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Consider a cantilever beam with an applied force at the free end. 

 

 

 

 

 

 

 

 
 

 

  
 

 

Figure 1.   

 
The variables are 

 

Area moment of inertia I 

Cross-section area A 

Elastic Modulus E 

Length L 

Mass per Volume ρ  

Mass per Length M 

Displacement u(x,t) 

Applied Force )t(P  

Base Excitation Frequency (rad/sec) ω  

Natural Frequency (rad/sec) nω  

Viscous Damping Ratio ξ 

 

m,I,E  

L 

P (t) 
y(x,t) 
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Assume uniform mass density and constant cross-section.  The governing equation from 

Reference 1 is 
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The boundary conditions at the fixed end x = 0 for the case without the force are 

 

 

y(0, t) = 0            (zero displacement)                                                        (2) 
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The boundary conditions at the free end x = L for the case without the force are 
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The iφ terms are some unknown functions of time which will be determined by the 

principle of virtual work. 

 

The natural frequencies are determined from the roots as follows. 

 

 Table 1.  Roots 

 Index βn L 

 n = 1 1.87510 

 n = 2 4.69409 

 n = 3 5π/2 

 n = 4 7π/2 

 

 

The natural frequency term ωn is thus 
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The calculation steps are omitted for brevity.  The resulting normalized eigenvectors are 
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The virtual transverse displacement iyδ  in terms of the mode shapes are 
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The mass of an element between two adjacent cross sections of the rod is .dxm  
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The work IWδ  done by inertial forces on the assumed virtual displacement is 
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iii Yy δφ=δ                                                                                                  (12)                               

 

 

∫δφ−=δ
L

0 iiI dx)x(YymW &&                                                                           (13) 

                                                               

 

By substitution, 
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The orthogonality of the normal mode shapes is such that 
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Now calculate the strain energy U produced by the elastic forces. 
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The orthogonality relationships are  
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The virtual work of the elastic forces is 
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Determine the work of the applied concentrated force. 

 

 

)t,L(y)t(PW iFi δ=δ                                                                                            (29) 
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The total virtual work is thus 
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Add modal damping 
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Time Domain 
 

The modal equation of motion is 
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The modal displacement, velocity, and acceleration can then calculated via a numerical 

method such as the Runge-Kutta or Newmark-Beta method, as given in References 2 and 

3, respectively.  The Runge-Kutta method, however, may be unstable for stiff systems. 

 

Another method is the ramp invariant digital recursive filtering relationship in Reference 

4.  This is the method used in the following example. 

 

          

 

The physical displacement can then be found via 
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Example 
 

The following analysis is performed via Matlab scripts: cant_beam_force_frf.m & 

cant_beam_arbit_force.m. 

 

Consider the transverse response of an aluminum, fixed-free, circular rod with the 

following properties. 
 

 

Length L = 24 inch 

Diameter D = 1 inch 

Area A = 0.785 inch^2 

Area Moment of Inertia I = 0.0491 inch^4 

Elastic Modulus E = 1.0e+07 lbf/in^2 

Mass Density ρ  = 0.1 lbm/in^3 

Speed of Sound in 

Material 
c = 1.96e+05 in/sec 

Viscous Damping Ratio ξ  = 0.05 
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Figure 2. 

 

 
 

The resulting transfer functions are shown in Figures 2 through 4. 

 

 

The first four natural frequencies are 

 

Table 2. Natural Frequencies 

I f i (Hz) 

1 47.8 

2 299 

3 837 

4 1641 
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Figure 3. 
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Figure 4. 

 

 

 

Now apply a force time history at the free end of the beam.  The force is a sine sweep 

with amplitude of 1 lbf from 20 to 2000 Hz.  The sweep rate is logarithmic.  The duration 

is 240 seconds.  The results are shown in Figures 5 through 7. 

 

 

Table 3.  Peak Response Values at x=L 

Parameter Value 

Displacement 0.091 in 

Velocity 27.5 in/sec 

Acceleration 23.6 G 
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Figure 5.             
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Figure 6.            
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Figure 7. 
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