
Dynamic Properties of Rotating Structures:
Modelling and Visualisation of Simulation and

Experimental Results

by

Götz von Groll

Supervisors:
Prof. Dr. D.J. Ewins and Prof. Dr. P. Hagedorn

May 1995

A thesis submitted in partial fulfilment of the requirements for the degree of
Diplom-Ingenieur (Mechanik) of the
Technische Hochschule Darmstadt.

Fachbereich Mechanik
64289 Darmstadt, Germany

The work was accomplished at the

Department of Mechanical Engineering
Dynamics Section

Imperial College of Science, Technology and Medicine
London SW7, UK

II

Acknowledgements

I am deeply grateful to Dr. Izhak Bucher, who provided me with invaluable
guidance and assistance and supported me strongly over the course of this
Diplomarbeit.

I would like to thank Professor Ewins for making my stay in the Dynamics
Section possible and for his sustained interest as well as his many
suggestions throughout the project.

I would like to thank Professor Hagedorn for supporting the idea of doing
my Diplomarbeit abroad and his readiness to accept and mark this work.

Furthermore, I would like to thank Philipp Schmiechen for his help and
advice on many matters, particularly though for the background theory and
layout of the disc animation program.

Many thanks are also due to the Ph.D. students in Room 564, who created a
very friendly and pleasant atmosphere and helped me with many little but
essential things like sorting out my computer when I crashed it again.

III

Abstrakt

Die vorliegende Diplomarbeit behandelt einige Aspekte der mathematischen
Modellierung von rotierenden Strukturen und der Visualisierung ihrer
dynamischen Eigenschaften. Es wird auf die Methode der finiten Elemente
unter Berücksichtigung der für rotierende Strukturen relevanten
gyroskopischen Kräfte eingegangen. Ein bestehendes Finite Element
Programm wird zur Modellierung von unsymmetrischen Strukturen
erweitert. Es ergeben sich dabei Bewegungsgleichungen mit periodischen
Koeffizienten, auf deren Lösung mit dem Ansatz nach Hill ebenfalls
eingegangen wird. Des weiteren wird gezeigt, wie sich Schwingungen von
Scheiben und Wellen in ihre räumlichen Bestandteile zerlegen lassen und
sich dadurch mehr Aufschluß über die Art der gemessenen oder simulierten
Schwingungen gewinnen läßt. Bei den Scheibenschwingungen liegt der
Schwerpunkt auf der Animation der Superposition von verschiedenen
Schwingungskomponenten.

Abstract

This present Diplomarbeit is concerned with some aspects of mathematical
modelling of rotating structures and the visualisation of the dynamic
properties. The Finite Element Method is used for modelling rotating
structures taking into consideration the gyroscopic forces, which are of
particular relevance here. An existing Finite Element code is expanded to
model asymmetric structures. The resulting equations of motion with
periodic coefficients are treated using Hill's approach of balancing the
harmonic terms. Furthermore, the decomposition of vibration in discs and
rotor shafts into their spatial components is shown, thus improving the
understanding of the simulated or measured vibrations. The main aspect of
the disc vibration is the animation of the superposition of individual
vibration components.

IV

Table of Contents

1. Introduction 1

2. Finite Element Model for Rotating Structures

2.1 Features of the Model 5

2.2 Derivation of the Finite Element Matrices

2.2.1 Stationary frame of reference 5

2.2.2 Matrix Transformation to rotating frame of reference 9

2.3 Test of the Program Code

2.3.1 Comparison between the analytical solution
for a rotating shaft and the FE results 11

2.3.2 Comparison with other FE results and Measurement 12

2.4 Implementation of Unbalance in the Model 13

2.5 Implementation of Non-axisymmetric Elements

2.5.1 The co-ordinate transformation 15

2.5.2 Derivation of the element matrices 17

2.5.3 Solving equations of motion with periodic coefficients 20

2.5.4 Formulation for systems with harmonic coefficients 22

2.5.5 Test case 25

2.6 Structure of the Program and
the Graphical User Interfaces 29

3. Visualisation of Dynamic Properties

3.1 Display Results of FE Calculations

3.1.1 Modeshapes 32

3.1.2 Campbell diagram 33

3.1.3 Unbalance response 34

3.1.4 Whirl Orbits 35

3.2 Visualisation of Travelling and Standing Wave
Components in any Disc Mode

3.2.1 Description of vibration 37

V

3.2.2 2D Fourier transform for decomposition of vibration 39

3.2.3 Interface for the vibration spectrum 41

3.2.4 Interface for the animation parameter 42

4. Experimentally-Measured Data

4.1 Display of measured data as a Z-mod 44

4.2 Forward and backward whirl separation 47

5. References 52

Appendix A Derivation of the FE Element Matrices

A.1 Matrix transformation to rotating co-ordinates 54

A.2 Derivation of the element matrices 56

A.3 Assembly of the hyper-matrices 67

Appendix B Test of FE Results

B.1 Comparison of the results with measurement data 69

B.2 Comparison of the results with LISA 70

B.3 The LISA file for the shaft 71

B.4 The MATLAB Conversion Routines 74

Appendix C Graphical User Interfaces for the FE
Program and the Disc Animation Tool

C.1 Interfaces of the FE program 77

C.2 Interfaces of the Disc Animation Tool 80

Appendix D Code of the FE Program

D.1 Short program documentation 84

Appendix E Nomenclature 90

1

1. Introduction

This Diplomarbeit is concerned with the mathematical modelling of rotating
structures, and the visualisation of the dynamic properties as simulated or
measured results. Almost every machine has rotating parts, therefore
analysis tools that predict dynamic forces or vibration phenomena associated
with rotating structures are very important for the designer. The analyst
investigating unexpected high levels of vibration will find these tools
essential for diagnosing the cause for this, and the experimenter can plan an
experiment more accurately due an enhanced knowledge of the nature of the
vibration that is to be determined with the measurement.

Two types of rotating structures are dealt with in this thesis:

− The rotor: The rotor consists of a flexible shaft which can carry discs and
is mounted on flexible bearings. An expansion of the investigation is the
addition of non-axisymmetric elements to the rotor shaft.

− The discs: The disc is treated as flexible, neglecting gyroscopic effects.

The emphasis lies clearly on the rotor structure as it provides the most
general basis in rotordynamics.

The work is structured as follows:

After the introduction, the second chapter contains some aspects of
mathematical modelling of rotating structures using finite elements. The first
part of this chapter shows the derivation of the homogenous equation of
motion for an axisymmetric, flexible rotor shaft carrying rigid discs, and the
transformation between stationary and rotating frames of reference. The
results of the program are then compared with the results of the recently
developed finite element program LISA [1] and with measured data.

The analysis is then expanded in the following sections of chapter 2 by
unbalance response and incorporation of non-axisymmetric elements. The
presents of asymmetry in the rotor and stator results in time varying
coefficients in the equations of motion, which calls for a modified way of
solving these linear differential equations. Hill’s approach to balance terms
containing the same harmonics is used and the resulting solution of the
hyper-system is discussed here.

The third chapter deals with the visualisation of the dynamic properties
using the results from the FE analysis given. Displays of modeshapes,

Introduction

2

Campbell diagrams, unbalance responses and the animation of whirl orbits
are all treated. Particular emphasis lies on analysis allowing for the
discrimination of the whirl direction, as the nature of forward and backward
whirl is quite different in terms of stress cycles and internal damping, and
therefore are the cause for different vibration phenomena.

The second part of chapter 3 deals with the animation of vibration of flexible
rotating discs. This is connected with the ROSTADYN project [2] where one
of the experiments is set up to excite a specific combination of waves to have
defined initial conditions. The nature of vibration patterns as a
superposition of waves leads to the analysis of separating these individual
components from measured vibration signals. An animation tool allowing to
visualise individual vibration components or any superposition of those,
with the purpose of enhancing the perception of a particular vibration
pattern selected for the experiment, is introduced.

In the fourth chapter some aspects of the experimental side are mentioned
briefly. A main point is the signal processing required to produce Z-mod
diagrams from a spectrogram to make a direct comparison with a Campbell
diagram or unbalance response predicted by FE computation possible. A
second point is the analysis of the measured data necessary to decompose
whirling of shafts into its forward and backward components and thus
creating Z-mod and Campbell diagrams which show forward and backward
components separately. As mentioned before, this supports further
investigation of the vibration measured.

In summary, the objective of this work is to process information generated
by different means, be it some form of numerical simulation or experimental
measurements, and bring it to a stage where a comparison between
modelling, simulation, and experiment is possible. Modeshapes, Campbell
diagrams or unbalance response predicted by the FE program can be
compared with experimentally-measured whirl orbits, Z-mod diagrams and
unbalance responses.

Introd
uction3

ExperimentModel

Rotating Structure

FE Model

shaft flexible, discs rigid

Analytical Model

flexible discs
Whole StructureDiscs

forced response

visualisation of
mixed/separated

waves with differend
direction and nodal

diameter

modeshapes
2D and 3D

whirl orbits

unbalance
response

Campbell
diagram

equations of motion
with constant coeff.

symmetric rotor
(a)symmetric stator

equations of motion
with periodic coeff.

asymmetric rotor
(a)symmetric stator

whirl orbits Z-mod
diagram

Separation of
modes

with respect
to direction and

nodal diameter of
waves

Comparison

Introduction

4

A note about the history of the FE program:

I did not start this FE program from scratch: I used an existing code as a basis
which was written in the Dynamics Section by Dr. Izhak Bucher. The
program already consisted of assembling the global mass, stiffness and
gyroscopic matrices from axisymmetric shaft elements and discs and springs
attached to nodes, as described in section 2.2; it was then expanded by
including unbalance response and the possibility of using non-axisymmetric
elements for modelling. The FE program somehow grew to well over 5000
lines of code, even though it was written in MATLAB, and would take up
some 80 pages if all files were included in the Appendix. So only the most
essential files are listed to enable one or the other interested look for how
some formulations are realised, as some functions are referred to in the main
text. In this thesis I face the task at some points of explaining something in
writing that can best be seen in a computer session, so a disk of the program
is enclosed, together with the animation tool for rotating discs. The disk
consists of MATLAB scripts and functions written under the 4.2c version, so
difficulties can arise with older versions as some commands, especially in
connection with the graphical interfaces, will not be recognised.

5

2. Finite Element Model for Rotating Structures

2.1 Features of the Model

In this chapter, a rotating structure consisting of a rotating, flexible shaft with
rigid discs mounted on stationary bearings is treated. Assuming the shaft to
be slender, it is modelled as a Rayleigh beam, i.e. shear deformation effects
are neglected but the gyroscopic moment terms and the moment terms due
to the inertia of rotation of the cross section are included. This leads to a
stiffer model of the rotor when compared with a Timoshenko model and the
obtained results of natural frequencies predicted are therefore slightly high.
The model allows for the defining of rigid boundary conditions in all
possible combinations, which shall yield the cancellation of the
corresponding rows in the M, K, G, C, and F (unbalance force, or any other
excitation vector) matrices for that particular degree of freedom. Bearings
can be included in the model with their stiffness and damping properties.
Both shaft elements and discs can be either solid or hollow. The discs are
treated as rigid elements. Furthermore, it is possible to attach more than one
disc to a node and more than one shaft element between nodes to achieve
higher flexibility and accuracy in how certain parts of a rotor are modelled.
The basic shaft elements are modelled as cylindrical shaped elements.
Rectangular cross areas and other shapes are non-axisymmetric elements and
are dealt with in section 2.5.

2.2 The Derivation of the FE Matrices

2.2.1 The derivation in stationary co-ordinates

The following paragraph summarises the derivation of the finite element
matrices for the mass, stiffness, and gyroscopic matrices of a rotating shaft,
modelled as a Rayleigh beam.

The Derivation of the FE Matrices

6

X

q3

q1

q6

Z

Y

q5

q7
q8

q2

q4

Figure 2.1 Finite Element with selection of co-ordinates

Only a brief run through the derivation of the final matrices of the rotor
elements will be given here showing the choice of co-ordinates and shape
functions used. The full details are given in Appendix A, where the
derivation is carried out for the general case of non-axisymmetric elements,
also showing intermediate results for symmetric elements.

The deflections in the Y and Z directions are functions of the same
interpolation functions:

Y direction: v q ti i
i

=
=
∑ Ψ () ()ξ

1

4

(2.1)

Z direction: w q ti i
i

= +
=
∑ Ψ () ()ξ 4

1

4

(2.2)

The shape functions [3, 4] are (using the non-dimensional parameter ξ = x

L
):

Ψ1
2 31 3 2()ξ ξ ξ= − +

Ψ2
2 32() ()ξ ξ ξ ξ= − +L

Ψ3
2 33 2()ξ ξ ξ= −

Ψ4
2 3() ()ξ ξ ξ= − +L (2.3)

The Derivation of the FE Matrices

7

Using a Raleigh beam model, the angular deflection is related to the linear
deflection by:

α ∂
∂

β ∂
∂

= = −v

x

w

x
, (2.4)

This leads to the formulation of the kinetic energy of one element [3]:

T
L

A
v

t

w

t
I

t t
I

t t
=







 +







 +







 +



















 + −



















∫2

2 2 2 2

0

1

ρ ∂
∂

∂
∂

∂α
∂

∂β
∂

β ∂α
∂

α ∂β
∂

ξd p dΩ (2.5)

with Id and Ip being the diametrical and polar
area moments of inertia, respectively.

The potential energy for a shaft element is:

V
L

EI
L

v

L

w
d= ⋅









 + ⋅





















∫2

1 1
2

2

2

2

2

2

2

2

0

1 ∂
∂ξ

∂
∂ξ

ξ (2.6)

In case there is a constant axial force F acting on the shaft, the following term
is to be added to the potential energy:

V
L

F
L

v

L

w
F = ⋅







 + ⋅



















∫2

1 1
2 2

0

1 ∂
∂ξ

∂
∂ξ

ξd (2.7)

Extracting the elements of the mass, stiffness and gyroscopic terms for an
axisymmetric shaft element [5]:

The mass matrix is computed by: M
T

q
t

q

t

ij
i j

=
















∂

∂ ∂
∂

∂
∂
∂

2

(2.8)

The gyroscopic matrix is computed by: G
T

q
t

q
ij

i
j

= −








2
2∂

∂ ∂
∂

∂
(2.9)

The stiffness matrix is computed by: K
V

q qij
i j

= ∂
∂ ∂

2

(2.10)

The Derivation of the FE Matrices

8

Assembling these matrices, the following finite element equation of motion
can be derived:

M

M

y

z

D C G

G D C

y

z

K D

D K

y

z

f

f
e
s

e
s

s

s
e
s

e
s

e
s

e
s

e
s

e
s

s

s
e
s

e
s

e
s

e
s

d

d
y
s

z
s

&&

&&

&

&

0

0


















+ +
− +


















+
−


















=











Ω

Ω
Ω

Ω

Equation (2.11)

where {ysT zsT} = q = { q1 q2 q3 q4 q5 q6 q7 q8} , D
s = ηKs represents the

internal hysteretic damping with the shaft and Cs is proportional
viscous damping.

The matrices for one particular element (per direction in either Y or Z, d is
the diameter of the element) are [3]:

M
A

L

L d

L L d L L d

L d L L d L d

L L d L L d L L d L L d

e
s () ()

()

() () () ()

=

+
+ +

− − +
− − − + − + +





















ρ
3360

1248 252

176 21 4 8 7

432 252 104 21 1248 252

104 21 24 7 176 21 4 8 7

2 2

2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

symmetric

G
Ad

L

L L

L

L L L L

e
s =

− −
− −



















ρ 2 2

2 2
240

36

3 4

36 3 36

3 3 4

sym

 K
EI

L

L L

L

L L L L

e
s =

− −
−



















3

2

2 2

6

3 2

6 3 6

3 3 2

sym

Equations (2.12)

A rigid disc added to a particular node has the following equation of motion:

M

M

y

z

G

G

y

z

f

f
e
d

e
d

d

d
e
d

e
d

d

d
y
d

z
d

&&

&&

&

&

0

0

0

0


















+
−


















=











 , (2.13)

where M
m

J
G

Je
d

e
d

p
,=









 =

−










0

0

0 0

0d
 ,

 and the diametrical and polar mass moments of inertia are

J
m d h

d = +










4 4 3

2 2

 and J
m d

p = ⋅ 2

8
 , respectively.

h is the disc thickness, and m is the disc mass.

