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Consider a cantilever beam with an applied force at the free end. 

 

 

 

 

 

 

 

 
 

 

  
 

 

Figure 1.   

 
The variables are 

 

Area moment of inertia I 

Cross-section area A 

Elastic Modulus E 

Length L 

Mass per Volume   

Mass per Length m 

Displacement u(x,t) 

Applied Force )t(F  

Base Excitation Frequency (rad/sec)   

Natural Frequency (rad/sec) n  

Viscous Damping Ratio  
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Assume uniform mass density and constant cross-section.  The governing equation from 

Reference 1 is 
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The boundary conditions at the fixed end x = 0 for the case without the force are 

 

 

y(0, t) = 0            (zero displacement)                                                        (2) 
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             (zero slope)                                                      (3) 

 

 

The boundary conditions at the free end x = L for the case without the force are 
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    (zero bending moment)                                         (4)                    
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       (zero shear force)                                                (5) 
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The i terms are some unknown functions of time which will be determined by the 

principle of virtual work. 

 

The natural frequencies are determined from the roots as follows. 

 

 Table 1.  Roots 

 Index n L 

 n = 1 1.87510 

 n = 2 4.69409 

 n = 3 5/2 

 n = 4 7/2 

 

 

The natural frequency term n is thus 
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The calculation steps are omitted for brevity.  The resulting normalized eigenvectors are 
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The virtual transverse displacement iy  in terms of the mode shapes are 
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The mass of an element between two adjacent cross sections of the rod is .dxm  
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The work IW  done by inertial forces on the assumed virtual displacement is 
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By substitution, 
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The orthogonality of the normal mode shapes is such that 
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Now calculate the strain energy U produced by the elastic forces. 
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The orthogonality relationships are  
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Thus, 
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The virtual work of the elastic forces is 
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Determine the work of the applied concentrated force. 
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The total virtual work is thus 
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Add modal damping 
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Time Domain 
 

The following approach is taken from Reference 2. 

 

Let  Î = total impulse. 
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Assume that the initial conditions are zero. 

 

The modal displacement is 

          

     tsintexp)L(Y
1
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The modal velocity is 
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   The modal acceleration is 
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The physical displacement can then be found via 
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A challenge is to determine the number of modes to include in the analysis.  Most of the 

displacement occurs due to the response of the fundamental mode.  The peak velocity and 

peak acceleration values, however, continue to rise as additional modes are included.  

 

Further consideration is needed. 
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