass of the beam. 
 
 

 

 

 

 

 

 

 

 
 
 

Figure B-1. 
 

 

 E  is the modulus of elasticity 

 I  is the area moment of inertia 

 L  is the length 

 g is gravity 

 m  is the mass 

 x  is the displacement 

 

 

The static stiffness at the end of the beam is 

 

3L

EI3
k                                                                                                (B-1) 

 

Equation (B-1) is derived in Reference 1. 

 

The potential energy is  

 

2y
3L

EI3

2

1
PE












                                                                         (B-2) 

 

The kinetic energy is 

 

 2ym
2

1
KE                                                                              (B-3) 

 

Assume an end displacement of  

 

tnsinAy                                                                              (B-4) 

m 

EI 

L 

y 
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The corresponding velocity is 

 

tncosAny                                                                           (B-5) 

 

The maximum displacement is A.  The maximum velocity is An .  Thus, 

 

 2Anm
2

1
maxKE                                                                        (B-6) 

 

2A
3L

EI3

2

1
maxPE 








                                                                      (B-7) 

 

Applying Rayleigh’s method, 

 

  2A
3L

EI3

2

12Anm
2

1








                                                                    (B-8) 

 

The natural frequency of the end mass supported by the cantilever beam is thus 

 
















3Lm

EI32
n                                                                                  (B-9) 

 

3Lm

EI3
n                                                                                   (B-10) 
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APPENDIX C 

 

 

Cantilever Beam with Internal Distributed Mass  
 

Consider a cantilever beam with mass per length .  Assume that the beam has a uniform 

cross section.  Determine the natural frequency.  
 

 

 

 

 

 

 

 

 

 
 

Figure C-1. 

 

The governing differential equation is  

 

 EI
y

x

y

t









4

4

2

2
                                                                                 (C-1) 

 

The boundary conditions at the fixed end x = 0 are 

 

y(0) = 0            (zero displacement)                                                     (C-2) 

 

dy

dx x


0
0              (zero slope)                                                         (C-3) 

 

The boundary conditions at the free end x = L are 

 

d y

dx
x L

2

2
0



         (zero bending moment)                                           (C-4)                    

 

d y

dx
x L

3

3
0



        (zero shear force)                                                 (C-5) 

 

 

Propose a quarter cosine wave solution. 

 

EI,  

y 

L 



 9 

y x yo
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yo
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 
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The proposed solution meets all of the boundary conditions expect for the zero shear 

force at the right end.  The proposed solution is accepted as an approximate solution for 

the deflection shape, despite one deficiency. 

 

Again, Rayleigh’s method is used to find the natural frequency.  The total potential 

energy and the total kinetic energy must be determined. 

 

The total potential energy P in the beam is 

 

P
EI d y

dx
dx

L














2

2

2

2

0
                                                                                (C-10) 

 

By substitution, 
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
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P
EI

yo L
x

L x

L

L

































 





























2 2

2 2
1

2

0






sin                                                           (C-14)  
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 2o3
4 y

L

EI

64

1
P 
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The total kinetic energy T is                           

 

 

 T n y dx
L

 
1

2
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0
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Now equate the potential and the kinetic energy terms. 
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APPENDIX D 

 

 

Cantilever Beam with Internal Distributed Mass and End Mass 

 

 

 

 

 

 

 

 

 

 

 

Figure D-1. 

 

 

The following is based on a quarter cosine wave solution. 

 

The kinetic energy is 
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The potential energy is 
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Now equate the potential and the kinetic energy terms. 
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APPENDIX E 

 

Rayleigh’s Quotient 
 

Rayleigh’s method can also be applied to multi-degree-freedom-systems, as follows. 

 
 

XMTX

XKTX2                                                                                       (E-1) 

 

where 

  K is the stiffness matrix 
 

  M is the mass matrix 
 

  X is an assumed mode shape with arbitrary scale 

 

 

Equation (E-1) is essentially a numerical approximation.  It overestimates the true 

fundamental frequency.  Thus, it should be used in a trial-and-error manner. 

 

Note that the numerator in equation (E-1) is equal to twice the potential energy.  The 

denominator is equal to twice the kinetic energy if first multiplied by 2 . 

 

As an example, consider the system defined in Figure E-1 and Table E-1. 
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Figure E-1. 

 

 

 
 

Table E-1.  Parameters 

Variable Value 

1m  2.0 kg 

2m  1.0 kg 

1k  1000 N/m 

2k  2000 N/m 

3k  3000 N/m 

 
 

 

The homogeneous equation of motion is 

 


















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




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













0

0

2x

1x

3k2k3k

3k3k1k

2x

1x

2m0

01m




                                            (E-2) 

 

  m1 
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k3 

x1 

x2 
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The mass matrix is 
 

kg
10

02
M 








                                                                                                        (E-3) 

 

 

 

The stiffness matrix is 

 
 

m/N
50003000

30004000
K 












                                                                              (E-4) 

 

 

The natural frequencies can be computed using the eigenvalue method.  The eigenvalues 

are the roots of the following equation. 

 

0M2Kdet 




                                                                                (E-5) 

 

Equation (E-5) can be solved exactly for systems with up to four degrees-of-freedom.  

The first natural frequency is thus 

 
sec/rad03.301                                                                                             (E-6) 

 
The next task is to test the Rayleigh quotient method.  Several candidate mode shape are 

evaluated as shown in Table E-2. 

 

Note that  

 











2x

1x
X                                                                                         (E-7) 
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Table E-2.  Rayleigh Quotient Trials 

 

X   (rad/sec) 










1

1
 31.62 










5.1

1
 30.68 










2

1
 31.62 










5.0

1
 36.51 










1

1
 54.77 

 

 

Again, the Rayleigh quotient overestimates the true fundamental frequency. 

 

Thus, the best estimate for the natural frequency after five trials is 

 

 

sec/rad68.301           (estimate)                                                    (E-8) 

 

 

The estimated value is 2.2% higher than the exact value.  

  

 

The Rayleigh quotient method thus gives very good results for this example. 

 

 

 

 

 

 

 

 

 