Adding linear bearings or dampers which include stiffness and damping
terms involves adding the following equation:

c c

c c
y

z

k k

k k
y

z

f

f

d

d
yy yz

zy zz

d

d
yy yz

zy zz

y
b

z
b

&

&


















+

















=











(2.14)

The Derivation of the FE Matrices

9

2.2.2 Transformation of Matrices between rotating and stationary frame of

reference

To express the element or global M, K, G matrices in a rotating (instead of a
stationary) frame of reference, it is not necessary to reformulate the energy
expressions and go through the whole derivation again. Once the M, K, G

matrices have been derived in the stationary frame of reference, the
transformation of the matrices is a convenient way of expressing the
equation of motion in rotating co-ordinates. Let r be the vector of
displacement whose co-ordinates are in a rotating frame of reference. The
differentiation of r with respect to time as observed in the stationary frame is
thus:

&
d

d

d

dXYZ X’Y’Z’
r

r

t

r

t
u r= = + × (2.15)

with XYZ denoting the stationary and X’Y’Z’ the rotating frame of reference
where X and X’ coincide. u is the vector specifying the speed of rotation of
X’Y’Z’ with respect to XYZ, hence

u

u

u

u

=











=













X

Y

Z

Ω
0

0

(2.16)

The second derivative of r is

&&
d

d

d

d

d

d
XYZ X’Y’Z’ X’Y’Z’

r
r

t

r

t
u

r

t
u u r= = + × + × ×

2

2

2

2
2 (2.17)

To keep the following matrices small, they are only shown in an illustrative
manner for the four co-ordinates at one node. Thus the vector q used here
contains the following co-ordinates (see Figure 2.1):

q

q

q

q

q

=



















1

6

5

2

(2.18)

The Derivation of the FE Matrices

10

In this case the vector r now consists of generalised co-ordinates, very similar
to vector q described above but with the only difference that these co-
ordinates are now co-rotating with the shaft.

q R r= . (2.19)

where R is the matrix of rotation

R

t t

t t

t t

t t

=

−
−



















cos() sin()

cos() sin()

sin() cos()

sin() cos()

Ω Ω
Ω Ω

Ω Ω
Ω Ω

0 0

0 0

0 0

0 0

. (2.20)

The equation of motion in stationary co-ordinates is:

M q G q K q&& &+ + = 0 (2.21)

To convert the equation of motion into rotating co-ordinates, q , &q , and &&q
have to be substituted with the expressions r , &r , and &&r shown above.
Furthermore, the M, K, and G matrices have to be transformed to rotating co-
ordinates:

M R M Rr = −1 (2.22)

The cross-product appearing in the expressions for &r and &&r (Equations (2.15)
and (2.17)) can be written in matrix notation [6]:

u A U A× = ⋅ , with U =

−
−



















0 0 0

0 0 0

0 0 0

0 0 0

Ω
Ω

Ω
Ω

(2.23)

The equation of motion in rotating co-ordinates can then be written as:

() ()()M r G M U r G M U U K rr r r r r r&& &+ + + + + =2 0 (2.24)

and rewritten

M r G r K rr rot rot&& &+ + = 0 . (2.25)

11

2.3 Test of the Program Code

2.3.1 Comparison between the analytical solution for a rotating shaft and

the FE results

The comparison was carried out for a simple rotating shaft primarily to test
the gyroscopic terms in the program. For a rotational speed of Ω = 0 , the
results should be exactly those of an Euler Bernoulli beam, and then slightly
diverging as speed of rotation increases. The range of speed chosen was
from 0 to 60 000 rpm, the shaft being simply supported at both ends, has a
length of 1 m, a diameter of 0.10 m, Young's modulus of 2·1011 GPa and a
density of 8000 kg/m3 . By defining a thick shaft, the gyroscopic effects are
expected to be more pronounced, therefore emphasising any possible
mistakes in the code.

The governing equation of free motion for a Rayleigh beam model is [7]:

EI
u

z
A

u

t
I

u

z t

u

z t

∂
∂

ρ ∂
∂

ρ ∂
∂ ∂

∂
∂ ∂

4

4

4

2

4

2 2

3

2
2 0+ − −









 =Ω (2.26)

with u being the complex displacement u = v + i · w.

Assuming the solution form:

u x t x en
t

n

n(,) () i= ⋅
=

∞

∑ψ ω

1

 (2.27)

substituting equation (2.27) into (2.26) gives

EI Ad A dn n n n nψ ρ ψ ρ ω ψ ψ’’’’ − ″ + − + ″ =2 00
2

0
2Ωω () (2.28)

with d0 being the diameter of gyration, d
I

A0 = .

For a simply-supported shaft, one finds:

ψn (x) = sin (nπx/l). (2.29)

Substituting equation (2.29) into (2.28) :

()1 2 02 2 2 2+ − − =d dn n n n nEBω ω ωΩ (2.30)

where d n d ln
2

0
2= (/)π and ω π ρnEB n l EI A2 4= (/) (/) ,

Test of the Program Code

12

so that solving (2.30) determines the natural frequencies:

ω
ω

n
n n n nEB

n

d d d

d1 2

2 2 4 2 2

2

1

1,

()
=

± + +
+

Ω Ω
(2.31)

Three models for the finite element calculations are used, their only
difference being the number of elements they consist of, namely 10, 12, and
20. The comparison is done for the first 10 natural frequencies. The model
with 10 finite elements had an error over the whole speed range of below 1%
for the first six frequencies, the maximum errors for the seventh to tenth
were 1.4%, 2.2%, 3.2%, and 11% respectively. For a shaft model with only 10
elements, the 10th natural frequency is the very limit of the model, and one
would therefore expect quite some error in the higher frequencies. When
using two elements more, i.e. a 12 element shaft model, the maximum errors
are considerably lower: For the first seven frequencies they are below 0.7%,
and the eighth to tenth were 1.2%, 1.8% and 2.5%. For a model with 20 shaft
elements, all ten frequencies have a maximum error of below 0.4%. The
errors here also reflect the known effect that the finite element model is
always stiffer than the analytical one, all natural frequencies calculated with
finite elements were higher than the analytical results. For the modeshapes
and natural frequencies of interest one can conclude that the program code
supplies very accurate results when a sufficient number of elements are
chosen.

2.3.2 Comparison with other FE results using more complex structures

A very first step to verify the model is to compare it with results from other
FE programs. In this case the simple models described in [8, chapter 3] and
[9, chapter 4] were used and the results given there compared with this FE
program. Relative error was less than 1% for the first ten natural
frequencies.

In addition to this, there has been the possibility of testing the FE program
with results from the state-of-the-art FE program called LISA (Large
Interactive Structures Analysis), written by Andreas Reister at the University
of Kaiserslautern as part of the MARS project [1].

Since LISA models the shaft as Timoshenko beam elements and this program
models it as a Rayleigh beam, the natural frequencies given by LISA can be
expected to be slightly lower because of the lower stiffness the modelling as
Timoshenko beam invokes. However, with a relatively simple and slender

Test of the Program Code

13

shaft as used in this example, the effect should not be very strong. As can be
seen in the comparison of the results listed in Appendix B, this expectation is
nicely met. For the first ten modeshapes, the deviations of the calculated
results of the two programs is less than 1.3%.

The corresponding matrices in LISA format and the necessary routines to
convert the format for the elements used by LISA into the format used by
this FE program are included in Appendix B.

Furthermore, measurements were taken from a rig that is used for the
ROSTADYN project [2]. The first two bending modes of the rotor were
measured at speeds of rotation from 0 to 2100 rpm in steps of 300 rpm and at
3000 and 3600 rpm. There is a good level of agreement between the
measured data and the computed results (figures are included in Appendix
B), the maximum deviation for the first mode is less than 1.25%, and for the
second mode less than 1.6%.

2.4 Implementation of unbalance in the model

To allow for modelling a continuous unbalance distribution in the rotor, the
approach taken here is to express unbalance in terms of eccentricity which
changes linearly over the length of the elements. Unbalance in a shaft
element in the model will thus be determined by the amount of eccentricity
in the y- and z-directions at the left and right nodes of the element,
represented here by yl , yr , zl , and zr respectively.

A linearly changing eccentricity in y- and z-directions can be expressed as

e y yy () ()l rξ ξ ξ= − +1 and e z zz () ()l rξ ξ ξ= − −1 (2.32)

which results in a force distribution of

f x e
x

L
Ay y() ()= ⋅ ρ Ω 2 and f x e

x

L
Az z() ()= ⋅ ρ Ω 2 (2.33)

with A as constant cross section area, ρ as density, and Ω as speed of rotation.

The expressions for the forces in the z-direction are analogous to the ones in
the y-direction, and yl and yr merely have to be replaced with zl and zr ,
respectively. To avoid repeating the same expressions twice the next steps
are carried out in exemplary manner for the y-direction only.

Implementation of unbalance in the model

14

With F f x xy y= () d , the work done by Fy over a virtual displacement δy is

equated to the virtual work done by the generalised forces Qyi
 over the

virtual displacement of the generalised co-ordinates qi :

F y Q qy yi i
i

δ δ=
=
∑

1

4

(2.34)

Using the same shape functions Ψi as in chapter 2.2, equations (2.3), the
virtual displacement δy is

δ δy
x

L
qi i

i

=
=
∑Ψ ()

1

4

. (2.35)

Substituting (2.35) in (2.34) and integrating over x yields

Ψi
i

L

y i yi
i

i
x

L
f x x q Q q

= =
∑∫ ∑









 =

1

4

0 1

4

() () d δ δ (2.36)

and re-writing the equation above

Ψi y yi

L

i
i

x

L
f x x Q q() () d⋅ −









 =∫∑

= 01

4

0δ . (2.37)

Since δqi is arbitrary it follows that

Q
x

L
f x xyi i

L

y= ⋅∫ Ψ () () d
0

. (2.38)

Solving the integrals above gives the following expressions for Qyi
 :

Q
L

y yy1 20
7 3= +()l r , Q

L
y yy2

2

60
3 2= +()l r

Q
L

y yy3 20
3 7= +()l r and Q

L
y yy4

2

60
2 3= − +()l r (2.39)

The equation of motion for unbalance is thus:

M q G q K q Q e t&& & i+ + = ⋅ Ω (2.40)

Implementation of unbalance in the model

15

Often the unbalance is not given as a linear distribution but in a discrete form
as an unbalance mass m nu with a certain eccentricity en located at one
particular node n. The force vector for this sort of unbalance model is
assembled in the following manner:

Q e mn n n= ⋅ ⋅u Ω2 (2.41)

2.5 Implementation of non-axisymmetric elements

The presence of non-axisymmetric parts in the rotor produces equations of
motion with harmonic coefficients when these equations are expressed in
stationary co-ordinates and equations with constant coefficients when
expressed in rotating co-ordinates. However, when the stator is not isotropic
in addition to the presence of non-axisymmetric rotor elements, the
equations of motion have harmonic coefficients in either frame of reference.
For this general case the equations of motion are derived here in stationary
co-ordinates, the same used in chapter 2.1.

As mentioned before, in case of an isotropic stator the equations of motion in
a rotating frame will have constant coefficients. For this special case the
transformation from the equations of motion in stationary to ones in rotating
co-ordinates is shown in the second part of section 2.5.2, where the new
matrices are derived by means of transformation, without having to rewrite
the kinetic and potential energies again.

Outlined here is the derivation of the equation of motion for a non-
axisymmetric part attached to a certain node. The derivation for non-
axisymmetric shaft elements follows the same procedure, the results are just
a bit longer and are therefore not included here. The expression "non-
axisymmetric part" is used here for "disc" like components, which are treated
as rigid and are attached to one node, therefore contributing to the equation
matrices at the four co-ordinates of this node only (2 translatory, 2 angular
degrees of freedom). The expression "non-axisymmetric (shaft) element" is
used here for elements of the rotor shaft, which are treated as flexible and
therefore contribute to the equation matrices at eight co-ordinates (i.e. left
and right nodes). The derivation of element matrices also involves
integrating the shape functions over the length of the element, and the

Implementation of non-axisymmetric elements

16

results are therefore one step further away from immediate physical
interpretation as compared with the results for "non-axisymmetric parts".

2.5.1 The co-ordinate transformation

XYZ is the fixed frame of reference and ξηζ the rotating body-fixed co-
ordinates of the deflected, rotating shaft. The basic transformation matrices
used are:

R Xα α α
α α

, cos sin

sin cos

= −
















1 0 0

0

0

 rotating a vector around the X-axis

with α = Ωt ,

R Yβ

β β

β β
,

cos sin

sin cos

=
−

















0

0 1 0

0

 rotating a vector around the Y-axis

with β ∂
∂

= Z

X
 ,

R Zγ

γ γ
γ γ,

cos sin

sin cos=
−















0

0

0 0 1

 rotating a vector around the Z-axis

with γ ∂
∂

= − Y

X
 , (2.42)

The rotation matrices are orthogonal, i.e. RT = R-1 .

To express the rotation of the shaft in the body-fixed co-ordinates, the
rotations of the frame of reference around three angles are necessary: The
body co-ordinates ξηζ coincide with the fixed XYZ frame in the non-
deflected position of the shaft for t = 0. The first rotation of the co-ordinate
system around the X-axis with α = Ωt creates the rotating frame of reference
X’Y’Z’ with X’ = X. The second rotation around the Y’-axis by β moves the X’-
axis to X’’ and Z’ to Z’’, creating X’’Y’’Z’’ with Y’’ = Y’. To move the body co-
ordinates from X’’Y’’Z’’ into their final position, the third rotation takes place
around the Z’’ axis by the angle γ2. When doing this transformation
rigorously, the projection of angle γ2 into the X-Y plane is the angle γ, which
is the generalised co-ordinate . It can be seen from elementary geometry that
tan(γ2) = tan(γ)·cos(β) with γ being the resulting angle in the X-Y plane. Since
a co-ordinate transformation matrix is the inverse of its rotation matrix, the

Implementation of non-axisymmetric elements

17

overall transformation matrix T, transforming from the fixed to the body
frame, can now be defined:

T R R R= α β γ,X ,Y ,Z’’2
(2.43)

The rotation vector ω, which describes the speed of rotation of the deflected
shaft in body co-ordinates, is thus:

ω
ω
ω
ω

ω
ξ

η

ς

=
















= ⋅T XYZ , with ω
ω
ω
ω

β
γ

XYX
&

&

=














=














X

Y

Z

Ω
 , (2.44)

Ω being the rotational speed of the motor along the X-axis, &β β= d

dt

(along the Y-axis) and &γ γ= d

dt
 (along the Z-axis).

N.B. The formulation of the deflection angles of the shaft shown above is
rigorous and thus yields a symmetric expression for the kinetic energy (see
following section) with respect to the terms of the polar moment of inertia.
There are examples in literature where the symmetric property of the kinetic
energy was lost due to incomplete transformation, cf. [9].

2.5.2 Derivation of the element matrices

Stationary frame of reference:

The kinetic energy of an unsymmetric element, where the rotational part of
the kinetic energy is expressed in rotating body co-ordinates, is:

()T m v w J J J= + + + +1

2
2 2 2 2 2(& &) ξ ξ η η ς ςω ω ω . (2.45)

Since the translational kinetic energy is not coupled with the rotational
kinetic energy, the equations of motion can be derived separately for
translational and rotational motion. Substituting into T the expressions for
ωξ , ωα , and ωζ derived above, approximating the expression for the kinetic
energy with its second-order Taylor series and introducing:

J
J J

m =
+η ς

2
, J

J J
d =

−η ς

2
, and J Jp = ξ , (2.46)

Implementation of non-axisymmetric elements

18

the expression for the rotational part of the kinetic energy is:

T J J J

J t J t

angular m p p

d d

(& &) (& &)

(& &) cos() & & sin()

= + + − +

+ − + ⋅ ⋅

1

2

1

2

1

2
1

2
2

1

2
2

2 2 2

2 2

β γ βγ γβ

β γ β γ

Ω Ω

Ω Ω
(2.47)

The linearised equation of motion for the angular co-ordinates can then be
written as:

J J t J t

J t J J t

J t J J t

J J t J t

m d d

d m d

d p d

p d d

cos() sin()

sin() cos()

&&

&&

sin() cos()

cos() sin()

&

&

+
−


















+

− +
− +


















=

2 2

2 2

2 2 2 2

2 2 2 2
0

Ω Ω
Ω Ω

Ω
Ω Ω

Ω Ω

β
γ

β
γ

(2.48)

The mass, stiffness, and gyroscopic matrices, appearing in an equation of

motion of a rotor with non-axisymmetric elements, can be separated into

matrices with constant parts (M0 , G0 , and K0), matrices with the factor

sin(2Ωt) (M2s
, G2s

, and K2s
), and matrices with the factor cos(2Ωt) (M2c

,

G2c
, and K2c

).

The (real) sin- and cos- dependent matrices can be written in complex
notation with matrices having e ti 2Ω and e t− i 2Ω as factors, e.g.

M t M t M e M et t
2 2 2

2
2

22 2
c s

cos() sin() i iΩ Ω Ω Ω+ = + −
− (2.49)

with

M
M M

M
M M

c cs s
2

2 2
2

2 2

2 2
=

− ⋅
=

+ ⋅
−

i i
 . (2.50)

So the global matrices can be expressed differently as:

M M e M M e

G G e G G e

K K e K K e

t t

t t

t t

= + +

= + +

= + +

−
−

−
−

−
−

2
2

0 2
2

2
2

0 2
2

2
2

0 2
2

i i

i i

i i

Ω Ω

Ω Ω

Ω Ω

(2.51)

Rotating frame of reference:

As described in section 2.2.2, the equation of motion can be transformed from
the stationary to the rotating frame of reference. The results will be shown
here for the non-axisymmetric part only.

Implementation of non-axisymmetric elements

19

From above, the matrices for stationary co-ordinates are:

M

m

J J t J t

m

J t J J t

m d d

d m d

=
+

−



















0 0 0

0 2 0 2

0 0 0

0 2 0 2

cos() sin()

sin() cos()

Ω Ω

Ω Ω

 , K = 0 , and

G
J t J J t

J J t J t

d p d

p d d

=
− +

− +





















Ω
Ω Ω

Ω Ω

0 0 0 0

0 2 2 0 2 2

0 0 0 0

0 2 2 0 2 2

sin() cos()

cos() sin()

(2.52)

Performing the transformations as described in section 2.2.2, M R M Rr = −1 ,
G R G Rr = −1 , and K R K Rr = −1 , the matrices for rotating co-ordinates are:

M

m

J

m

J

r =





















0 0 0

0 0 0

0 0 0

0 0 0

η

ζ

, Kr = 0, and

G
J J J

J J J

p

p

r =
+ −

− + −





















Ω

0 0 0 0

0 0 0

0 0 0 0

0 0 0

η ζ

η ζ

(2.53)

Repeating Equation (2.24) from section 2.2.2,

() ()()M r G M U r G M U U K rr r r r r r&& &+ + + + + =2 0 (2.24)

the equation of motion expressed in rotating co-ordinates is:

m

J

m

J

r

m

J J J

m

J J J

r

m

J J

m

J J

r

0 0 0

0 0 0

0 0 0

0 0 0

0 0 2 0

0 0 0

2 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

02

η

ζ

η ζ

η ζ

ζ

η





















+

−
− −

− + +





















+

−
−

−
−





















=

&& &
p

p

p

p

Ω

Ω

Equation (2.54)

Implementation of non-axisymmetric elements

20

However, it is not really necessary to actually perform the co-ordinate
transformation of the matrices via the rotation matrix R(t). Using the mass
matrices as an example, it is shown how the transformed matrix can be
assembled directly from the matrices in stationary co-ordinates:

M R t M t R t

R t M e M M e R tt t

r

i i

() () ()

() () ()

=

= + +

−

−
−

−

1

1
2

2
0 2

2Ω Ω
(2.55)

From the fact that Mr is constant and that the equation above is true for all
times, e.g. t = 0 ()R() I0 = , Mr can be calculated by

M M M Mr = + +−2 0 2 . (2.56)

The calculations were carried out using MAPLE’s symbolic math capabilities.
A transcript of the MAPLE file with all intermediate results of the
calculations is given in Appendix A.

