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Introduction 

 
 

 

Figure 1.  Free-Free Beam, Fundamental Bending Mode 

 

 

A rocket vehicle in flight is conceptually similar to the beam in Figure 1 in terms of 

structural dynamics.  The beam is unconstrained, with free boundary conditions. 

 

Both the beam and the rocket vehicle have a fundamental body bending mode which 

oscillates back and forth.  Both have higher bending modes as well.   The vehicle’s bending 

natural frequencies must be determined via analysis and test data prior to flight so that the 

autopilot control system can be designed accordingly. 

 

Note that the vehicle’s bending modes may be excited in flight by thrust offsets, maneuvers, 

wind gusts, etc.  

 

Unlike the beam, the launch vehicle’s bending frequencies changes with time.  The 

vehicle’s frequencies increase as the propellant mass is expelled. 

 

Furthermore, the launch vehicle may have a gimbaled nozzle with a thrust vector control 

actuator.  The autopilot system commands the nozzle to rotate in-flight as needed to steer 

the vehicle on its programmed trajectory and to correct for any wind gusts or perturbations. 
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Figure 1.  Launch Vehicle Geometry and Coordinates 
 

     vo   is the rigid body velocity vector. 
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Assumptions 
 
 

1. The mass is constant. (The analysis could be for mass variation with time.) 

2. The vehicle has a solid rocket motor, so that liquid fuel slosh is not a factor. 

3. Restrict the motion to the x-y plane. 

4. Neglect shear deformation and rotary inertia. 

5. The nozzle is gimbaled. 

 

Coordinate Definition 
 
 

The coordinate system origin is at the center of mass.  The coordinate system is moving. 
 

The x-axis is the longitudinal axis of the undeformed vehicle. 
 

 

Variables 

 

c = Center of mass of the entire vehicle 

e = Nozzle center of mass 

h = Nozzle hinge point 

Ie = Mass moment of inertia of the nozzle about its hinge 

Io = Mass moment of inertia of the entire vehicle about the center of mass 

m = Total mass of the vehicle 

me = Mass of the nozzle 

l1 = Length from nozzle exit plane to center of mass 

l2 = Length from nose cone tip to center of mass 

yc = 
Rigid-body (or vehicle center of mass) displacement due to hinge 

rotation δ  

z = Variable distance from hinge along nozzle centerline 

ez  = Distance from hinge to nozzle center of mass 

α = Angle-of-attack 

δ = Nozzle angular displacement with respect to vehicle longitudinal axis 

θ = Angle between global Y-axis and the vehicle’s local X-axis 

fθ&  = 
Rigid-body angular velocity of the vehicle forward of the hinge due to 

hinge rotation 
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Variables (continued) 
 

 

)x(iφ  = Normal mode shapes for body-bending modes 

)t(qi  = Generalized coordinate associate with the corresponding mode 

ω  = Rate of rotation of the coordinate axis.  θ=ω & . 

 

 

Note that nozzle system would be referred to as an engine if the vehicle had liquid propellant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Rigid-Link Model for Momentum Analysis 
 

 

x 

y 

c 
O 

h 

δδδδ    



 5

Linear Momentum 
 

Note that the bending modes are orthogonal and have zero linear momentum and zero angular 

momentum. 
 

The vehicle undergoes a longitudinal displacement as the nozzle rotates. 

 

There is no external force.  Thus the condition of zero linear momentum within the moving 

coordinate frame requires that 
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The lateral velocity of the vehicle at the center of mass is thus 
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The corresponding displacement equation is 
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Note that the displacement of the vehicle at c in the x-axis is omitted because it is negligibly small. 

 

 

Angular Momentum 
 

The condition of zero angular momentum within the moving coordinate frame requires that 
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Note that  
 

 ( ) fc xyxy θ−= &&&                                                                                                        (8) 
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By substitution, 

 
 

[ ] [ ] 0dmxxdmxxy
b

0fc =+δ+θ− ∫∫− h

l

l
l

2

1

&&&                                                                        (14) 

 

0dmxdmxdmxdmxy
b

0

b

0

2
f

2
c =δ+δ+θ− ∫∫∫∫ −− h

l

l

l

l
l

2

1

2

1

&&&&                         (15)                                                      

 

0zmII eehfo =δ+δ+θ− &&&
hl                                                                                             (16)  

 

 

[ ] δ+=θ &&
eehfo zmII hl                                                                                                      (17)     

 

 

[ ]
δ

+
=θ &&

o

eeh
f

I

zmI hl
                                                                                                         (18)           

 
 

The corresponding angular displacement equation is 
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Let    
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Equation (6) gives the rigid vehicle displacement cy  due to hinge rotation δ . 
 

Equation (21) gives the rigid vehicle angular displacement fθ  due to hinge rotation δ . 

 

The y-axis displacement due to hinge rotation and elastic bending modes is  
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Equation (22) is the displacement relative to the moving coordinate system. 
 

 

 

Equations of Motion 

 

To be added in the next revision. 
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