SAMPLE AUTOMOBILE VIBRATION PROBLEM
Revision A

By Tom Irvine
Email: tom@vibrationdata.com

February 6, 2015

Introduction

The following example is taken from Reference 1. Consider the automobile in Figure 1. The
translation and rotation are both referenced to the center-of-gravity. The vehicle is modeled
as a two-degree-of-freedom system as shown in Figure 2.
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Figure 1.
Variables
m mass
J mass moment of inertia about the C.G.
k spring stiffness
L length from spring attachment to C.G.
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Figure 2.
Sign Convention:
Translation: upward in vertical axis is positive.
Rotation: counter-clockwise is positive.
Assume small angular displacement.
Sum the forces in the vertical direction.
> F=mx 1)
mX =—Kkq (X-L10)-k, (x+L50) 2
MmX+Kky (X-L10)+ky (X+L20)=0 3)
M + kX -kiL10+Kox +kyLo0=0 (4)
mX + (kg + Ko )x+(-kiLg +kyL5)0=0 (5)
Sum the moments about the center of mass.
> M=J0 (6)



JO=kq L1(Xx-L10)-ky Lo(x+L,0) 7)

J0—kg Ly(x-L10)+ky Lo(x+L,0)=0 (8)
J6—Kq Lix+kq Ly20+Ky Lox+ky Ly20=0 9)
Jé+(k1L12+k2L22)8+(—k1L1+k2L2)x:0 (10)
{m O}M{ ke kabvkg L%}m:m i~
0 J||8] |-kiLi+koLy, kiLi?+koLy2[0] |0

The vibration modes have translation and rotation which will be coupled if

kl Ll # k2 L2 (12)

Note that the moment of inertia J is
J=mr? (13)

where r is the radius of gyration.

Eigenvalues and Eigenvectors

Equation (11) is coupled via the stiffness matrix. An intermediate goal is to decouple the
equation.

Simplify,
MX+K%=0 (14)
where
m O
w -

k1+k2 —k1L1+k2L2

K= 16
Lkl Li+ky Ly kqLi?+ko '—22} (10



Seek a solution of the form

X =gex (jot)
The q vector is the generalized coordinate vector.

Note that

X = jogep (jot)
X =-0%gep (jot)
Substitute equations (18) through (20) into equation (14).
—o° M gexp (jot)+ Kexp (jot)=0
{—032 M G+ Kg }exp (jot)=0
~0?Mg+Kg=0

{—m2M+K}q:o

{K—mzlvl }q:ﬁ

Equation (25) is an example of a generalized eigenvalue problem. The eigenvalues can

be found by setting the determinant equal to zero.

det {K -2 M |=0

k1+k2 —k1L1+k2L2 2
det 2 2 -
_kl L1+k2 L2 kl Ll +k2 L2

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)



de{

(k1+k2)—(,02m _kl L1+k2 L2 ~0
_kl Ll +k2 |_2 kl |_12 + k2 L22 —(DZJ

Table 1. Parameters

Variable Value
M 3500 Ibm =108.8 slugs = 108.8 Ibf sec"2 /ft
Ly 4.4 ft
L, 5.6 ft
k1 2000 Ibf / ft
K, 2400 Ibf / ft
R 4.0 ft

1741 slugs ft"2 = 1741 Ibf ft sec"2

ki + ko = 2000 Ibf / ft + 2400 Ibf / ft

kl + k2 = 4400 Ibf / ft

—kyLy+kyLy= {2000?} [4.4ft]+[2400—} [5.61t]

Ibf Ibf

ft

— kll—l + k2L2 = 4640 Ibf

(kl L% +kyp |_22)= {ZOOO?} [4.4ft]2 {2400%} [5.6t]2

Ibf

(kl L2 +ks |_22)=1.140e+o5 Ibf ft

(28)

(29)

(30)

31)

(32)

(33)

(34)



2

2400 ™°" _ 2| 108,80 €€ 4640 Ibf

det ft =0
4640 Ibf (1.140e +05 Ibf ft)- (1741|bf fi secz)
The units are consistent. Omit the units for brevity.
2
det| 4400 -108.80 4640 |=0
4640 (1.140e + 05)-1741w

4400 ~108.8»? f(1.140e + 05)— 174102 |- 4640% =0

(1.894e + 05)0* — (2.006€ + 07)? + (5.016€ + 08)— 46402 =0
(1.894e + 05)w* — (2.006€ + 07 )0? +(4.801e +08) =0

1.8940% —200.6 w2 +4801=0

The eigenvalues are the roots of the polynomial.

2 200.6 —/200.62 = 4(1.894)(4801)
L 2(1.894)

, 200.6+1/200.6% = 4(1.894)(4801)
w =
2 2(1.894)

2 200.6-62.19
O =—(———
3.79

200.6+62.19

()] 2 =
2 3.79

o =36.517(rad /sec)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)



®F =69.404(rad /sec)® (46)

@ = 6.043 (rad/sec) (47)
wy =8.331 (rad/sec) (48)
f; = 0.962 Hz (49)
f,=1.33 Hz (50)

The eigenvectors are found via the following equations.

K- 2M |g; =0 (51)
(K-, 2M |, =0 (52)
where
a = {q“} (53)
d12
d, = {qﬂ (54)
022

Note that the first component in each vector is a translation and that the second component
is a rotation.

Now solve for the first eigenvector.

4400 -108.8(36.517) 4640 Gu1|_q (55)
4640 (1.140e +05)-1741(36.517) | a12 |
426.62 4640
G |_q (56)
4640 50419 || g0
G1g |_| 1.000 (57)

Now solve for the second eigenvector.



4400 -108.8(69.404) 4640 21 | _ (58)
4640 (1.140e + 05)-1741(69.404) | 925 |
~3151 4
315 640 || go1 -0 (59)
4640 —6832] g
2 | [0.679

The first and second mode shapes are plotted in Figures 3 and 4, respectively.
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The blue curve is the undeformed mode shape. The circle indicates the C.G.

The red curves are the mode shapes.
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Figure 4.

The blue curve is the undeformed mode shape. The circle indicates the C.G.

The red curves are the mode shapes.
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1.000
Qa1 | _ (61)
J12 —0.092
The displacement d; as a function of the length u is

di (u)=utan(-0.092) + 1 (62)

da(u) =-0.092 u + 1 (63)

Recall the second eigenvector.
1.000
21| _ (64)
qoo 0.679
The nodal point is found by setting the displacement equal to zero. The nodal point for the
first mode is thus 10.87 ft forward of the center of mass.
The displacement d, as a function of the length u is

do(u) = u tan(0.679) + 1 (65)

do(u)=0.807u+1 (66)
The nodal point for the second mode is thus 1.24 ft aft of the center of mass.
Reference
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