2.5.3 Solving equations of motion with periodic coefficients

Formulation of the Problem:

The equation of motion of discretised systems like FE models can be written
in matrix form [10]:

() () () ()M u u K ut t t t&& & F+ + =G (2.57)

where M(t), G(t), K(t) are periodic with period T , i.e.:

() ()M Mt t T= + , () ()G Gt t T= + , () ()K Kt t T= + (2.58)

Equation (2.57) can be transformed into a set of first-order differential
equations

() () () ()&x A x gt t t t− = (2.59)

According to Floquet’s theory for linear differential equations with periodic
coefficients [11], a solution of the following form can be found:

() ()xk
t

kt e tk= λ ψ (2.60)

where ψ k (t) is the eigenvector associated with the complex eigenvalue:

λ α ωk k k= + i (2.61)

Implementation of non-axisymmetric elements

21

ψ k is also periodic in T. The period T is related to the speed of rotation in
rotating machinery by:

Ω = 2π
T

(2.62)

A Fourier decomposition of ψk(t) and A(t) yields:

()ψ ψk k j
j t

j

t e=
=−∞

∞

∑ ,
i Ω and ()A At ej

a t

a

=
=−∞

∞

∑ i Ω (2.63)

The Eigenvalue Problem:

Substituting equation (2.63) into the homogeneous part of equation (2.59):

λ ψ ψk k j
j t

j
k j

j t

j
a

a t

a
k j

j t

j

e j e e e, , ,ii i i iΩ Ω Ω ΩΩψ
=−∞

∞

=−∞

∞

=−∞

∞

=−∞

∞

∑ ∑ ∑ ∑+ − =A 0 (2.64)

The equation above must be satisfied for all frequencies independently, thus
all terms of equal frequency have to balanced. This can be written as an
infinite hyper-eigenvalue problem

($

i

i

i

i

) $λ

ψ
ψ
ψ
ψ
ψ

k

k, 2

k, 1

k,0

k, 1

k, 2

I

A I A A

A A I A A

A A A A A

A A A I A

A A A

0−

−
−

+
+

























































=

− −

+ − −

+ + − −

+ + −

+ +

−

−

+

+

O L

L L

L L

L L

L L

L L

L O

M

M

0 1 2

1 0 1 2

2 1 0 1 2

2 1 0 1

2 1 0

2

2

Ω
Ω

Ω
ΩI

($ $) $ $λ ψk kI A 0− ⋅ = (2.65)

Now, since the matrices M, G, and K are real, the components of the hyper
matrix are related to each other by

A− +=n nA* (2.66)

where the * denotes the complex conjugate from which also follows that the
fundamental component A0 is real and symmetric. This makes the whole
matrix Hermitian.

The stability criterion for this problem is the same as for the standard
problem, i.e. the real parts of the eigenvalues must be negative.

Implementation of non-axisymmetric elements

22

The system is time-invariant and consists of an infinite number of
eigenvalues and eigenvectors, which are, however, not all linearly
independent. Only 2N eigenvalues and vectors are necessary to describe the
homogeneous solution fully, N being the dimension of the original system.
The other eigenvalues and vectors do not hold any additional physical
information. This redundancy can be shown as follows: let λk be an
eigenvalue of $A and ψ k t() the corresponding eigenvector and then the
following equation holds:

()u i
k

t
k j

j t

j

n t
k j

j n t

j

t e e e ek k= ⋅ = ⋅
=−∞

∞
+ −

=−∞

∞

∑ ∑λ λψ ψ,
()

,
)i i(Ω Ω Ω (2.67)

It follows that

λ λn k n= + i Ω (2.68)

is also an eigenvalue of $A and the corresponding eigenvector is

ψ ψn k
ne= − i Ω . (2.69)

For clarification the dimensions of ψ ψn k, and ψ k j, are pointed out again:

ψ ψn k, ∈ ∞×C 1 , and ψ k j
N

, ∈ ×C 1 (2.70)

For practical computation it is necessary to truncate this infinite series after
including a certain number of terms. The number of terms included for a
wanted accuracy has to be weighed against a marked increase in problem
and computation size. Truncation after h harmonics leads to the finite
eigenvalue problem

($ $) $ $λ ψk kI A 0− ⋅ = (2.71)

where the circumflex denotes hyper-quantities of size 2N(2h+1). According
to Equation (2.67) there are only 2N linearly independent eigenvectors and
eigenvalues. In [10] the authors assume that it is possible to reduce the
problem size to 2N to begin with, and in doing so would result in an iterative
procedure.

2.5.4 The formulation for systems with harmonic coefficients

In the case of a non-axisymmetric rotor, the mass, stiffness, and gyroscopic
matrices have both constant parts and parts with second-order harmonic
coefficients, i.e. ()M M M Mt e ei t i t= + +−

−
2

2
0 2

2Ω Ω , and in an analogous

Implementation of non-axisymmetric elements

23

manner, so do K and G. As shown in section 2.5.2, M-2 is the complex
conjugate of M2 , and the same holds for K2 and G2 . The Fourier
decomposition of a time varying matrix into a constant matrix and two
matrices with the two harmonic coefficients is exact for any non-
axisymmetric rotor. By inverting the mass or stiffness matrix with two
harmonic components to obtain the state-space formulation, as described in
Equations (2.57) to (2.59), it is clear that from a practical point of view the
resulting infinite series of such an inversion has to be truncated somewhere.
For some systems with very small asymmetry a low-order approximation
might be sufficient. This depends on the response amplification for higher
harmonics, but for systems with larger asymmetry, e.g. a two-bladed
propeller mounted onto the rotor, it might be necessary to carry out the
calculations with quite a few terms to keep the truncation error within the
desired accuracy. ()M t −1 can be developed as power series:

()M M M M M Mt e e e et t t t−
−

−
−

− −= − + + + − +1
2

2
2

2
2

2
2

2 2 3
0

1((
~ ~

) (
~ ~

) (...) ...)i i iI i Ω Ω Ω Ω (2.72)

or, rewritten in a different notation:

()M t e e et t t−
−= + + + +1

2 0 2 4... ...
((((
M + M M M-i2 i2 i4Ω Ω Ω . (2.73)

The development for the matrix with constant coefficients,
(
M0 is given

below just to show how the truncation error affects the accuracy of all
matrices, not just the ones with higher-order coefficients:

(
M I + 2 M + 6 M hot) M2

2
2

4 -1
0

-1
0 = +(

~ ~ (2.74)

Thus, the accuracy of this inversion depends strongly on the number of
higher-order terms included. The convergence is better the smaller the
asymmetry effect is, namely the infinity-norm or 1-norm of the matrix M2 .

However, in this case of mass, stiffness, and gyroscopic matrices consisting of
only three harmonic components, the problem can be transformed into the
inversion of a matrix with constant coefficients, which is exact. The inversion
of a matrix with harmonic coefficients can be avoided by substituting an
assumed solution

() ()uk
t

kt e tk= λ ψ and ()ψ ψk k j
j t

j

t e=
=−∞

∞

∑ ,
i Ω (2.75)

directly into Equation (2.57), where the series for M(t), K(t), and G(t) are not
infinite but carry only the -2, 0, and 2 components. Sorting the resulting

Implementation of non-axisymmetric elements

24

equation with respect to the sought eigenvalues λk , the following matrices
due to inertia, gyroscopic and stiffness effects are obtained:

(M + G + K)′ ′ ′ =
=−∞

∞

∑ψ k j
j

, 0 , with (2.76)

′ = + +−
−

=−∞

∞

∑M 2 iλk
t t j t

j

e e e()iM M M2
2

0 2
2Ω Ω Ωi (2.77)

′ =
+ +

+ + +











−
−

−
−

=−∞

∞

∑G
G G Gi i

i i
λk

t t

t t
j t

j

e e

j e e
e2

2
0 2

2

2
2

0 2
22

Ω Ω

Ω Ω
Ω

Ωi ()M M M

i (2.78)

′ =

+ +

+ +

+ + +



















−
−

−
−

−
−=−∞

∞

∑K

K K K

+i (G G G

i i

i i

i i

2
2

0 2
2

2
2

0 2
2

2 2 2
2

2
0 2

2

e e

j e e

j e e

e

t t

t t

t t

j t

j

Ω Ω

Ω Ω

Ω Ω

ΩΩ

Ω

)

i ()M M M

i (2.79)

Equation (2.76) can only be fulfilled if all submatrices with the same
harmonics (nΩt) are in balance. Thus, equating terms with the same
harmonic coefficients to zero yields bloc tridiagonal hyper-M, -K, and -G
matrices, which have constant coefficients.

$

...

...

M =

... ...

... M 0 M

... 0 M 0 M

M 0 M M

M 0 M ...

M 0 M ...

... ...

0 2

0 2

-2 0 2

-2 0

-2 0

0

0





























, ψ

ψ
ψ
ψ
ψ
ψ

k

k

k

k

k

k

=





























−

−

...

...

,

,

,

,

,

2

1

0

1

2

$

...

...

G =

... ...

... G + i4 M 0 G

... 0 G + i2 M 0 G - i2 M

G + i4 M 0 G G - i4 M

G + i2 M 0 G - i2 M ...

G 0 G - i4 M ...

... ...

0 0 2

0 0 2 2

-2 -2 0 2 2

-2 -2 0 0

-2 0 0

Ω
Ω Ω

Ω Ω
Ω Ω

Ω

0

0





























Implementation of non-axisymmetric elements

25

$

...

...

K =

... ...

... K + i2 G - 4 M K K

... K K + i G - M K K - i G + M

K + i2 G - 4 M K K K K - i2 G + 4 M

K + i G - M K K - i G + M K ...

K K K - i2 G + 4 M ...

... ...

0 0 0 1 2

-1 0 0 0 1 2 2 2

-2 -2 -2 -1 0 1 2 2 2

-2 -2 -2 -1 0 0 0

-2 -1 0 0 0

Ω Ω
Ω Ω Ω Ω

Ω Ω Ω Ω
Ω Ω Ω Ω

Ω Ω
1





























Equations (2.80)

The term K1 is included in $K for generality to allow for the bearing
properties of the stator being developed in a power series; $K then no longer
has a tridiagonal shape but a bandwidth of 5N or higher.

After deciding of how many harmonics are to be included in the solution, the
formulation of the eigensystem is straightforward. Since $M and $K have
constant coefficients and can be inverted directly, the formulation in state-
space does not involve the development of any power series for a matrix.
This might prove to be a significant advantage if the amount of asymmetry is
not marginal and the calculations can be executed by taking significantly
fewer higher harmonic terms into consideration.

2.5.5 Test Case

An illustrative analysis with a simple structure is presented here to show
how the numerical results reflect the expected behaviour described in the
sections above.

0 0.1 0.2 0.3 0.4

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

X

Y

1 2 3

Figure 2.2 rotor with disc and bearings

The model is not axisymmetric but appears to be so in the Figure above
because it is shown in the X-Y plane only. The finite element model consists
of 2 shaft elements and a non-axisymmetric disc whose two diametrical
moments of inertia differ by 20%, and the rotor speed was set to 12000 rpm

Implementation of non-axisymmetric elements

26

(200 Hz). The model has three nodes and therefore 12 degrees of freedom.
Since the rotor is simply-supported at both ends, the 12 degrees of freedom
are reduced to eight, N=8.

The harmonics -2, -1, 0, 1, 2 are included in the calculations. As described in
section 2.5.3, the hyper-eigensystem in state-space formulation has the size of
80 × 80 (2N · 5) containing 16 (2N) linearily independent eigenvalues and
eigenvectors while all the others are redundant.

Analysing the numerical results:

Due to the formulation of the eigensystem in state-space, half of the 2N

eigenvalues and eigenvectors are complex conjugates of the other half, so all
further analysis is carried out with only half that number of eigenvalues and
-vectors except in the following two Figures:

0 10 20 30 40 50 60 70 80
-3000

-2000

-1000

0

1000

2000

3000
eigenvalues, imaginary part

fre
qu

en
cy

 [
H

z]

65 70 75 80

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600
fre

qu
en

cy
 in

 H
z

last 20 eigenvalues, imaginary parts

Figure 2.3 imaginary parts of eigenvalues Figure 2.4 last 20 eigenvalues

These Figures show that the eigenvalues are grouped together on certain
"plateaus", each consisting of four (or two, Figure 2.3) eigenvalues. In Figure
2.4 the last 20 eigenvalues are plotted. For every eigenvalue there are four
others differing in magnitude by multiples of 200 Hz; they make up a family
of five corresponding eigenvalues. This behaviour is explained by Equations
(2.67) and (2.69) showing the redundancy of eigenvalues and eigenvectors.
Consistent with equation (2.67), the last 20 eigenvalues contain four families,
each containing five eigenvalues with five corresponding linearly-dependent
eigenvectors, e.g. 61, 65, 69, 73, 77 are one such family shown in Figure 2.4.
With a speed of rotation of Ω = 200 Hz, the gaps between these eigenvalues
are k200 Hz, with k =0, 1, 2, However, the modeshapes belonging to the
two or four frequencies lying close together on any "plateau" are completely
independent.

Implementation of non-axisymmetric elements

27

The discussion above of the last 20 eigenvalues and vectors can be expanded
over the whole range. Using the modal assurance criterion (MAC) [12] to
find subvectors which are highly correlated with each other, one obtains the
result shown in Figures 2.5 and 2.6. In these two Figures below the
eigenvectors are placed in ascending order of their corresponding
eigenvalues, i.e. eigenvectors with higher index numbers are modeshapes
occurring at higher natural frequencies.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
correlation of subvectors

10 20 30 40

5

10

15

20

25

30

35

40

distribution of indices for families

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Figure 2.5 correlation of subvectors Figure 2.6 indices of families

Figure 2.5 was built by looking for the subvector with the highest norm in
each eigenvector and normalising the subvector to unity. All dominant
subvectors found this way were correlated with each other, and thus renders
the correlation matrix with entries between zero and one. Having built the
eigensystem including the harmonics -2, -1, 0, +1, +2, every family must
consist of five linearly dependent eigenvectors (Equation (2.67)). For each
eigenvector the highest five correlation coefficients are sought from the
correlation matrix, and the result is shown in Figure 2.6. Every row (or
column) contains a black spot for the index of the eigenvector itself and for
each eigenvector in the family.

The Figures below shows an example of a whole eigenvector family with
eigenvectors 21, 25, 29, 33, and 37. It can be seen that all five eigenvectors of
the family have the same shape.

-0.6 -0.4 -0.2 0 0.2 0.4
-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05
member 1

real

im
ag

in
a

ry

 -0.6 -0.4 -0.2 0 0.2 0.4
-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05
member 2

real

im
ag

in
a

ry

 -0.6 -0.4 -0.2 0 0.2 0.4
-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05
member 3

real

im
ag

in
a

ry

 -0.6 -0.4 -0.2 0 0.2 0.4
-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05
member 4

real

im
ag

in
a

ry

 -0.6 -0.4 -0.2 0 0.2 0.4
-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05
member 5

real

im
ag

in
a

ry

Figures 2.7 Argand plots of eigenvectors

Implementation of non-axisymmetric elements

28

Furthermore, there exists a high correlation in some cases between vectors of
different families as well (with a huge difference in natural frequency, here
around 1700 Hz) as can be seen from the structure of the correlation matrix.
An example is given below:

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Figure 2.8 modes 2 and 29

The dotted curve in the Figure above represents mode 29, the continuous
curve mode 2. In both cases the fundamental harmonic subvector was taken
since it was the dominant one in both modes, i.e. ψ2,0 and ψ29,0. As can be seen
in the correlation matrix, ψ2,0 has a high correlation with ψ29,0. In this
example, the correlation coefficient is not equal to one as it is with modes
within a family, i.e. ψ2,-2 , ψ2,-1 , ψ2,0 , ψ2,1 , ψ2,2 , but 0.95. In this case study the
non-axisymmetric disc is mounted at the middle of the rotor, i.e. there are
symmetric modes where the lack of symmetry becomes irrelevant since the
angular deflection at the midpoint of the rotor is zero; the results in the X-Y
and X-Z planes are identical; in these cases the whirl orbits for each harmonic
are circles. All modes which have high correlation with other non-family
modes are such symmetric modes, i.e. have a wavelength of (2k+1)/2·length
of shaft where k = 0, 1, 2... . The existence of these symmetric modes also
explains that some plateaus consist of four and others of two eigenvalues (or
two and one, respectively, if only one part of the complex conjugate pairs is
investigated) depending on whether Y-Z symmetry is occurring for this
particular eigenfrequency.

29

2.6 The Structure of the Program and its graphical user interface

2.6.1 The Structure of the FE-Program

To make the way the program is organised transparent, the key functions
and their interaction is outlined below. Furthermore, the code of the
functions mentioned here is listed in Appendix D to allow for the possibility
to check how one or the other problem is formulated.

The program consists of three main interfaces which allow the user to easily
enter shaft elements, discs, boundary conditions and bearings. As the data is
entered from these interfaces, the new information is passed on to the
rotdata.m function, which assembles the geometry matrices, such as node
vector, shaft matrix ..., into a format that can be read by the rotalee.m

function. It assembles the global finite element matrices from the mass,
stiffness, and gyroscopic matrices and the unbalance force for each single
element computed in rotmass.m, rotstiff.m, rotgyro.m, and rotunb.m. For
non-axisymmetric elements there are the functions rotasymm.m, rotasymk.m

and rotasymg.m for the element wise calculation of mass, stiffness and
gyroscopic matrices formulated in the stationary frame of reference.

