FLUTTER OF A CANTILEVER WING IN A STEADY AIRFLOW
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ABSTRACT

A stability analysis of combined bending and torsional vibrations of
a cantilever wing in steady airflow is presented. The system is non-
self-adjoint and consists of two linear homogeneous partial differential
equations with space-dependent coefficients. The system admits no closed-
form solution, so that an approximate method is used. 1In particular,
Galerkin's method is used in conjunction with finite series of comparison
functions for the bending and torsional displacements. The method results
in a discretized eigenvalue problem in the form of an algebraic eigen-
value problem.

A numerical example reveals that for a given set of system para-
meters the third mode is responsible for the first divergent flutter con-
dition. Consequently, in this case the bending and torsional displace-
ments must be described by at least two comparison functions each to deter-

mine the flutter condition.

Introduction

The combined bending and torsional vibrations of a cantilever wing in
a steady airflow is treated under the quasi-steady assumption [1]. Free

vibration of the wing is being investigated so that the only external
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forces acting on the wing are the aerodynamic forces as shown in Fig. 1.

%“mmg

. These forces are found using the strip theory approximation in which the
1ift coefficient is proportional to the local geometric angle of attack
[2]. Fung [1] has derived the governing equations of motion and the linear
and angular displacements are each approximated by one assumed mode. It
is shown in this paper, through an example, that such an approximation may
be inadequate, even as a first approximation, depending on the nature of
the flutter condition. Therefore a more complete analysis is presented by
means of Galerkin's method, in which the bending and torsional displacements
are each described by a finite series of comparison functions. Standard
application of the method leads to an algebraic eigenvalue problem with

the airflow velocity relative to the wing as a parameter.

Equations of Motion E
‘ Let the bending deflection of the elastic axis and the rotation of :

the elastic axis be denoted by w(x,t) and 98(x,t), respectively, where

w(x,t) is positive downward and 6(x,t) is positive if the leading edge is

up, where the latter is known as the local angle of attack. The distance .

between the leading edge and the elastic axis is denoted by yo(t) and the |

distance between the elastic axis and the inertial axis is denoted by

ye(t). The chord length is c(x). The velocity of the airflow relative to

the wing is a constant and denoted by V. The two partial differential equa-

tions of motion have been shown to be [1]
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where EI(x) and GJ(x) are the bending and torsional stiffnesses, res-
pectively, m(x) is the mass per unit length, p denotes the air density

and e is the local lift coefficient. The aerodynamic forces and moments

were obtained using "strip theory" in which ¢, is assumed to be propor-

L

tional to the local angle of attack and is such that ch/de = 27, It is

further assumed that the airfoil has circular or parabolic camber. More-

over, the analysis is subject to the quasi-steady assumption [1].
Equations (1) are linear and homogeneous with space-dependent

coefficients. The displacements w and 6 are subjected to the homogeneous

boundary conditions
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w(x,t)[x=0 = % w(x,t)|X=O = 8(x,t)lx=0 =0 (2a)
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It is of immediate concern to formulate the eigenvalue problem. As we
are about to see, the system is non-~self-adjoint. Assuming a solution

in the form

w(x,t) = w(x)e}\t . B(x,t) = (a(x)e)‘t (3a,b)

where A is in general complex, introducing Eqs. (3) into Eqs. (1) and

dividing through by e}‘t we have
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The boundary conditions retain the form (2), but with W(x) replacing
w(x,t) and 0(x) replacing 6(x,t). Partial derivatives become total

derivatives with respect to x.

An Approximate Solution

No closed-form solution to Eqs. (4) exists. Therefore an approximate
solution is sought by means of Galerkin's method [3]. The solutions are

assumed to be in the form

n+m

n
W= ) a.y, , 0= 73 ajw (5a,b)
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where ¢, j = 1,2,...,ntm are comparison functions multiplied by the

]

constants a, j = 1,2,...,n0tm. The first n functions must be four times

differentiable and satisfy the boundary conditions

= w.'l

lpj|x=0 j 'x=

= " = LA =
o = El¥, |X=L (Eij ) |X=L 0. (6a)
The remaining m functions must be twice differentiable and satisfy

wj|X=L = Gij'IX=L =0. (6b)




Substitution of Eqs. (5) into Eqs. (4) yields
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Next multiply Eq. (7a) by Yy i=1,2,3,...,n and Eq. (7b) by wj j=
|
1,2,...,n, integrate both results over the domain 0 < x < L and |
obtain the algebraic eigenvalue problem
n+m n+m n+m n+m
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Equation (8) can be written in the compact matrix form

[K + V2H + AL + A%M]a = 0 (10)

Note from Eq. (10) that when no air flows over the wing, V = 0, the

algebraic eigenvalue problem reduces to the standard form

Ka = —A2Ma (11)

where K and M are symmetric positive definite matrices and A = + iw
where w is the frequency of vibration. Hence, in the absence of air
flow the system is self-adjoint and positive definite, as expected.

