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This report summarises the analytical expression for the sound pressure gen-
erated by a gas bubble in a fluid. The main reference is T.G. Leighton’s excellent
The Acoustic Bubble[1].

1 Pressure Radiated from a Pulsating Sphere

Assume a Newtonian fluid of constant densityρ0 and sound speedc. A spherical
body of rest radiusR0 vibrates radially with wall amplitudeU0, wave numberk and
angular frequencyω. We have the following analytic expression for the pressure in
a fluid at a radiusr and timet:

P (r, t) =
ρ0cR0U0

r
cosχ0e

i(ωt−k(r−R0)+χ0) (1)

The parameterχ0 relates the wave number of the vibration to the size of the body
and is defined by

cosχ0 =
kR0√

1 + (kR0)2

1.1 Long Wavelength Approximation

In the long wavelength limitkR0 = ω0R0/c� 1 we haveχ0 ≈ π/2 andeiχ0 ≈ i.
The expression for pressure simplifies considerably:

P (r, t) =
iρ0ckR0

2U0

r
eωt−kr (2)

In section 3.4, the resonant frequencyω0, and hence the wave numberk, is related
to the bubble radius. Figure 1 shows the dimensionless parameterkR0 for a large
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Figure 1: ParameterkR0

range of bubble radii vibrating at their resonant frequency. Clearly for bubbles
larger than 1µm the long wavelength approximation is valid.

If we are concerned with non-resonant frequencies, then in water we need
kR0 ≡ νR0/2πc � 1, whereν is the linear frequency. At the highest end of
human hearing,ν ≈ 20000 Hz and so we needR0 � 0.465 m, which implies
again that the long wavelength approximation is valid.

2 Resonant Frequency of a Bubble

Acoustic vibrations are typically small in amplitude, which leads to linearisation of
the standard wave equation and other simplifications. The radial vibration of an gas
bubble in a fluid is modeled well as a simple harmonic oscillator whose stiffness
and mass parameters relate to the properties of the gas and fluid. In particular the
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inertial mass of the bubble will relate directly to the work required to move the
surrounding fluid. We will take the

2.1 Minnaert Frequency

As a harmonic oscillator, the bubble will have a resonant frequency at which it will
vibrate after being subjected to an impulsive force. The resonant frequency is

ω0,m ≈
1
R0

√
3κp0

ρ0
(3)

or

ν0 ≈
1

2πR0

√
3κp0

ρ0
(4)

whereν0 is the linear resonant frequency andp0 is the static pressure in the fluid.
The effects of heat conduction are represented byκ, where1 ≤ κ ≤ γ andγ is
the ratio of specific heats for the gas. For the isothermal case,κ = 1, and for the
adiabatic case,κ = γ. In most practical casesκwill take on some mid-range value.
The effects of surface tension are assumed to be negligible. The classicalMinnaert
resonant frequencyassumes that the gas in the bubble is compressed adiabatically,
soκ = γ.

3 Damping

We can extend equation 2 to include the effects of damping at the bubble wall. The
bubble will lose energy from the radiation of sound, thermal conduction and vis-
cosity. In holding to our harmonic oscillator model, we rewrite the wall amplitude
to beU0 = U0,ie

−βt whereβ−1 is the time constant of decay of amplitude. In ad-
dition, classical harmonic oscillator theory shows that the resonant frequency will

be shifted toωb =
√
ω2

0 − β2. An examination of the quality factor of the system
shows that we can relateβ toω0, the resonant frequency, by way of a dimensionless
damping constant

δ ≡ 2β
ω0

Further, it is assumed that radiation, thermal and viscous losses are the only rele-
vant factors in the damping, which contribute linearly:

δ = δrad + δth + δvis

Figure 2 shows all three damping coefficients and their sum.
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3.1 Radiation Damping

The radiation damping coefficient can be derived by examining the acoustic impedance
for spherical waves, which includes the radiation resistance. The radiation damp-
ing term is

δrad =
R0ω0

c
(5)

3.2 Viscous Damping

The viscous damping coefficient can be derived by examining the Navier-Stokes
equations at the bubble wall. While there are no viscous losses inside the bubble,
at the wall the bubble loses energy on compression. The viscous damping term is

δvis =
4η

R2
0ρω0

(6)

whereη is the coefficient of shear stress in the fluid.

3.3 Thermal Damping

The thermal damping coefficient can be derived using a painful examination of the
thermodynamics of the gas inside the bubble. The net result is that if the thermal
boundary layer of the bubble is large compared to the radius, then on compression
the bubble behaves isothermally and loses energy to the surrounding fluid. If the
thermal boundary layer is small compared to the radius, then the bubble behaves
adiabatically and no energy is lost through thermal conduction.

The thermal boundary layer thickness is given bylD =
√
Dg/2ω0 whereDg =

Kg/ρgCp is the thermal diffusivity of the gas,Kg is the thermal conductivity of
the gas,ρg is the density of the gas andCp is specific heat of the gas. The thermal
damping coefficient is then given by

δth =
sinh z+sin z
cosh z−cos z −

2
z

z
3(γ−1) + sinh z−sin z

cosh z−cos z

(7)

wherez ≡ R0/lD is the ratio between the bubble radius and the thermal boundary
layer thickness.
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Figure 2: Resonant bubble damping coefficient
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3.4 Resonant Frequency with Damping

The effects of damping change the resonant frequency at which the bubble will
vibrate. The new frequency is given by

ω0,d =
1
R0

√
3γp0

ρ

√
g

α
= ω0,m

√
g

α
(8)

whereω0,m is the classical Minneart frequency. The effects of thermal conductivity
are incorporated intoα, a dimensionless constant:

α =
(
1 + δ2

th

) [
1 +

3(γ − 1)
z

(
sinh z − sin z
cosh z − cos z

)]
The effects of the surface tensionσ are incorporated intog, a dimensionless con-
stant:

g = 1 +
2σ
p0R0

− 2σ
3κp0R0

whereκ = γ/α. Figure 3 shows
√
g/α for various bubble radii and figure 4

compares the damped resonant frequency to the classical Minneart frequency.

4 Calculation of Parameters

The equation for the damped resonant frequencyω0,d relies onα, which uses the
thermal boundary layerlD, which itself requires the frequency. More explicitly,
we have

ω = ω0,m

√
g(ω)
α(ω)

where we have dropped the subscripts onω0,d. This is a non-linear equation in
ω to solve and the solution cannot be written simply. We used Matlab’sfzero
command to solve the equation. For a starting guess we used either the Minn-
eart frequency or if we were calculating the frequencies for a range of radii, the
frequency of a nearby radius.
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Figure 3: Damped resonant frequency scaling factor
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Figure 4: Resonant bubble frequencyω0,d/2π
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