The function rotadd.m adds symmetric elements to the equation of motion
which were specified in a format not accounted for in the usual matrices, e.g.
discs normally are specified via the interfaces with their geometric
dimensions length, outer diameter, ..., but an alternative way is to give the
mass, polar and diametrical moments of inertia.

The functions rotasp.m assembles the global matrices in the case when non-
axisymmetric rotor elements are present and the equation of motion has
periodic coefficients. The output is therefore split into matrices with e k t± i Ω

as coefficients, k positive and negative integers. rothill.m assembles these
matrices into a finite hyper-system with time-constant-coefficients that can
now be solved in an ordinary manner. rotsort.m uses the MAC to group the
resulting eigenvectors and eigenvalues into families, where one eigenvector
is a basis-eigenvector and the rest are redundant, as shown before. For some
test cases and real applications where the stator is modelled as isotropic, the
equation of motion is better expressed in a rotating frame of reference to
avoid periodic coefficients. For this purpose the file rotcoor.m transforms the
matrices build by rotasp.m (M M G0 2 0, , ... in stationary frame of reference)
into matrices for a rotating frame of reference and assembles the equations of
motion in rotating co-ordinates.

The Structure of the Program and its graphical user interface

30

2.6.2 The graphical user interfaces of the FE-program

The general principle is to enter all the dimensions and material properties of
each shaft, disc or bearing element in the corresponding user-interface
controls. When the entries for one element have been completed, the accept
button is pressed and the new data, written as a vector, passed on to the
rotdata function, where this vector is added, possibly after some sorting, e.g.
in case of shaft elements where the nodes vector has to be updated as well, to
the global geometry matrices. Jumping back and forth between the interfaces
can be done by a simple button press, and the information in the geometry
matrices is presented in the corresponding boxes. The simultaneous
updating of the drawing of the model should help to recognise severe errors
in the input, e.g. getting the length of an element wrong by an order of
magnitude. For a more detailed description of how the interface is
operating, see Appendix C. Just to give an impression of how they look like,
the three main interface for entering shaft, disc, and bearing elements are
shown below.

Figure 2.9 Main interface for shaft elements

The Structure of the Program and its graphical user interface

31

Figure 2.10 Interface for disc elements

Figure 2.11 Interface for boundary conditions and bearings

32

3. Visualisation of Dynamic Properties

3.1 Display results of FE calculations

3.1.1 Display of Modeshapes

The solution of the eigenproblem yields modeshapes expressed in the
generalised co-ordinates. These can be transformed into physical
displacements in the Y and Z-directions via the shape functions described in
section 2.2. However, the resulting eigenvectors are normally complex
because of the complex values for the generalised co-ordinates usually
obtained from solving the eigensystem, and hence a conversion into
physically meaningful displacements has to be performed. Whirl orbits are
forward or backward rotating ellipses, with forward whirl being defined as
co-rotating in the same direction as the shaft, and backward whirl as counter-
rotating.

Starting with the more common case of axisymmetric rotors, it is briefly
described in the following paragraph how to extract the sense of the whirl
direction and the modeshapes in general from the eigenvectors given as
output from the FE program.

The deflection of the shaft centre of a rotor spinning at Ω follows an ellipse as
a whirl orbit:

r t Ae Bei t i t() = + −Ω Ω (3.1)

which can be rewritten as

r t A B t A B t() () cos i() sin()= + + −Ω Ω . (3.2)

A+B and A-B are the semi-major and semi-minor axes of the ellipse. The
direction of the elliptical whirl is determined by:

A B> for forward whirl and A B< for backward whirl. (3.3)

The modeshapes given by the FE program for undamped or underdamped
systems are complex conjugate pairs, and the whirl orbit is described by:

y t

z t
e e t tt t()

()
Re() cos() Im() sin()







 = + = −ψ ψ ψ ψλ λ 2 2Ω Ω (3.4)

Display results of FE calculations

33

Introducing the complex displacement u and rewriting (3.4),

u t y t z t C t D t() () i () cos() i sin()= + ⋅ = + ⋅Ω Ω (3.5)

with
C

y z2
= + ⋅Re() i Re()ψ ψ and

D
y z2

= ⋅ −i Im() Im()ψ ψ ,

where ψy and ψz are the y and z components of the modeshape, ψ.

Comparing Equations (3.2) and (3.5) gives the following relationships:

A
C D= +

2
 and B

C D= −
2

 . (3.6)

With Equation (3.3) the direction of the whirl can now be determined.

For systems with non-axisymmetric rotors, the whirl orbits are a
superposition of phasors rotating at the speed of rotation and its higher
harmonics. The results are the well-known Lissajous figures. With a whirl
orbit of the form shown below,

u t A ek
k t

k

() i= ∑ Ω (3.7)

the direction of the orbit is determined by the strongest component of all the
Ak coefficients, where a negative k indicates backward whirl.

3.1.2 Display of the Campbell diagram

The natural frequencies of the system depend to a large extent on the speed
of rotation of the rotor. In order to show this dependency, and as an
important tool in understanding the vibration phenomena of rotating
structures, the Campbell diagram plots the natural frequencies versus the
speed of rotation. The range of rotation speed of interest is discretised with a
specified number of points and the eigensystem solved for each of these
points. This makes the computational effort required for a Campbell
diagram over a high range of speeds and/or with a very high discretisation
quite large when compared with other tasks such as computing the
modeshapes at a particular speed of rotation. One recommendation for
future improvement of this FE code is to introduce a modal or dynamic
reduction technique as described in [13, 14]. In [15] Genta describes an
iterative method based on a modal approach. It efficiently reduces the
computation time, especially in the case where the splitting of damping and
gyroscopic effects into proportional and non-proportional parts produces a
non-proportional part that can be neglected.

Display results of FE calculations

34

A Campbell diagram can generally be plotted in two different ways. The
first and most common is the plot with only positive frequencies and no
distinction is made between forward and backward whirl. The second
option is to analyse the direction of whirl as described in section 3.1.1 and to
plot the frequencies that correspond to backward whirl as negative
frequencies in the fourth quadrant in the Campbell diagram. This may often
be of advantage, since forward or backward whirl have quite a different
meaning for the material in terms of stresses and stress-cycles and,
consequently, fatigue and internal damping, which in turn is an important
instability parameter. There is the possibility, though, that whirl is not
globally forward or backward, but may switch (possibly more than once)
from one form to the other over the length of the rotor. This raises the
question of how these mixed modes should be accounted for in a Campbell
diagram with forward / backward whirl separation. The necessary
calculation and analysis of the modeshapes, which is required for the
separation in whirl direction only, also slows down the computation of the
Campbell diagram. The Campbell diagram in this FE program features both,
the more common type and forward / backward whirl separation. The
algorithm for detecting the direction of the whirl is already incorporated in
the code for calculating the modeshapes: it simply has to be added into the
code for the computation of the natural frequencies for the Campbell
diagram and the sign of the frequencies changed accordingly. Since this
analysis slows down the computation of the Cambpell diagram, a selection
has to be made beforehand whether forward/backward whirl separation is
wanted. As the intersections of the natural frequencies with the first engine
order (resonance due to unbalance), and sometimes the engine orders 0.5, 2,
3, ... (bearing and non-axisymmetric resonances) are of interest, these straight
lines are included in this plot of the Campbell diagram.

3.1.3 Display of Unbalance Response

Unbalance is described in the literature as most common and strongest
source of excitation for many rotating machines. The excitation due to
unbalance is a synchronous force, so that wherever the first engine order line
intersects with a natural frequency of the rotor system, large resonance
amplitudes may be expected. The graph of unbalance response plots the
amplitude of vibration due to unbalance over a specified speed of rotation.
The amplitude of vibration is only the same in the Y and Z directions if both

Display results of FE calculations

35

rotor and stator are axisymmetric. The results shown in this program are
therefore the maximum Y and Z components of the vibration.

3.1.4 Animation of whirl orbits

All different types of whirling can be visualised with the whirl function in the
program. For easier programming, a complex notation for the vector q is
used:

q
y z

=
+ ⋅

−β + ⋅








i

i γ
(3.8)

Furthermore, there is a small advantage in using complex notation instead of
a real co-ordinate approach. When the solution sought for whirling is of the
following type, e.g. for unbalance,

q q e t= ⋅0
i λ (3.9)

the sign of the real part of the whirl frequency λ identifies the direction of the
whirl motion (forward or backward) [16]. This is not the case for real co-
ordinates, where the eigenvectors from the eigenproblem encountered in the
study of free whirling need to be studied as well.

For λ < Ω (rotational speed) the whirling is supercritical, and subcritical for
λ> Ω. The vector q used in this function contains the deflection of the shaft-
centre at a certain node at different times (usually over the period of one full
whirl orbit). The vector q is plotted and the program shows an animation of
the shaft moving along it’s whirl orbit; the upper and lower halves of the
shaft have different colours in order to visualise the rotation of the shaft and
thus the direction of rotation (Figure 3.1).

Different parameters can be passed on to the function to drive the program,
i.e. the number of frames per second in the animation, the total number of
frames to compromise between waiting time and smoothness of the
animation, and the number of cycles the frames are repeated when the “play
again” button is pressed.

If no vector q (as calculated in the subroutines of the finite element program)
is passed on to the function, the program can be used as a demonstration,
which is based on the following case of a non-axisymmetric rotor with a
symmetrical stator. As described in Chapter 2, the differential equation
expressed in a stationary frame of reference has periodic time-varying

Display results of FE calculations

36

coefficients, while expressed in a rotating frame it has constant coefficients,
only the solution needs to be transformed back into the stationary frame of
reference. Referring to Equation (1.24) in section 2.2.2, with the only
difference that the matrices are now assembled in complex notation, the
equation of motion in rotating co-ordinates is of the following type:

M r G r K rr rot rot&& &+ + = 0 (3.10)

The solution for free whirling of the system is:

r r e r et t= ⋅ + ⋅′ − ′
1 2

i iλ λ (3.11)

where r1 , r2 , ′λ and ′λ are
complex conjugate pairs, respectively.

′λ and ′λ are the whirl frequencies in rotating co-ordinates, which can be
transformed into whirl frequencies referring to the stationary frame of
reference:

λ λ λ λ= ′ + = ′ +Ω Ω, (3.12)

Remembering the relationship r q e t= ⋅ iΩ (1.19) and substituting (3.12) into
(3.11), the solution for free whirling expressed in stationary co-ordinates is:

q r e r et t= ⋅ + ⋅ −
1 2

2i i()λ λΩ (3.13)

An example of free whirling with r2 = 0.2 , r1 = 1 and λ / Ω = 0.2 is shown
below:

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

y-axis

z-
ax

is

forward whirl - supercritical speed

Figure 3.1

37

3.2 Visualisation of Travelling and Standing Wave Components

The main purpose of this visualisation tool is to animate the vibration of a
rotating disc. In the beginning of the project, a need for such a tool was
recognised. Without having a physical model or seeing an animation, it is
difficult to purely imagine vibration patterns, especially if they consist of a
superposition of more than one component. This tool allows the user to
compose any vibration pattern consisting of a combination of individual
components and to animate it. By this means of visualisation the perception
of particular vibration patterns is improved and analysing vibration
phenomena is thus supported.

As the rotation of the disc further complicates matters in terms of frequencies
and perceived directions of travelling waves, animation in stationary as well
as rotating frame of reference is offered.

The simulation of waves in the stationary and rotating frames of reference is
more than an academic exercise. It is referred to the ROSTADYN project [2],
in which rub between rotor and stator is investigated. The aim is to simulate
loading of stationary turbine / compressor components in aircraft engines
due to engine order excitation or similar excitations.

3.2.1 Description of vibration

Vibration described in terms of modes

A vibration of a disc can be written as summation over the contribution of all
modes ψi.

x t r r p ti i(, ,) (,) ()θ ψ θ= ∑ (3.14)

θ is the tangential co-ordinate. The radial co-ordinate r is of no interest here,
so the deflections further dealt with are along a constant radius r0 and are
thus only a function of time t and angle ϕ: x t r(, ,)θ 0 . The modal summation
is valid for all structures with linear dynamic behaviour. The modeshapes of
axisymmetric structures are harmonic functions in the circumferential
direction with different nodal diameters (ND) or wave numbers n:
ψ γ ϕi r n= () cos() . The Figure below shows the first four modeshapes.

Visualisation of Travelling and Standing Wave Components

38

Figures 3.2 modeshapes with nodal diameters n = 1, 2, 3, 4.

For axisymmetric structures, these modes occur in pairs having identical
frequencies and no preferred direction of propagation exists. For real (i.e.
slightly mistuned) structures, these double eigenfrequencies split into close
pairs.

Vibration described in terms of waves

Any combination of modeshapes is a modeshape, too, and one is free to
choose:

cos() i sin() in n e nθ θ θ± ⋅ = ± . (3.15)

Modes are described in the form of sin(nθ) or cos(nθ), whereas travelling
waves have the form e ni θ (forward direction) and e n− i θ (backward
direction). Forward and backward travelling waves having the same
amplitude, frequency and number of nodal diameters combine to form a
standing wave (same as mode) as e e nn ni i cos()θ θ θ+ =− 2 .

However, there exists an ambiguity in the literature concerning the term
standing wave. The special case of a backward travelling wave having the
same speed of rotation as the disc (but in the opposite direction) is sometimes
referred to in the literature as a "standing wave" with respect to the
stationary frame of reference, because the deflection of the disc in the
stationary frame of reference appears static, although the material particles
are actually oscillating; and this would be clear from an observation in the
rotating frame of reference.

The effect of the choice of frame of reference is described with the Galilean
transformation θ θXYZ = + Ω t ⇒ = −e en n n ti i iXYZθ θ Ω , where θXYZ is the
circumferential angle in the stationary frame of reference. The directions of
the travelling waves as observed in the stationary frame of reference are
therefore shifted when compared with the propagation of the waves in the
material.

Visualisation of Travelling and Standing Wave Components

39

3.2.2 2D Fourier transform for decomposition of vibration

A vibration pattern measured in an experiment can be decomposed into
different spatial and frequential components of the signal [17]. In some cases
the vibration patterns are known beforehand and under explicit control in
the experiment, e.g. the experiments that will be conducted in the
ROSTADYN project involve an experimental set-up where the excitation
forces are tuned to excite specific vibration patterns [18, 17] to generate
defined initial conditions. These vibration patterns must therefore be
selected beforehand, a process where animation is bound to reduce the
necessary number of experiments by supporting the experimenter in
deciding upon a suitable vibration pattern.

Example of spatial separation:

A vibration signal is decomposed into its temporal and spatial components
by a 2D Fourier transform, a short example of which is given here.

The number of sensors in this simulation is 8, and they are evenly distributed
around the circumference of the disc. Referring to Shannon’s sampling
theorem, the highest number of nodal diameters that can be detected in this
case without aliasing effects is 4. Due to forced excitation of the disc, let
certain forward and backward travelling waves be excited:

() () () () ()x t t t t, cos cos cos cos (.)
DC

θ θ θ θ= + + + − +3 2 3 3 2 3 0 3

standing wave travelling waves
1 244 344 1 24444 34444

(3.16)

sensor 1
sensor 2
sensor 3

time

0 1 2 3 4
0

2

4

frequency

m
ag

ni
tu

de

Figure 3.3 Signals from 3 sensors Figure 3.4 Frequency spectrum
over time of the signal of the sensors

The signals, as three of the eight sensors see the vibration, are shown in
Figure 3.3. the temporal Fourier transform of which reveals the frequency
content of the vibration as shown in Figure 3.4. The response frequency is
equal to the excitation frequency due to the linearity of the structure, so that

Visualisation of Travelling and Standing Wave Components

40

all components have the same frequency - the DC component would
normally be filtered out. The whole frequency spectrum can be divided into
parts, where each part holds the contents of the spectrum at one particular
frequency. For further analysis, these parts are now treated individually. In
this case, only the part at the frequency of excitation ω = 3 rad/s contains any
information. The result, the contribution of each sensor over the
circumference to this part of the spectrum, is shown in Figure 3.5.

0 2 4 6 0
0.1

0

0.1

sensor

F
o
u
ri

e
r

c
o
m

p
o
n
e
n
t

Figure 3.5 Spectral contribution of each sensor

Now a Fourier transform is performed over the spatial variable θ, yielding
the decomposition of the vibration into travelling waves with forward /
backward directions and different nodal diameters.

Since the structures under investigation are spatially periodic (axisymmetric
in special cases), a Fourier transform can be applied properly without any
windows since there is no leakage occurring.

The data shown in Figure 3.6 contain the spatial decomposition of the
frequency spectrum at ω = 3 rad/s shown in Figure 3.5.

4 3 2 1 0 1 2 3 4
0

2

4
<-backward | forward ->

nodal diameter

w
av

e
m

ag
ni

tu
de

Figure 3.6 2D Fourier transform of the signals

Visualisation of Travelling and Standing Wave Components

41

() () () () ()x t t t t, cos cos cos cos (.)
DC

θ θ θ θ= + + + − +3 2 3 3 2 3 0 3

standing wave travelling waves
1 244 344 1 24444 34444

Equation (3.16) Synthesised vibration pattern

By comparison of Equation (3.16) and Figure 3.6 one can see that all
information was conserved in the analysis. The sign of the nodal diameters n
corresponds to forward / backward direction in the rotating frame. The
vibration as represented in Figure 3.6 consists of a backward travelling wave
with 2 ND of (here dimensionless) magnitude 0.5, a larger forward travelling
wave with 2 ND and magnitude 3.5, and a backward travelling wave with 1
ND of magnitude 1. The n = -2 wave combines with 0.5 magnitude of the n =
2 wave to result in a 2 ND standing wave of magnitude 1, leaving a purely 2
ND forward travelling wave of magnitude 3.

3.2.3 The graphical interface for the vibration spectrum

Having decomposed the measured signal into its temporal and spatial
components, the animation tool allows the user to visualise single vibration
components or, what is more interesting, the superposition of any
combination of these components, either as seen from a co-rotating observer
or from a stationary position. The main interfaces of the animation tool are
shown below (more detailed description in Appendix C):

Figure 3.7 The animation window

Visualisation of Travelling and Standing Wave Components

42

Figure 3.8 Interface for vibration input

In Figure 3.7 the window of the deflected disc is shown with a bar plot of the
wave components present. Figure 3.8 shows the main interface for user
input concerning the components of the vibration. Here the user can dial in a
specific vibration pattern by giving the amplitude and direction of the
travelling waves. Compare the deflection around the circumference shown
in the graph in Figure 3.8 with the contribution of the sensors in Figure 3.5,
and the corresponding wave patterns in Figure 3.6 and Figure 3.7.

There are sliders and editboxes to enter the amplitude of forward and
backward travelling waves. The components can be switched on or off
individually, and sliders can be synchronised for easy input of standing
waves.

The absolute value of the speed of rotation Ω is irrelevant for the animation
since it will not show a disc truly rotating at several 100s of rev/min on the
screen. More important is the ratio r of excitation frequency to speed of
rotation, r = ω ex / Ω. The frequencies of the components with n nodal
diameters can then be described by ω n = ω ex + nΩ = (r + n)Ω, expressed in the
stationary frame of reference.

3.2.4 The interface for the animation parameters

The following animation parameters can be set: number of frames per
second and overall repetitions for the playback speed and length, and
number of frames per revolution and number of revolutions through which

Visualisation of Travelling and Standing Wave Components

43

the generation of the animation passes, which affects the smoothness of the
animation. One needs to be aware that aliasing effects will occur if the
number of frames per revolution N is not high enough to catch the waves
over a certain frequency, so the program will give a warning if NΩ/2 < ω n ,
which is equivalent to N < 2|r+n| , with n being the number of nodal
diameters of the wave with the highest frequency present. Furthermore, if
no temporal periodicity is ensured within the number of frames and
rotations specified, the animation will jump between repetitions. This occurs
if the sample period is not sufficient so that all active wave components can
complete an integer number of cycles within this period. The program will
then give a warning if the following value k is not an integer for all n:

k = rev · ω n / Ω = rev· (r + n) ,

with rev being the number of disc revolutions in one cycle of the animation.

A further aid in the visualisation is the possibility to cut out a piece of
material to enhance the perception of a rotating disc. The mesh shown on
the disc often causes aliasing in the sense that one is tricked into believing the
disc is rotating the wrong way around, so a piece cut out of a disc, meaning it
has the same colour as the background, makes this quite clear.

Figure 3.9 Animation parameters

44

4. Experimentally-Measured Data

Unfortunately, the electronic version of this chapter has been lost, and thus the
pages 44 to 51 could not be included in this PDF file.

52

5. References

1. P. Schmiechen 1994 ROSTADYN internal report 5.01 Industrial review of
the travelling wave speed coincidence. BRITE-EURAM 5463

2. A. Reister 1995 LISA user’s guide. BRITE-EURAM project MARS BE5464

3. Y. D. Kim, C. W. Lee 1986 Journal of Sound and Vibration 111(3), 441-
456. Finite element analysis of rotor bearing sytems using a modal
transformation matrix.

4. A.-C. Lee et al. 1992 Journal of Engineering for Industry 114, 465-475
Transient analysis of an asymmetric rotor-bearing system during
acceleration

5. M. Meirovitch, 1980, Computational Methods in Structural Dynamics.
New York: McGraw Hill

6. F. F. Ehrich (editor), 1992, Handbook of Rotordynamics. McGraw-Hill,
New York.

7. R. Katz, C. W. Lee et al. 1988 Journal of Sound and Vibration 122(1), 131-
148. The dynamic response of a rotating shaft subject to a moving load.

8. C. W. Lee, 1993, Vibration Analysis of Rotors. Kluwer Academic
Publishers, Dordrecht NL.

9. G. Ferraris and M. Lalanne, 1990, Rotordynamics Prediction in
Engineering. John Whiley & Sons, Chichester.

10. Xu, R. Gasch, 1993: Kleiner Beitrag zur Behandlung linearer periodisch
zeitvarianter Bewegungsgleichungen - Modale Entkopplung und
Transformation in zeitinvariante Differentialgleichungen, Bericht aus dem
Institut für Luft- und Raumfahrt der Technischen Universität Berlin, ILR-
Mitteilung 278,.

11. Gasch, Knothe, 1989: Strukturdynamik II, Springer Verlag, Berlin.

12. R.J. Allemang and D. L. Brown 1982 1st IMAC, 110-116. A correlation
coefficient for modal vector analysis.

13. K. E. Rauch and J. S. Kao 1980 Journal of Mechanical Desgin 102(2), 360-
368. Dynamic reduction in rotor dynamics by the finite element method.

14. R. Subbiah, R. B. Bhat and T. S. Sankar 1989 Journal of Mechanical
Desgin 111(4), 360-365. Dynamic response of rotors using modal reduction
techniques.

53

15. G. Genta 1990 Journal of Sound and Vibration 155(3) ,385-402. A fast
modal technique for the computation of the Campbell diagram of multi-
degree-of-freedom rotors.

16. G. Genta 1988 Journal of Sound and Vibration 124(1) ,27-33. Whirling of
unsymmetrical rotors: A finite element approach based on complex co-
ordinates.

17. I. Bucher, D. J. Ewins, P. Schmiechen 1995 15th ASME Biennial
Conference on Vibration and Noise, Boston, MA, USA. Multi-dimensional
directional spectrograms and Campbell (Z-mod) diagrams for rotating
machinery.

18. P. Schmiechen, D. J. Ewins, I. Bucher 1995 15th ASME Biennial
Conference on Vibration and Noise, Boston, MA, USA. Exitation of arbitrary
displacement / velocity conditions in rotationally periodic structures.

54

A

The Derivation of the Element Matrices

A.1 The transformation of equations of motion between frames of

references

The following lines are a transcrip of a MAPLE file written to validate the equations

given in section 2.2.2. It shows how the equation of motion in a rotating frame of

reference can be derived when the matrices for the equation of motion in the

stationary frame of reference are known. Shown here is ony the transformation for

matrices of non-axisymmetric parts (exactly the ones derived in the following

section), the matrices for non-axisymmetric shaft elements are quite large and this

demonstration would become rather messy.

lambda:=Omega*t: s:=sin(2*lambda): c:=cos(2*lambda):

omega:=evalm(Omega*array(1..4,1..4,[[0,0,-1,0],[0,0,0,-1],[1,0,0,0],[0,1,0,0]]));

M:=array(1..4,1..4,[[m,0,0,0],[0,J[m]+J[d]*c,0,J[d]*s],[0,0,m,0],[0,J[d]*s,0,J[m]-

J[d]*c]]);

G:=Omega*array(1..4,1..4,[[0,0,0,0],[0,-2*J[d]*s,0,J[p]+2*J[d]*c],[0,0,0,0],[0,-

J[p]+2*J[d]*c,0,2*J[d]*s]]);

The crossproduct written in matrix notation

 := ω







0 0 -Ω 0
0 0 0 -Ω
Ω 0 0 0
0 Ω 0 0

The mass and stiffness matrices for non-axisymmetric parts (as derived in the

following section)

 := M







m 0 0 0
0 +J

m
J

d
()cos 2 Ω t 0 J

d
()sin 2 Ω t

0 0 m 0
0 J

d
()sin 2 Ω t 0 −J

m
J

d
()cos 2 Ω t

Appendix

The transformation of equations of motion between frames of references

55

 := G Ω







0 0 0 0
0 -2 J

d
()sin 2 Ω t 0 +J

p
2 J

d
()cos 2 Ω t

0 0 0 0
0 - +J

p
2 J

d
()cos 2 Ω t 0 2 J

d
()sin 2 Ω t

The rotation matrix

s1:=sin(lambda): c1:=cos(lambda):

T:=array(1..4,1..4,[[c1,0,s1,0],[0,c1,0,s1],[-s1,0,c1,0],[0,-s1,0,c1]]):

R:=linalg [transpose] (T);

 := R







()cos Ω t 0 - ()sin Ω t 0
0 ()cos Ω t 0 - ()sin Ω t

()sin Ω t 0 ()cos Ω t 0
0 ()sin Ω t 0 ()cos Ω t

transforming the element matrices

J[m]:=1/2*(J[eta]+J[zeta]); J[d]:=1/2*(J[eta]-J[zeta]); Grot:=array(1..4,1..4,[]):

Mr:=evalm(T&*M&*R): Gr:=evalm(T&*G&*R):

Krot:=evalm((Gr+Mr&*omega)&*omega): Mrotg:=evalm(2*Mr&*omega):

for ii from 1 to 4 do for jj from 1 to 4 do

 Mr[ii,jj]:=combine(expand(evalm(Mr[ii,jj])),trig);

 Gr[ii,jj]:=combine(expand(evalm(Gr[ii,jj])),trig);

 Krot[ii,jj]:=combine(expand(evalm(Krot[ii,jj])),trig);

 Grot[ii,jj]:=combine(expand(evalm(Gr[ii,jj]+Mrotg[ii,jj])),trig);

od; od;

Mr=evalm(Mr);Gr=evalm(Gr);Grot=evalm(Grot);Krot=evalm(Krot);

 := J
m

+1
2

Jη
1
2

Jζ

 := J
d

−1
2

Jη
1
2

Jζ

=Mr







m 0 0 0
0 Jη 0 0

0 0 m 0
0 0 0 Jζ

=Gr







0 0 0 0
0 0 0 − +Ω Jη Ω Jζ Ω J

p

0 0 0 0
0 − −Ω Jη Ω Jζ Ω J

p
0 0

The transformation of equations of motion between frames of references

56

=Grot







0 0 -2 m Ω 0
0 0 0 - − +Ω Jη Ω Jζ Ω J

p

2 m Ω 0 0 0
0 + −Ω Jη Ω Jζ Ω J

p
0 0

=Krot







-m Ω2 0 0 0

0 - +Ω2 Jζ Ω2 J
p

0 0

0 0 -m Ω2 0

0 0 0 - +Ω2 Jη Ω2 J
p

A.2 The derivation of non-axisymmetric element matrices

The following lines are the transcript of a MAPLE file deriving the element
matrices form the formulation of the kinetic and potential energies.
Intermediate results are given as well, if the output is not too long to be
imported into this document.

a list of substitutions needed for differentiation:

change1:={alpha=Omega*t,v=v(t),w=w(t),vd=diff(v(t),t),wd=diff(w(t),t),b
d=diff(beta(t),t),gd=diff(gamma(t),t),beta=beta(t),gamma=gamma(t)};
change2:={w(t)=’w’,v(t)=’v’,diff(gamma(t),t)=gd,diff(beta(t),t)=bd,diff(ga
mma(t),t,t)=gdd,diff(beta(t),t,t)=bdd,gamma(t)=’gamma’,beta(t)=’beta’,diff
(w(t),t)=wd,diff(v(t),t)=vd,diff(w(t),t,t)=wdd,diff(v(t),t,t)=vdd}:

 := change1








, , , , , , , , =α Ω t =v ()v t =w ()w t =vd ∂
∂
t

()v t =wd ∂
∂
t

()w t =bd ∂
∂
t

()β t =gd ∂
∂
t

()γ t =β ()β t =γ ()γ t

The rotational part of the kinetic energy easiest expressed in body fixed co-
ordinates, a co-ordiante transformation to the generalised co-ordinates used
in the FE program is therefore necessary. So first step is the derivation of the
transformation matrix:

The basic rotation matrices are:
Around X axis

ca:=cos(alpha): sa:=sin(alpha):RX:=array(1..3,1..3,[[1,0,0],[0,ca,-
sa],[0,sa,ca]]);

 := RX






1 0 0
0 ()cos α - ()sin α
0 ()sin α ()cos α

The derivation of non-axisymmetric element matrices

57

Around Y axis
cb:=cos(beta): sb:=sin(beta):RY:=array(1..3,1..3,[[cb,0,sb],[0,1,0],[-sb,0,cb]]);

 := RY






()cos β 0 ()sin β
0 1 0

- ()sin β 0 ()cos β

Around Z-axis, with angle γ as projection of g1 into the X-Z plane
g1:=solve(tan(bt)=tan(gamma)*cb,bt);
cg1:=cos(g1): sg1:=sin(g1): cg:=cos(gamma): sg:=sin(gamma):
RZ:=array(1..3,1..3,[[cg,-sg,0],[sg,cg,0],[0,0,1]]);
RZ1:=array(1..3,1..3,[[cg1,-sg1,0],[sg1,cg1,0],[0,0,1]]);

 := g1 ()arctan ()tan γ ()cos β

 := RZ






()cos γ - ()sin γ 0
()sin γ ()cos γ 0
0 0 1

 := RZ1







1

+1 ()tan γ 2 ()cos β 2
-

()tan γ ()cos β
+1 ()tan γ 2 ()cos β 2

0

()tan γ ()cos β
+1 ()tan γ 2 ()cos β 2

1

+1 ()tan γ 2 ()cos β 2
0

0 0 1

The transformation matrices are thus:
TX:=linalg [transpose] (RX);
TY:=linalg [transpose] (RY);
TZ:=linalg [transpose] (RZ);
TZ1:=linalg [transpose] (RZ1);

 := TX






1 0 0
0 ()cos α ()sin α
0 - ()sin α ()cos α

 := TY






()cos β 0 - ()sin β
0 1 0
()sin β 0 ()cos β

 := TZ






()cos γ ()sin γ 0
- ()sin γ ()cos γ 0

0 0 1

The derivation of non-axisymmetric element matrices

58

 := TZ1







1

+1 ()tan γ 2 ()cos β 2

()tan γ ()cos β
+1 ()tan γ 2 ()cos β 2

0

-
()tan γ ()cos β

+1 ()tan γ 2 ()cos β 2

1

+1 ()tan γ 2 ()cos β 2
0

0 0 1

Since the transformation matrix T=inverse(R) and the basic transformation
matrices are orthogonal, T=transpose(R).

The total transformation matrix from body-fixed co-ordinates to rotating is
therefore:

TT:=evalm(TX&*TY&*TZ1);

 := TT







()cos β
+1 ()tan γ 2 ()cos β 2

()cos β 2 ()tan γ
+1 ()tan γ 2 ()cos β 2

- ()sin β

-
- +()sin α ()sin β ()cos α ()tan γ ()cos β

+1 ()tan γ 2 ()cos β 2

+()sin α ()sin β ()tan γ ()cos β ()cos α
+1 ()tan γ 2 ()cos β 2

()sin α ()cos β

+()cos α ()sin β ()sin α ()tan γ ()cos β
+1 ()tan γ 2 ()cos β 2

−()cos α ()sin β ()tan γ ()cos β ()sin α
+1 ()tan γ 2 ()cos β 2

()cos α ()cos β

The speed of rotation around the XYZ-axes expressed in the XYZ-Framework
is: (bd = d(beta)/dt gd = d(gamma)/dt)

w3:=array(1..3,1..1,[[0],[bd],[gd]]); w1:=array(1..3,1..1,[[Omega],[0],[0]]);

 := w3






0
bd
gd

 := w1






Ω
0
0

The speed of rotation expressed in the body coordinates of the rotating,
deflected shaft is calculated via the following transformation:

w4:=evalm(TT&*(w3) + w1);

 := w4







+−()cos β 2 ()tan γ bd ()sin β gd +1 ()tan γ 2 ()cos β 2

+1 ()tan γ 2 ()cos β 2
Ω

+ +bd ()sin α ()sin β ()tan γ ()cos β bd ()cos α ()sin α ()cos β gd +1 ()tan γ 2 ()cos β 2

+1 ()tan γ 2 ()cos β 2

− +bd ()cos α ()sin β ()tan γ ()cos β bd ()sin α ()cos α ()cos β gd +1 ()tan γ 2 ()cos β 2

+1 ()tan γ 2 ()cos β 2

readlib(mtaylor);
proc() ... end

The second order Taylor series approximation for the vector of rotation is

The derivation of non-axisymmetric element matrices

59

w4t:=array(1..3,1..1,[]):
for ii from 1 to 3 do
w4t[ii,1]:=subs([alpha=Omega*t],mtaylor(w4[ii,1],[gamma=0,beta=0],2)):
od:
w_taylor=evalm(w4t);

=w_taylor






+ −Ω γ bd β gd
+bd ()cos Ω t ()sin Ω t gd

- +bd ()sin Ω t ()cos Ω t gd

the kinetic energy of a non-axisymmetric part is thus (rotational part
expressed in rotating co-ordinates)

omega:=w4:
EK:=1/2*m*(vd^2+wd^2)+1/2*(J[p]*omega[1,1]^2+J[eta]*omega[2,1]^2+J
[zeta]*omega[3,1]^2):

approximating the energy expressions with their second order Taylor series:
EK1:=mtaylor(EK,[gamma=0,beta=0],2):
EK1:=subs([alpha=Omega*t],combine(EK1,trig)):
asym_part[Kinetic_Energy]:=subs(change1,EK1):

The kinetic energy (integration of eks over xi done later) for the non-
axisymmetric shaft element is thus

omega:=w4:
eks:=L/2*rho*(A*(vd^2+wd^2)+I[p]*omega[1,1]^2+I[eta]*omega[2,1]^2+
I[zeta]*omega[3,1]^2):

and the corresponding taylor series expansion:
eks1:=mtaylor(eks,[beta=0,gamma=0],2):
eks1:=subs([alpha=Omega*t],combine(eks1,trig)):
asym_shaft[Kinetic_Energy]:=subs(change1,eks1):

for symmetric elements the equations for the kinetic energies are:
for the disc:

disc[Kinetic_energy]=subs([J[eta]=J[diam],J[zeta]=J[diam]],asym_part[Kin
etic_Energy]):

for the shaft element (integral over xi missing):
shaft[Kinetic_Energy]=subs([I[eta]=I[diam],I[zeta]=I[diam]],asym_shaft[K
inetic_Energy]):

Some severe trouble is encounterd when trying to express the MAPLE
output from the last four paragraphs above in a word document. Therefore
the energy xpressions are typed in again here:

The kinetic energy for a non-axisymmetric part is:

The derivation of non-axisymmetric element matrices

60

EK1:=1/2*((vd^2+wd^2)*m+J[mean]*(bd^2+gd^2)+J[Delta]*(bd^2-
gd^2)*cos(2*alpha)+2*J[Delta]*bd*gd*sin(2*alpha)+J[polar]*Omega^2+J[p
olar]*Omega*(bd*gamma-gd*beta)):
asym_part[Kinetic_Energy]:=subs(change1,EK1);

 := asym_part
Kinetic_Energy

+ + + + +1
2








+






∂

∂
t

()v t
2 





∂

∂
t

()w t
2

m
1
2

J
mean








+






∂

∂
t

()β t
2 





∂

∂
t

()γ t
2

1
2

J∆








−






∂

∂
t

()β t
2 





∂

∂
t

()γ t
2

()cos 2 Ω t J∆






∂

∂
t

()β t





∂

∂
t

()γ t ()sin 2 Ω t
1
2

J
polar

Ω2 1
2

J
polar

Ω







−





∂

∂
t

()β t ()γ t





∂

∂
t

()γ t ()β t

The kinetic energy for a non-axisymmetric shaft element is:

eks1:=1/2*((vd^2+wd^2)*m+I[mean]*(bd^2+gd^2)+I[Delta]*(bd^2-
gd^2)*cos(2*Omega*t)+2*I[Delta]*bd*gd*sin(2*Omega*t)+I[polar]*Omega
^2+I[polar]*Omega*(bd*gamma-gd*beta)):
asym_shaft[Kinetic_Energy]:=subs(change1,eks1):

 := asym_part
Kinetic_Energy

+ + + + +1
2




+

∂
∂
t

()v t
2 

∂
∂
t

()w t
2

m
1
2

J
mean




+

∂
∂
t

()β t
2 

∂
∂
t

()γ t
2

1
2

J∆




−

∂
∂
t

()β t
2 

∂
∂
t

()γ t
2

()cos 2 Ω t J∆


∂

∂
t

()β t


∂
∂
t

()γ t ()sin 2 Ω t
1
2

J
polar

Ω2 1
2

J
polar

Ω 


−
∂

∂
t

()β t ()γ t


∂
∂
t

()γ t ()β t

The potential energy for a non-axisymmetric shaft element in bending is:

asym_shaft[Potential_Energy]=L/2*Epsilon*(I[eta]*(diff(v(xi),xi,xi)/L^2)
^2+I[zeta]*(diff(w(xi),xi,xi)/L^2)^2); v:=’v’: w:=’w’:

=asym_shaft
Potential_Energy

1
2

L Ε














+
Iη






∂

∂2

ξ2 ()v ξ
2

L4

Iζ






∂

∂2

ξ2 ()w ξ
2

L4

for symmetric elements (i.e. disc) the equations for the kinetic energy is

disc[Kinetic_energy]=subs([J[mean]=J[diam],J[Delta]=0,bd=diff(beta(t),t)],
asym_part[Kinetic_Energy]);

=disc
Kinetic_energy

+ + +1
2








+





∂

∂
t

()v t
2 





∂

∂
t

()w t
2

m
1
2

J
diam








+





∂

∂
t

()β t
2 





∂

∂
t

()γ t
2

1
2

J
polar

Ω2 1
2

J
polar

Ω 






−




∂

∂
t

()β t ()γ t





∂

∂
t

()γ t ()β t

for the shaft element (integral over xi missing):

shaft[Kinetic_Energy]=subs([I[mean]=I[diam],I[Delta]=0],asym_shaft[Kin
etic_Energy]);

=shaft
Kinetic_Energy

1
2

L ρ





+ + +






+


∂

∂
t

()v t
2 


∂

∂
t

()w t
2

A I
diam






+


∂

∂
t

()β t
2 


∂

∂
t

()γ t
2

I
polar

Ω2 I
polar

Ω 



−

∂

∂
t

()β t ()γ t



∂

∂
t

()γ t ()β t

The matrices for the non-axisymmetric part attached to a node are derived in
the following lines

qq:=array(1..4,1..1,[[v],[beta],[w],[gamma]]);qd:=array(1..4,1..1,[[vd],[bd],[
wd],[gd]]);qdd:=array(1..4,1..1,[[vdd],[bdd],[wdd],[gdd]]);

The derivation of non-axisymmetric element matrices

61

 := qq







v
β
w
γ

 := qd







vd
bd
wd
gd

 := qdd







vdd
bdd
wdd
gdd

Using the approach from Meirovitch (works only for symmetric elements or
the mass matrix if non-axisymmetric):

EK1:=subs([alpha=Omega*t],EK1):
Mp:=array(1..4,1..4,[]):
for ii from 1 to 4 do for jj from 1 to 4 do
 tmp:=diff(EK1 , qd[ii,1] , qd[jj,1]); Mp[ii,jj]:=tmp;
od; od;
M_asym_part=evalm(Mp);

=M_asym_part







m 0 0 0
0 +J

mean
J∆ ()cos 2 Ω t 0 J∆ ()sin 2 Ω t

0 0 m 0
0 J∆ ()sin 2 Ω t 0 −J

mean
J∆ ()cos 2 Ω t

deriving the gyroscopic matrix and mass, stiffness for comparison later on
(by using Lagrange’s formulation):

Gp:=array(1..4,1..4,[]): Kptest:=array(1..4,1..4,[]): Mptest:=array(1..4,1..4,[]):
for ii from 1 to 4 do for jj from 1 to 4 do
 tmp1:=-diff(EK1 , qq[ii,1]);
 tmp2:=diff(EK1, qd[ii,1]); tmp2:=subs(change1,tmp2);
tmp3:=diff(tmp2,t):
 tmp3:=subs(change2,tmp3);
 Gp[ii,jj]:=diff(tmp1+tmp3,qd[jj,1]);
 Kptest[ii,jj]:=diff(tmp3+tmp1,qq[jj,1]);

The derivation of non-axisymmetric element matrices

62

 Mptest[ii,jj]:=diff(tmp3+tmp1,qdd[jj,1]);
od; od;
G_asym_part=evalm(Gp);

=G_asym_part







0 0 0 0
0 -2 J∆ ()sin 2 Ω t Ω 0 +J

polar
Ω 2 J∆ ()cos 2 Ω t Ω

0 0 0 0
0 - +J

polar
Ω 2 J∆ ()cos 2 Ω t Ω 0 2 J∆ ()sin 2 Ω t Ω

comparing the results of Meirovitch and Lagrange for M, Kptest should be
zero:

evalm(Mp-Mptest);evalm(Kptest);






0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

the shape functions used here for the shaft elements are:

N:=array(1..4,1..1,[[1-3*xi^2 + 2*xi^3],[L*(xi - 2*xi^2 + xi^3)] ,[3*xi^2 -
2*xi^3] ,[L*(xi^3-xi^2)]]):
with (linalg): qy:=array(1..4,[]): qz:=array(1..4,[]):

Warning: new definition for norm
Warning: new definition for trace

 := N







− +1 3 ξ2 2 ξ3

L  − +ξ 2 ξ2 ξ3

−3 ξ2 2 ξ3

L  −ξ3 ξ2

expressing the deflections via the shapefunctions

v:=N[1,1]*qy[1]+N[2,1]*qy[2]+N[3,1]*qy[3]+N[4,1]*qy[4]:
w:=N[1,1]*qz[1]+N[2,1]*qz[2]+N[3,1]*qz[3]+N[4,1]*qz[4]:
vd:=subs({qy[i]=qyd[i]}$i=1..4,v): wd:=subs({qz[i]=qzd[i]}$i=1..4,w):

The derivation of non-axisymmetric element matrices

63

angular deflection expressed via shapefunctions:

unprotect(gamma):
gamma:=diff(v,xi)/L: gd:=diff(vd,xi)/L:
beta:=-diff(w,xi)/L: bd:=-diff(wd,xi)/L:
eps1:=L/2*Epsilon*(I[eta]*(diff(v,xi,xi)/L^2)^2+I[zeta]*(diff(w,xi,xi)/L^2)
^2): eks1:=subs([I[mean]=1/2*(I[eta]+I[zeta]),I[Delta]=1/2*(I[eta]-
I[zeta])],eks1):

building arrays of co-ordinates to be able to differentiate (Lagrange)

q:=array(1..8,[(qy[i])$i=1..4,(qz[i])$i=1..4]):
qd:=array(1..8,[(qyd[i])$i=1..4,(qzd[i])$i=1..4]):
qdd:=array(1..8,[(qydd[i])$i=1..4,(qzdd[i])$i=1..4]):

one method of building the mass matrix, integrating the enery expression
over ξ

M:=array(1..8,1..8):
for ii from 1 to 8 do for jj from 1 to 8 do
 tmp1:=diff(eks1 , qd[ii] , qd[jj]); M[ii,jj]:= simplify(int(tmp1 , xi=0..1));
od; od;

building the gyroscopic matrix as well as the mass and stiffness matrices to
check the formulation:

G:=array(1..8,1..8,[]): Ktest:=array(1..8,1..8,[]): Mtest:=array(1..8,1..8,[]):
for ii from 1 to 8 do for jj from 1 to 8 do
 tmp1:=-diff(eks1 , q[ii]); tmp2:=simplify(int(tmp1 , xi=0..1));
 tmp3:=diff(eks1, qd[ii]);
tmp3:=subs({qy[i]=qyt(t)[i]}$i=1..4,{qz[i]=qzt(t)[i]}$i=1..4,{qyd[i]=qydt(t)[i]
}$i=1..4,{qzd[i]=qzdt(t)[i]}$i=1..4,tmp3);
 tmp4:=diff(tmp3,t):
tmp4:=subs({diff(qyt(t)[i],t)=qyd[i]}$i=1..4,{diff(qzt(t)[i],t)=qzd[i]}$i=1..4,{
diff(qydt(t)[i],t)=qydd[i]}$i=1..4,{diff(qzdt(t)[i],t)=qzdd[i]}$i=1..4,{qyt(t)[i]
=qy[i]}$i=1..4,{qzt(t)[i]=qz[i]}$i=1..4,{qydt(t)[i]=qyd[i]}$i=1..4,{qzdt(t)[i]=q
zd[i]}$i=1..4,tmp4);
 tmp5:=simplify(int(tmp4, xi=0..1));
 G[ii,jj]:=diff(tmp2+tmp5,qd[jj]);
 Mtest[ii,jj]:=diff(tmp5,qdd[jj]);

The derivation of non-axisymmetric element matrices

64

 Ktest[ii,jj]:=diff(tmp2+tmp5,q[jj]);
od; od;

deriving the stiffness matrix:

K:=array(1..8,1..8,[]):
for ii from 1 to 8 do for jj from 1 to 8 do
 tmp1:=diff(eps1 , q[ii] , q[jj]);
 K[ii,jj]:= simplify(int(tmp1 , xi=0..1));
od; od;

showing that the two different ways to derive the mass and stiffness matrices
yield the same results:

Mt:=array(1..8,1..8,[]): Kt:=array(1..8,1..8,[]): for ii from 1 to 8 do for jj from
1 to 8 do Mt[ii,jj]:=simplify(Mtest[ii,jj]-M[ii,jj]);
Kt[ii,jj]:=simplify(Ktest[ii,jj]*30*L/rho/Omega^2); od; od; evalm(Mt);
evalm(Kt);







0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0







0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

showing the matrices for symmetric elements (note the multiplications in the
loops):

M1:=array(1..4,1..4,[]): for ii from 1 to 4 do for jj from 1 to 4 do
M1[ii,jj]:=subs([I[eta]=A*d^2/16,I[zeta]=A*d^2/16],expand(evalm(M[ii,jj]

The derivation of non-axisymmetric element matrices

65

*3360*L/rho/A)));
od; od;

M_sym=evalm(M1);

=M_sym







+252 d2 1248 L2 +176 L3 21 L d2 −432 L2 252 d2 - +104 L3 21 L d2

+176 L3 21 L d2 +32 L4 28 L2 d2 −104 L3 21 L d2 - −7 L2 d2 24 L4

−432 L2 252 d2 −104 L3 21 L d2 +252 d2 1248 L2 - −176 L3 21 L d2

- +104 L3 21 L d2 - −7 L2 d2 24 L4 - −176 L3 21 L d2 +32 L4 28 L2 d2

G1:=array(1..4,1..4,[]): for ii from 1 to 4 do for jj from 1 to 4 do
G1[ii,jj]:=subs([I[eta]=A*d^2/16,I[zeta]=A*d^2/16,I[polar]=A*d^2/8],exp
and(evalm(G[ii,jj+4]*240*L/rho/A/Omega/d^2)));
od; od;

G_sym=evalm(G1);

=G_sym







36 3 L -36 3 L

3 L 4 L2 -3 L -L2

-36 -3 L 36 -3 L
3 L -L2 -3 L 4 L2

K1:=array(1..4,1..4,[]): for ii from 1 to 4 do for jj from 1 to 4 do
K1[ii,jj]:=subs([I[eta]=I,I[zeta]=I],expand(evalm(K[ii,jj]*L^3/Epsilon/I)));
od; od;

K_sym=evalm(K1);

=K_sym







12 6 L -12 6 L

6 L 4 L2 -6 L 2 L2

-12 -6 L 12 -6 L
6 L 2 L2 -6 L 4 L2

i:=’i’: # used as comlex unit in Matlab

extracting the matrices with sin(2*alpha) and cos(2*alpha) as coefficients and
combining them to a complex matrix M2; M0 is matrix with constant
coefficients

The derivation of non-axisymmetric element matrices

66

M0:=array(1..8,1..8,[]): M2c:=array(1..8,1..8,[]): M2s:=array(1..8,1..8,[]):
M2:=array(1..8,1..8,[]):
for ii from 1 to 8 do for jj from 1 to 8 do
aa:=subs([cos(2*Omega*t)=c2,sin(2*Omega*t)=s2],M[ii,jj]);
M2c[ii,jj]:=simplify(diff(aa,c2)); M2s[ii,jj]:=diff(aa,s2);
M2[ii,jj]:=simplify((M2c[ii,jj]-i*M2s[ii,jj])/2);
M0[ii,jj]:=expand(evalm(M[ii,jj]-M2c[ii,jj]*cos(2*Omega*t)-
M2s[ii,jj]*sin(2*Omega*t)));
od; od;

and the gyroscopic matrices

G0:=array(1..8,1..8,[]): G2c:=array(1..8,1..8,[]): G2s:=array(1..8,1..8,[]):
G2:=array(1..8,1..8,[]):
for ii from 1 to 8 do for jj from 1 to 8 do
aa:=subs([cos(2*Omega*t)=c2,sin(2*Omega*t)=s2],G[ii,jj]);
G2c[ii,jj]:=diff(aa,c2); G2s[ii,jj]:=diff(aa,s2);
G2[ii,jj]:=simplify((G2c[ii,jj]-i*G2s[ii,jj])/2);
G0[ii,jj]:=expand(evalm(G[ii,jj]-G2c[ii,jj]*cos(2*Omega*t)-
G2s[ii,jj]*sin(2*Omega*t)));
od; od;

and the stiffness matirces

K0:=array(1..8,1..8,[]): K2c:=array(1..8,1..8,[]): K2s:=array(1..8,1..8,[]):
K2:=array(1..8,1..8,[]):
for ii from 1 to 8 do for jj from 1 to 8 do
aa:=subs([cos(2*Omega*t)=c2,sin(2*Omega*t)=s2],K[ii,jj]);
K2c[ii,jj]:=simplify(diff(aa,c2)); K2s[ii,jj]:=diff(aa,s2);
K2[ii,jj]:=simplify((K2c[ii,jj]-i*K2s[ii,jj])/2);
K0[ii,jj]:=expand(evalm(K[ii,jj]-K2c[ii,jj]*cos(2*Omega*t)-
K2s[ii,jj]*sin(2*Omega*t)));
od; od;

67

A.3 Assembly of the hyper matrices

Hills approach is used to transform the equations of motion into hyper
matrices by balancing the terms containing the same harmonics. The column
wise assembly of the hyper M, G, and K matrices is shown here.
(K1 only used if bearings are approximated in a series)
NB: index cc stands for complex conjugate

M:=(M0+M2*exp(i*2*Omega*t)+M2cc*exp(-
i*2*Omega*t));G:=(G0+G2*exp(i*2*Omega*t)+G2cc*exp(-
i*2*Omega*t));K:=(K0+K1*exp(i*Omega*t)+K1cc*exp(-
i*Omega*t)+K2*exp(i*2*Omega*t)+K2cc*exp(-i*2*Omega*t));

 := M + +M0 M2 e()2 i Ω t M2cc e()-2 i Ω t

 := G + +G0 G2 e()2 i Ω t G2cc e()-2 i Ω t

 := K + + + +K0 K1 e()i Ω t K1cc e()-i Ω t K2 e()2 i Ω t K2cc e()-2 i Ω t

component k of the solution vector (note: underscore stands for -k):
(The primitive Math Office for MAPLE does not allow output in two rows,
hence incredible small print, I am sorry.)

q:=qk(t)*exp(+i*k*Omega*t)+qk_(t)*exp(-i*k*Omega*t);
qd:=diff(q,t);
qdd:=diff(qd,t);

 := q +()qk t e()i k Ω t ()qk_ t e()-i k Ω t

 := qd + + −





∂

∂
t

()qk t e()i k Ω t ()qk t i k Ω e()i k Ω t 




∂

∂
t

()qk_ t e()-i k Ω t ()qk_ t i k Ω e()-i k Ω t

 := qdd + + + − +





∂

∂2

t2 ()qk t e()i k Ω t 2





∂

∂
t

()qk t i k Ω e()i k Ω t ()qk t i2 k2 Ω2 e()i k Ω t 




∂

∂2

t2 ()qk_ t e()-i k Ω t 2





∂

∂
t

()qk_ t i k Ω e()-i k Ω t ()qk_ t i2 k2 Ω2 e()-i k Ω t

the equation of motion for this particular component and substituting
qk(t)=qk*exp(lambda*t):

e:=M*qdd+G*qd+K*q;
e:=subs([diff(qk(t),t,t)=qkdd*lambda^2,diff(qk_(t),t,t)=qk_dd*lambda^2,d
iff(qk(t),t)=qkd*lambda,diff(qk_(t),t)=qk_d*lambda,qk(t)=’qk’,qk_(t)=’qk_’
],e):

In the hyper matrices, the rows make up the equations for the balanced
frequencies. The structure of the assembly of Hill’s hyper-M, G, K matrices

Assembly of the hyper matrices

68

columnwise (i.e. the contribution of a vector qk throughout all the balanced
equations) can be seen here :

f:=diff(e,qkdd);

 := f  + +M0 M2 e()2 i Ω t M2cc e()-2 i Ω t λ2 e()i k Ω t

this is the column of the gyroscopic matix for vector qk’s contribution:
diff(e,qkd);

+2  + +M0 M2 e()2 i Ω t M2cc e()-2 i Ω t λ i k Ω e()i k Ω t  + +G0 G2 e()2 i Ω t G2cc e()-2 i Ω t λ e()i k Ω t

the stiffness matrix:
diff(e,qk);

+ + + +M0 M2 e()2 i Ω t M2cc e()-2 i Ω t i2 k2 Ω2 e()i k Ω t  + +G0 G2 e()2 i Ω t G2cc e()-2 i Ω t i k Ω e()i k Ω t  + + + +K0 K1 e()i Ω t K1cc e()-i Ω t K2 e()2 i Ω t K2cc e()-2 i Ω t e()i k Ω t

69

B

Comparison of LISA and Measurement Results

B.1 Comparison of the measurements from the ROSTADYN rig

The measurements were taken at four discrete speeds of rotation and the
natural frequencies for the first two bending modes were measured. The FW
indicates forward whirl (upper branch in the Campbell diagram, hece higher
frequencies) and BW backward whirl (lower branch in Campbell diagram).

speed of
rotation
[rpm]

first Mode
FE results
[Hz]

first Mode
measured data
[Hz]

second Mode
FE results
[Hz]

second Mode
measured data
[Hz]

0 "BW" 36.4129 36.51 128.6948 129.81
0. "FW" 36.58 130.01
300 BW 35.7411 36 125.4269 127
300 FW 37.0903 37.4 132.0407 133.5
600 BW 35.0755 35.04 122.2392 123.52
600 FW 37.7727 37.90 135.4616 136.62
900 BW 34.4168 34.6 119.1337 120.7
900 FW 38.4594 38.8 138.9543 140.2
1200 BW 33.7656 33.68 116.1118 117.6
1200 FW 39.1497 39.37 142.5149 143.6
1800 BW 32.4879 32.35 110.3226 112
1800 FW 40.5382 40.86 149.8226 150.9
2100 BW 31.8623 31.8 107.5560 109.2
2100 FW 41.2352 41.7 153.5599 154.6
3000 BW 30.0442 30 99.7652 101.4
3000 FW 43.3285 43.85 165.0383 165.8
3600 BW 28.8845 28.56 94.9867 96.4
3600 FW 44.7197 45.29 172.8503 173.3

The maximum deviation for the first mode is 1.25%, and for the second mode
1.6%. The rig shows some nonlinear behaviour, which is of relevance here
because the natural frequencies become a function of amplitude. The
measurements with two digits after the decimal point are correct to about

Appendix

Comparison of the measurements from the ROSTADYN rig

70

0.02 Hz and refer to an amplitude of 50 m/s2 at one end. The measurements
with less digits after the decimal point are less accurate being from
uncontrolled amplitude tests. These measurements were done by Mr.
Antony Stanbridge for the ROSTADYN Task No. 1.3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021

Figure B.1 The ROSTADYN FE-model, compared with measurements

B.2 Comparison of the results optained with LISA

The natural frequencies of the first five bending modes of the MARS rig
calculated with the FE program are compared witht the results from LISA:

Mode No. FE-results [Hz] LISA results [Hz]
1 5.8574e+001 0.58539E+02
2 1.2350e+002 0.12318E+03
3 2.9440e+002 0.29207E+03
4 4.7943e+002 0.47115E+03
5 8.2434e+002 0.81037E+03
6 1.2082e+003 0.11745E+04
7 1.5827e+003 0.15324E+04
8 2.0988e+003 0.20857E+04
9 2.4664e+003 0.24093E+04
10 3.2621e+003 0.32203E+04

Comparison of the results optained with LISA

71

1 2 34 5 6 7

7

8

8

9 10 11 12 13 14 15 16

16

17

17

18 19 20 21 22 23 24 25 2627 28 2930

Figure B.1 The MARS FE model of the shaft, compared with LISA results

B.3 The element file of the model in LISA format as sent from
Kaiserslautern

==
======
model of mars testrig
#
part: shaft
#
#
file: shaft.mod
date: 27.09.94
#
====== ==
#
matiso 1 1.96E+8 .3 7.850E-6
#
id x y z
node 1 0. 0. 0.
node 2 15. 0. 0.
node 3 35. 0. 0.
node 4 43.27 0. 0.
node 5 94. 0. 0.
node 6 132. 0. 0.
#
#
AMB A VV
node 7 180. 0. 0.
node 8 205. 0. 0.
node 9 230. 0. 0.
AMB A ^^
#
node 10 280. 0. 0.
node 11 330. 0. 0.
node 12 380. 0. 0.
node 13 430. 0. 0.
node 14 480. 0. 0.
node 15 530. 0. 0.
#
#

The element file of the model in LISA format as sent from Kaiserslautern

72

AMB B VV
node 16 560. 0. 0.
node 17 585. 0. 0.
node 18 610. 0. 0.
AMB B ^^
#
node 19 660. 0. 0.
node 20 710. 0. 0.
node 21 760. 0. 0.
node 22 810. 0. 0.
node 23 860. 0. 0.
node 24 910. 0. 0.
node 25 960. 0. 0.
node 26 1021. 0. 0.
node 27 1046. 0. 0.
node 28 1088. 0. 0.
#
#
mid of coupling VV
node 29 1130.6 0. 0.
#
#
node 30 1135. 0. 0.
#
#
#
#
streiche alle axialen und torsionsfreiheitsgrade
#
id node dof1 dof2 dof3 dof4 dof5 dof6
fixed 1 1 1 4
fixed 1 2 1 4
fixed 1 3 1 4
fixed 1 4 1 4
fixed 1 5 1 4
fixed 1 6 1 4
fixed 1 7 1 4
fixed 1 8 1 4
fixed 1 9 1 4
fixed 1 10 1 4
fixed 1 11 1 4
fixed 1 12 1 4
fixed 1 13 1 4
fixed 1 14 1 4
fixed 1 15 1 4
fixed 1 16 1 4
fixed 1 17 1 4
fixed 1 18 1 4
fixed 1 19 1 4
fixed 1 20 1 4
fixed 1 21 1 4
fixed 1 22 1 4
fixed 1 23 1 4
fixed 1 24 1 4
fixed 1 25 1 4
fixed 1 26 1 4
#

flexible shaft
#
eid pid node1 node2 xvec yvec zvec
beam 1 1 1 2 0. 0. 1.
beam 2 2 2 3 0. 0. 1.
beam 3 3 3 4 0. 0. 1.
beam 4 3 4 5 0. 0. 1.
beam 5 4 5 6 0. 0. 1.
beam 6 5 6 7 0. 0. 1.
beam 7 6 7 8 0. 0. 1.
beam 8 6 8 9 0. 0. 1.
beam 9 5 9 10 0. 0. 1.
beam 10 5 10 11 0. 0. 1.
beam 11 5 11 12 0. 0. 1.
beam 12 5 12 13 0. 0. 1.
beam 13 5 13 14 0. 0. 1.
beam 14 5 14 15 0. 0. 1.
beam 15 5 15 16 0. 0. 1.
beam 16 6 16 17 0. 0. 1.
beam 17 6 17 18 0. 0. 1.
beam 18 5 18 19 0. 0. 1.
beam 19 5 19 20 0. 0. 1.
beam 20 5 20 21 0. 0. 1.
beam 21 5 21 22 0. 0. 1.

The element file of the model in LISA format as sent from Kaiserslautern

73

beam 22 5 22 23 0. 0. 1.
beam 23 5 23 24 0. 0. 1.
beam 24 5 24 25 0. 0. 1.
beam 25 5 25 26 0. 0. 1.
beam 26 4 26 27 0. 0. 1.
beam 27 7 27 28 0. 0. 1.
beam 28 8 28 29 0. 0. 1.
beam 29 8 29 30 0. 0. 1.

#
properties of the beams
#
pbeam pid mid rect b h
 pbeam 1 1 rect 16. 16.

pbeam pid mid cyl ri ra
 pbeam 2 1 cyl 0. 11.6
 pbeam 3 1 cyl 0. 16.025
 pbeam 4 1 cyl 0. 17.5
 pbeam 5 1 cyl 0. 18.5
 pbeam 6 1 cyl 0. 19.0
 pbeam 7 1 cyl 0. 14.8
 pbeam 8 1 cyl 3.5 13.8

#===== magnetic bearing bushes ================
==================================
#
(shaft part yielding stiffness)
#
beam 30 9 7 8 0. 0. 1.
beam 31 9 8 9 0. 0. 1.
beam 32 9 16 17 0. 0. 1.
beam 33 9 17 18 0. 0. 1.

pbeam pid mid cyl ri ra
 pbeam 9 1 cyl 19.0 40.0

(shaft part yielding mass & inertia)
#
disk eid 2 node m thetae thetap vx vy vz
disk 35 2 8 3.163 5.36E+3 7.19E+3 1. 0. 0.
disk 36 2 17 3.154 5.34E+3 7.163E+3 1. 0. 0.

====== rigid disk 20 kg ===================
===
#
disk eid 2 node m thetae thetap vx vy vz
disk 37 2 4 20.94 2.42E+5 4.94E+5 1. 0. 0.

====== coupling (rotor part) ==============
===
#
disk eid 2 node m thetae thetap vx vy vz
disk 38 2 29 1.022 1.2E+3 2.1E+5 1. 0. 0.

====== nut (coupling) =====================
===
#
disk eid 2 node m thetae thetap vx vy vz
disk 39 2 27 0.454 1.928E+2 2.755E+2 1. 0. 0.

====== nut (disk) ======================
==
#
disk eid 2 node m thetae thetap vx vy vz
disk 40 2 3 0.056 1.174E+1 1.448E+1 1. 0. 0.

gstif22 26 1 1 0 0 1.E+1 -1.E+1 -1.E+1 1.E+1

quit

74

B.4 The Matlab functions used for reading LISA format

B.4.1 readlisa.m
function [nodeinf,beam,disk,pbeam,matiso]=readlisa
% [nodeinf,beam,disk,pbeam,matiso]=readlisa
%
% reads LISA files and converts the lines of the file
% into numeric matrices
%
% 19.12.94 GvG

if nargin==0,
 [File pt]=uigetfile(’*.mod’,’Choose model file’);
end
fid=fopen([pt File]);
if fid==-1
 return
end

nodeinf=[];beam=[];disk=[];pbeam=[];matiso=[];

while 1

 line = fgetl(fid);
 if ~isstr(line), break, end
 if length(line)>4
 ind=1;
 while isspace(line(ind)) & (ind<length(line)-1),

 ind=ind+1;
 end
 if ~strcmp(line(ind),’#’),
 if strcmp(line(ind:ind+3),’node’)
 vals=[’[’ line(ind+4:length(line)) ’]’];
 val=eval(vals); % assuming all in x direc.
 nodeinf=[nodeinf ; val(1:2)];
 elseif strcmp(line(ind:ind+3),’beam’)
 vals=[’[’ line(ind+4:length(line)) ’]’];
 val=eval(vals); %assuming all in z direc.
 beam=[beam ; val(1:4)];
 elseif strcmp(line(ind:ind+3),’disk’)
 vals=[’[’ line(ind+4:length(line)) ’]’];
 val=eval(vals);
 disk=[disk ; val];
 elseif strcmp(line(ind:ind+4),’pbeam’)
 cyl=999;rect=888;gen=777;
 vals=[’[’ line(ind+5:length(line)) ’]’];
 val=eval(vals);
 pbeam=[pbeam ; val];
 elseif strcmp(line(ind:ind+5),’matiso’)
 vals=[’[’ line(ind+6:length(line)) ’]’];
 val=eval(vals);
 matiso=[matiso ; val];

 end % if nodeinf, beam, disk ...
 end % if not comment line
 end % if length(line)>4

end % while fopen
fclose(fid);

B.4.2 lisa2ib.m
function [nodes,shafts,shafts2,disks,disks2,unsym,name]=lisa2ib
% [nodes,shafts,shafts2,disks,disks2,unsym,FileName]=lisa2ib
%
% converts LISA’s format of beam, disk ...matrices into
% shafts etc. suitable for the aleerot function
% example of format:
% shafts=[elem_no length diameter E dens]
%
% 19.12.94 GvG

The Matlab functions used for reading LISA format: lisa2ib.m

75

% 5.2.95 minor changes GvG

if nargin<2,
 pt=[];
end
if nargin<1,
 FileName=[];
end
[nodeinf,beam,disk,pbeam,matiso]=readlisa;

% units at present not converted
% convert into m kg s system
% nodeinf(:,2)=nodeinf(:,2)/1000
%matiso(:,2)=matiso(:,2)*1000;
%matiso(:,4)=matiso(:,4)*1e9;
%pbeam(:,4:5)=pbeam(:,4:5)/1000;

% beam assumed to contain elements ordered:up=first,down=last
% shafts=[elem_no length diameter E dens inner_diameter]
% belem=[length diameter E dens inner_diameter node_no])
Nbeam=length(beam(:,1));
temp=[];shafts2=[];unsym=[];shafts3=[]; %asymmetric parts in future

for m=1:Nbeam
 belem=zeros(1,6);
 salida=0;n=0;
 belem(6)=beam(m,3); % node number
 belem(1)=nodeinf(beam(m,4),2)-nodeinf(beam(m,3),2); % length
 while n<length(pbeam(:,1)) & salida==0
 n=n+1;
 if beam(m,2)==pbeam(n,1)
 if pbeam(n,3)==999
 belem(2)=2*pbeam(n,5); % convert into meters
 belem(5)=2*pbeam(n,4);
 p=0;
 while p<length(matiso(:,1)) & salida==0
 p=p+1;
 if matiso(p,1)==pbeam(n,2)
 belem(3)=matiso(p,2);
 belem(4)=matiso(p,4);
 salida=1;
 end
 end
 elseif pbeam(n,3)==888
 disp([’at node number ’ int2str(belem(6))]);
 disp(’element rectangular, assumes d=sqrt(pi*b*h/4)’)
 belem(2)=sqrt(pi*pbeam(n,5)*pbeam(n,4)/4);
 belem(5)=0;shafts2=[shafts2;belem(6)];
 p=0;
 while p<length(matiso(:,1)) & salida==0
 p=p+1;
 if matiso(p,1)==pbeam(n,2)
 belem(3)=matiso(p,2);
 belem(4)=matiso(p,4);
 salida=1;
 end
 end
 else,
 % shafts2=[node_no length A mass I_polar I_2 I_3]
 shafts3=[shafts3;belem(6)]; % not yet implemented
 salida=1;
 end
 end
 end % while
 temp=[temp;belem(6),belem(1:5)];
end % for
dl=[]; % nodes=elements+1 dl=[node_no length]
[nr m]=size(temp);
dl=[dl;temp(:,1:2)];
% for n=1:2, % options for future use such as asym.elements
% whatshaft=[’shaft’ num2str(n)];
% if exist(whatshaft),
% eval(’[nr m]=size(whatshaft);’);
% if m>4,eval([’dl=[dl;’ whatshaft ’(:,1:2)];’]);end
% end
% end
ne=max(dl(:,1)); % number of shaft elements
[n s]=sort(dl(:,1)); % sort order of elements corresp. to node
shafts=temp(s,:);
nodes=nodeinf(1:ne+1,2);

% disks=[nod_no. diameter thickness density d_inner]

The Matlab functions used for reading LISA format: lisa2ib.m

76

% disks2=[node_no mass I_polar I_equatorial]
disks=[];disks2=[];
for m=1:length(disk(:,1))
 if disk(m,2)==1, % format disks above
 del(1)=disk(m,4);
 del(2)=2*disk(m,6);%/1000;
 del(3)=disk(m,7);%/1000;
 p=0;salida=0;
 while p<length(matiso(:,1)) & salida==0
 p=p+1;
 if matiso(p,1)==disk(m,3)
 del(4)=matiso(p,4);
 salida=1;
 end
 end
 del(5)=disk(m,5);%/1000;
 disks=[disks;del];
 clear del;
 else % format disks2 above
 del(1)=disk(m,3);
 del(2)=disk(m,4);
 del(3)=disk(m,6);%*1e-6;
 del(4)=disk(m,5);%*1e-6;
 disks2=[disks2;del];
 clear del;
 end
end
[name pt]=uiputfile(’*.mat’,’Save converted matrices ?’);
if isstr(name)
 eval([’save ’ pt name ’ nodes shafts shafts2 shafts3 disks disks2 unsym name
’]);
end

77

C

The Graphical User Interfaces

The graphical user interface allows easy construction of the model as well as
easy manipulation of data entered in a previous session. The user-interface
controls are a powerful Matlab tool to build graphical interfaces in the
Matlab language that increase user comfort enormously and can avoid
repeated input. When used sensibly the use of the software can become far
more intuitive. These elements provide the possibility of building a screen
full of push buttons, sliders, menus and boxes where the user can enter data
via keyboard in the appropriate boxes appearing in the figure window or
make selections per mouse click. The fact that these ui-controls are event-
driven functions makes the interface highly flexible, e.g. discs and bearings,
as well as any element properties, can be entered in a completely arbitrary
order, even before the shaft has been constructed.

C.1 The Grahical User Interface of the FE Program

Figure C.2 Interface for disc elements

Shown here is the menu for defining the disc elements, which will be used to
illustrate how all three interfaces work. The property boxes are inner
diameter (non-zero in case the shaft goes through the disc), outer diameter,
thickness and density. In case that there can be more than one disc attached

Appendix

The Grahical User Interface of the FE Program

78

to a certain node, each disc has an index (shown above the property boxes)
for identification.

It is possible to browse through the data of previously entered discs (by
using the slider or changing the node number) while their properties are
displayed in these property boxes. To make corrections or add a new disc,
one simply changes the appropriate numbers in the edit-boxes and presses
the Accept button. The colour of the node or element entry field changes
from white to purple to acknowledge that the element is included in the
matrices. Without pressing the Accept button, new data are not written into
the matrices. Pressing the delete button throws the present element (if there
is one selected, which is indicated by the color) out of the matrix.

When browsing through the nodes, the outer diameter of the shaft is the
default value for the inner diameter of the disc. The data of the present disc
is also kept when moving to the next node (unless there is a disc already
present, in which case these properties are then shown) to allow for fast
repetetive of the same discs at different nodes.

The model is drawn and upgraded in the figure window as the elements are
entered or changed. Klicking the mouse button on any element in the plot of
the model automatically switches to the right interface corresponding to that
element (i.e. shaft, disc, or bearings) and displays the properties of this
element in the interface. This makes the switching back and forth between
interface and commiting changes to the model a whole lot faster.

Figure C.3 Interface for boundary conditions and bearings

The Grahical User Interface of the FE Program

79

The add bearing button calls an interface for entering bearing properties and
boundary conditions. Bearing properties and boundary conditions can be
then entered for each direction of the general co-ordinates. Ticking the
clamped box for a particular co-ordinate, e.g. q1 at node 9, will result in
cancelling the redundant row (no. 17=2·8+1, because there are 2 degrees of
freedom per x and y-direction) in the global M, K, etc. matrices. The
keyboard button halts the execution of the function and one can examine the
present variables, commit changes manually or enter commands. The back
to shaft button leads back to the shaft interface, where the elements of the
rotor shaft can be entered and also has a menu bar (on top of the figure, not
visible here) to allow for models to be cleared, saved and loaded, the amount
of unbalance per element to be entered, and the program exited.

After finishing entering the model, one presses the main menu button in any
of the interfaces, the windows are closed and an analysis menu appears. The
available choices are: plotting the modeshapes and natural frequencies at a
particular speed of rotation, plotting the Campbell diagram (including the
first three engine orders), and plotting the unbalance response over a range
of speeds. A special menu can be invoked in case non-axisymmetric
elements are present.

Figure C.4 Main interface for shaft elements

80

C.2 The Grahical User Interface of the Disc Animation Tool

The theoretical background is described in section 3.2. Here the layout of the
interface is described.

Figure C.5 Main animation window

The choice for the frame of reference for the animation, the size of the grid of
the disc, the cutout feature (Figure C.8), mesh or surface plot, interpolation of
colours, and colourmaps can be specified on the menubar which is located on
top of the main animation window, but cannot be seen here. The colour can
have two different meanings, depending on the type of vibration and
viewing angle, sometimes one choice gives a much better understanding of
the movement than the other. The two options are: colouring the z-
deflection (shown here) or the body-fixed position on the disc.

The Grahical User Interface of the Disc Animation Tool

81

Figure C.6 Interface for specifying wave components

Under the sliders and editboxes for the magnitude of the travelling wave
components are on/off and standing wave switches. They are there just for
comfort to minimise repeated input. While experimenting with different
combinations, it is not necessary to set the values for the not wanted
components to zero, one can simply switch the contribution of these
components to zero, the values in the sliders and editboxes do not change.
As a standing wave is the superposition of a forward and backward
travelling wave with equal number of nodal diameters, the interface has a
’standing wave switch’ placed under the forward components. When this
switch is on, forward and backward sliders are moved simultaneously, so a
standing wave is added to the present setup. An adjustment of the absolute
magnitude of deflection by changing the relative magnitude of every single
component is not necessary, an additional control slider allows for this
possibility.

Further options for the animation are the viewing angle (elevation), also
adjustable by slider or editbox.

Since the drawing of the model can take some time, especially when in
surface plot mode with interpolating colours, any changes made in the

The Grahical User Interface of the Disc Animation Tool

82

interface for wave components will not affect the plot of the disc in the main
animation window unless the update button has been pressed. This was
found to be necessary to increase the speed with which the user could try out
different set-ups before deciding which one to animate. The preview in the
interface for wave componets shows the deflection of the disc at the
circumference, any changes made to the vibration pattern are immediately
reflected here, as redrawing this is quite fast. It uses the same number of
radial lines as the main disc plot, any shortcommings on this part, that is not
enough radial lines for the present vibration, or it simply looks too rough,
can therefore be seen immediately.

The cancel button resets all parameters to the values of the last update.
When the animate button is pressed, the dialog for the animation parameters,
shown below, appears.

Figure C.7

The meaning of the animation parameters were described as well in the main
text. Here it just should be pointed out that the upper two values are
underlined with a different colour to indicate that these do not affect the
generation of the movie frames. This means that after a movie has been
generated, they can be changed without necessitating to start a new
generation of movieframes. This allows the user to change the number of
repetitions and the speed of the animation. As a new movie is generated, the
old one can still be viewed when the play old button is pressed. This makes
it possible to compare to movies, e.g. vibration in rotating and stationary
frame of reference, without having to wait for the frames to be generated
each time.

The Grahical User Interface of the Disc Animation Tool

83

-4 -2 0 2 4
0

50

100

nodal diameters

relative amplitudes in %

Figure C.8 surface plot with cutout

D

Some Code of the FE program and a short documentation

D.1 A short documentation of the FE program

The start

There are two main gateways into the program, depending on what is needed.

− rotgui

 To build a FE-model via the graphical user interface, type rotgui at the

command line and a figure window with some buttons, sliders and

editboxes will appear, they are pretty self explanatory.

− rotmenu

If the geometry matrices are already existing, type rotmenu at the

command line and use help button for further information.

The shortcuts

There are shortcuts to access functions directly, which is handy sometimes. If

the mass, stiffness, ... matrices are present or if the results of further analysis are

already saved as Matlab file, e.g. a Campbell diagram, one can do the calculations

or retrieve the graphs by calling the corresponding function without having to go

through all the menus again.

− modeshap

starts < plot modeshape > function. Saved modeshapes can be loaded from

here. The ’save modeshapes’ option in this function only saves the

modeshapes (global variables vv and dd for the eigenvalues) and not the M,

K, G... or geometry matrices since this option is only directed towards

retrieving the modeshapes without having to make the necessary calculations

again.

− campbell

starts < plot Campbell diagram > function. Saved Campbell diagrams can be

loaded. Same as for the modeshap function, saved matrices include only

those necessary to plot the Campbell diagram again (global F W, F is matrix

of eigenvalues and W is speed of rotation vector) and do not include M, K, G

− unbres

plots the unbalance response at a specified node over a range of speed of

Appendix

A short documentation of the FE program

rotaiton. Results are in global variables amplit_u and amplit_v for the

response in Y and Z direction respectively.

− rotasym

menu for non-axisymmetric analysis, i.e. equations of motion with time

varying coefficients. The functions below all belong to this menu.

− rothill

assembles the hyper-eigensystem using Hill’s approach, the modeshapes are

stored in vvv and the eigenvalues in ddd, both are global.

− asymcam

plots the Campbell diagram by solving the hyper-eigensystem over a

specified range of speed of rotation.

− asymunb

plots the unbalance response by solving the hyper-eigensystem over a

specified range of speed of rotation.

− rotsort

sorts out the basis eigenvalues and vectors of the hyper-eigensystem using

vvv and ddd as results from rothill to start with.

− whirl

plots whirl orbit of FE-results or shows a demo if no input is given.

modshap, campbell and unbres prompt you what to do with the present data, if the

output matrices such as modeshapes and frequencies already exist. You can plot

them, or do new calculations (new speed of rotation or whatever) with the present

M, K, G matrices. If you get tired of this dialog, type old=1; and the following

default actions will be taken: modeshap, campbell, unbres check for existing M

(mass), vv (modeshapes), F (frequencies, Campbell diagram), or amplit_u

(unbalance response) matrices. If M alone is present, new calculations with the

existing M, K, G matrices can be executed, the user is asked to specify new

parameters, e.g. speed of rotation. If vv (or F, amplit_u) is present, they are shown.

In order to invoke the load matrices prompt, type clear global M vv (or F, amplit_u)

or use the option in the menu bar.

The format of the geometry matrices

In case alterations of the matrices are made during the program to take shortcuts or

to specify things where an input routine has not yet been written (e.g. to have more

than one element between the same two nodes, to input unbalance, or to delete a

shaft element instead of starting from scratch again), it is necessary to know the

format of the matrices. The matrices mentioned below (including the ones for

A short documentation of the FE program

modeshapes, Campbell diagram) are all declared as global variables in all functions,

so after a "highly unlikely" crash of the program the matrices are still accessible.

Most files used by the program are script files so all the data is accesible after a

crash and therefore providing a possibility to trick yourself out of the problem.

When manually changing or entering any matrices via the keyboard buttons

provided, check beforehand if the matrix wanted is present in the current

workspace, e.g. size(xxx) and if the answer is [], type global xxx to get xxx into the

current workspace, otherwise the input will be lost.

Notation:

− J denotes mass moments of inertia

− I denotes area moments of inertia

− X, Y, Z is the fixed frame of reference with X in shaft direction

− 1, 2, 3 are the rotating body co-ordinates with 1 in (deflected) shaft

direction

The node vector:

nodes = [X(1) X(2) ... X(n)]

specifies the location on the X-axis where the index of the vector element is the node

number.

The shaft element matrix:

shafts = [left_node_number outer_diameter length Young’s_modulus density

inner_diameter]

shafts2 or shafts3 pop up in the files for easy implementation of non-axisymmetric

elements in the future. When assembling a model using the graphical interface, the

elements are usually in order. However, this is not necessary, any element added to

the end of the shaft matrix will be attached with its left side to the

left_node_number specified in shafts(:,1).

It is also possible to have more than one element between two nodes. However,

this has to done manually using the keyboard buttons provided in the interfaces to

append all additional elements to the shafts matrix. Pressing the Accept button if

there is an element already present (i.e. this lovely purple colour appears) does not

add another element to the matrix but overwrites the present element at that node

with the new parameters (e.g. length, diameter..) shown in the edit boxes. To add

additional elements between the nodes would a nice recomendation for future

work.

A short documentation of the FE program

When deleting shaft elements the question arises whether elements such as discs or

springs should be interpreted as fixed to the shaft, therefore move with the

elements as some are kicked out, or fixed to their node number specified and not

move with the shaft. When the corresponding row has been eliminated from the

shafts matrix, node information stored in shafts(:,1) is updated as well as the nodes

vector.

Note that the units of the parameters have to be consistent since there is no

conversion routine implemented yet.

The discs matricies

disks = [node_number outer_diameter thickness density inner_diameter]

The discs are treated as perfectly rigid in this model. It is possible to attach more

than one disc to a certain node. The number of discs present at one node is

indicated by the disc index box in the interface. The order of discs within the disks

matrix is arbitrary. Pressing the Accept button simply adds a disc with the given

parameters to the system. If there is a disc already present (with the same index, i.e.

again purple colour in the index box), pressing the Accept button results in

overwriting the present data. The Delete disc button throws the disc out of the

disks matrix.

It might be useful sometimes not to enter the geometric dimensions but rather mass

and moments of inertia. In this case the format for disks2 can be used:

disks2 matrix

disks2 = [node-number mass J1 J2]

with J1 being moment of inertia in shaft direction (polar) and J2 consequently the

moment of inertia in a direction perpendicular to the shaft (equatorial).

The bearings

springs = [node_number direction stiffness]

with the possible directions

1 for y-direction

2 for angular stiffness in the X-Y plane

3 for z-direction

4 for angular stiffness in the X-Z plane

A short documentation of the FE program

The numbers for the directions coincide with the indices of the generalised co-

ordinates.

The dampers and damping

dampers = [node_# direction c]

direction is the same as for springs, c the damping coefficient with the units

force·time/length. There is no input routine yet, has to be done manually.

Proportional damping can easily be included, the matrix D (same size as M ...)

just has to be created, e.g. D=alpha·M+beta·K;

The boundary conditions

BC = [node-number direction]

with the same values for direction as for springs. The information in the BC matrix

will be used to eliminate obsolete rows from overall mass, stiffness, damping, and

gyroscopic matrices as well as from the unbalance force vector, if present. Here

again is the matrix not sorted with respect to node numbers.

The unbalance vector

unbalance(node_# , :) = [Y_direction Z_direction]

where Y_direction, Z_direction are columns specifying the amount of
eccentricity in Y and Z direction respectively. The row indices of the
columns coincide with the node number for which the eccentricity is entered.

The model for unbalance used here assumes a linear distribution of unbalance
in an element. This distribution is specified by the amount of eccentricity
given for the left and right nodes of the element. There is a mini-input
routine in the grahical user interface which prompts you for input and does
the rest (declaring variables as global and so on) automatically. However,
many times the unbalance is only known in the form of a lumped unbalance
mass and its excentricity. For these cases there is a different format avaiable:

unbal2(node_# , :) = [mass*Y_excentricity mass*Z_excentricity]

A short documentation of the FE program

The matricies for non-axisymmetric elements are split into two types:

A non-axisymmetric part attatched to a node:

unsym = [node_# mass J1 J2 J3 φ]

φ is an angle (in radians) of body 2-axis to an arbitrary reference (the same one, of

course, for all the non-symmetric elements) for the general case that the principal

axes of the elements are not all in the same two planes. J1 is the moment of inertia

in shaft direction and J2, J3 are the moments of inertia in the remaining principal

axes of the non-axisymmetric element (without changes to the code, 2 and 3 are

assumed to be perpendicular to each other).

Non-axisymmetric shaft elements:

shafts2 = [node_# length area I1 I2 I3 density Young’s_modulus φ 2]

I1, I2, I3 are area moments of inertia, note the difference to unsym with J1, J2, J3.

area is the cross of the element. The last entry is the flag for the format.

or for rectangular elements:

shafts2 = [node_# length height width density Young’s_modulus φ 1]

height is in 2-direction of the body co-ordinates and width in 3-direction.

If the non-axisymmetric elements in shafts2 are all of the same type, it is not

necessary to specify the format. If there is no entry for angle φ , all angles are

assumed to be zero.

elements in disks2 and unsym do not appear in the drawing of the model due to

lack of geometry information

Self documented help:
− all functions listed under shortcuts have self documented help, rotmenu has a

more general overview

− help rotdata and rotadd to see the format of the symmetric element matrices

− help rotasp for the format of the non-axisymmetic element matrices

− help rotasymm, rotasymg, rotasymk for FE-matrices of one asymmetric

element

− help rotmass, rotgyro, rotstiff for FE-matrices of one symmetric element

− help whirl to see a demo or calculated whirl orbit

Nomenclature

90

E

Nomenclature

Symbols

A cross-sectional area
state space matrix
forward whirl radius

B backward whirl radius

d diameter of shaft element or disc

d0 diameter of gyration = I A/

dn n d

l

π 0

D damping matrix

E Young’s modulus

ey , ez eccentricity in Y and Z direction

f, F force, force vector

G gyroscopic matrix

i −1

I area moments of inertia

Im imaginary part

J mass moments of inertia

K stiffness matrix

l length of shaft

L length of rotor shaft element

m mass of element or disc

M mass matrix

N dimension of the matrices M, K, G

n harmonics, in terms like nΩ
nodal diameter, wave number

Q generalised forces

qi generalised co-ordinates, stationary frame of reference

r co-ordinate vector, rotating frame of reference

R rotation matrix

Re real part

T kinetic energy
time period

T co-ordinate transformation matrix = RT

Appendix

Nomenclature

91

t time

u displacement, complex displacement = y +i·z
rotation vector of two frames of references

U cross-product operationally expressed in matrix form

v, w deflection in Y and Z direction

y, z deflections in Y,Z direction, stationary frame of reference

α angle of rotation between XYZ and X'Y'Z' = Ωt

−β, γ angular deflection or rotation in Y and Z directions

λ whirl frequency, stationary (XYZ) frame of reference

λ' whirl frequency, rotating (X'Y'Z') frame of reference

θ angle in tangential (azimuthal) direction in disc

ρ density

Ψi shape functions

ψ modeshapes

ξ dimesionless parameter = x/L

ω angular frequency

Ω angular speed of rotation of the shaft

Subscripts

-2, -1, 0, 1, 2 matrices with e t− i 2Ω , ... as coefficients

b backward whirl direction

d difference, moments of inertia

e element matrix

ex excitation frequency

f forward whirl direction

i 1, .., 4 or 1, .. , 8 , usually for shapefunctions and
generalised co-ordiantes

j −∞ ∞, ,
l left node of element
n nodal diameter, wavenumber

general index
r right node of element

matrix in rotating frame of reference
rot rotational energy, matrices in equation of motion in

rotating co-ordinates
X, Y, Z X, Y, Z directions
XYZ stationary frame of reference

X'Y'Z' rotating frame of reference, X'=X

Nomenclature

92

ζ , η, ξ body fixes co-ordinates

Superscripts

’ , ’’ , ’’’ , ’’’’ rotating frames of references
d

d
,

d

d
,...

x x

2

2

s shaft
d disc or bearings

	Table of Contents
	1. Introduction
	2. Finite Element Model for Rotating Structures
	3. Visualisation of Dynamic Properties
	4. Experimantally-Measured Data
	5. References
	A. Derivation of Element Matricies
	B. Comparison of LISA and Measurement
	C. Graphical User Interfaces
	D. FE program documentation
	E. Nomenclature