The general system described by Eq. (10), however, is non-self-
adjoint, so that A = a * iw is in general complex (see Fig. 2). Because
A is a continuous complex function of the velocity V it follows that
the real part o is a continuous function of V. For sufficiently small
V, the general system is in a convergent flutter condition and the wing

is assymptotically stable. However, beyond some critical velocity, V =V

cr
corresponding to o = 0, we find a divergent flutter condition and the
wing becomes unstable. This critical velocity can be determined from
the eigenvalue problem, Eq. (10). To this end, Eq. (10) can be re-
written in standard form
K* a* = )M*a* (12)




where a* = [aT)\aT]T is a 2(n+m) vector and
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are 2(n+m)x2{(n+m) matrices, in which I is the identity matrix of order
ntm. Solving the eigenvalue problem (12) for increasing values of V,
one can determine whether or not the system can experience flutter and

at which critical velocity Vc .
r

Example

A uniform wing is considered. Referring to Eqs. (5), the comparison
functions chosen are the modes of deformation of a uniform cantilever

beam and of a uniform torsional bar [3].
wi(x) = (sinBiL - sinhBiL)(81nBix - sinhBix)
+ (cosBiL +‘coshBiL)(cosBix - coshBix) , 1=1,2,...,n (14a)

wi+n(x) = sin(gi—:—l

5T X) i=1,2, ..., m (14b)

The parameters of the system are given in Table 1. Computations were
performed by distinguishing between three cases. In the first case,
one bending mode and one torsional mode were taken. Hence, from Egs.
(14) we have n=m=1. In the second case, the first two bending modes

and the first two torsional modes were chosen so that n=m=2. In the



third case, three bending modes and three torsional modes were taken so
that n=m=3. The resulting eigenvalues are tabulated in Tables 2, 3, 4.
In Fig. 3 the real part of the first three eigenvalues is plotted as a

function of the air velocity for the three cases indicated.
Discussion

Clearly, the accuracy of the computed eigenvalues depends on the
order of the discretization model. Indeed, as more comparison functions
are chosen, the error in the computed eigenvalues decreases. In fact,
in the limit, as the number of functions chosen approaches infinity, the
approximate solution approaches the exact solution, provided the chosen
set of comparison functions is complete. It is well known that the set
of comparison functions used in this example, the bending and torsional
modes, is complete. From Table 2, we conclude that the convergence of
the computed eigenvalues to their exact values is relatively fast. Con-
sider the conservative system. In the first case, the natural frequency
of the second mode is quite inaccurate. In general, the highest frequen-
cies of the model are inaccurate, so that the first case accurately
determines the first frequency of the continuous system, the second case
describes the first three frequencies relatively well, etc.

Now consider the general system. In Fig. 3 the relationship between
the real part of the eigenvalue to the air velocity is shown. 1In the
first case, a critical flutter condition is reached in the second mode.
In the second and third cases, the third mode is responsible for the
first divergent flutter condition, hence it is concluded that the third
mode 1s responsible for the first divergent flutter condition.

In this example, where uniform properties were chosen, flutter

occurred in the third mode. Therefore an approximation that only charac-
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terizes the first two modes of vibration will be unable to describe the
flutter condition regardless of the comparison functions chosen. 1In fact,
for the class of non-self-adjoint systems the convergence of the eigen-
values is not governed by an inclusion principle [4] hence trucation of the
second and higher modes, even as a first approximation, should be avoided

unless specifically justifiable.
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SYSTEM PARAMETERS

i. Geometric parameters:

c 6.30 ft
L 20.00 ft
Y, 2.00 ft
Yo 0.50 ft

2., Material parameters:

4,65 1b ft‘zsec2
2
16.50 1b sec
1.00(6) 1b £t2
1.00(7) 1b ft2

3. Other parameters:

0.00237 1b ft ¥sec?

2T -

Table 1
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CONSERVATIVE SYSTEM (V = 0)

case frequency w(rad/sec)
first second third fourth fifeh sixth
n=m=1 4.076 63.235* - - - -
n=m=2  4.076 25.518 63.449* 189.110 - -
n=m=3  4.076 25.517 63.415* 71.406 190. 42 315.08
A=t iw

*This frequency corresponds to the mode for which the general
system first reached a critical flutter condition as the velocity was
increased.

Table 2
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FIRST MODE

SECOND MODE

100

200

300

400

500

600

100

200

300

400

500

600

+0.

+0.

.000

.508

.036

.606

.248

.042

.923

.000

.072

<124

.133

.971

102

445

n=m=1

.076

.051

.971

. 816

63.

63.

62.

61.

59.

57.

55.

A

026

396

333

820

830

329

n=m=2

0.000
-0.508
-1.036
-1.607
-2.250

-3.005

-0.508
-1.019
-1.540
-2.074
-2.632

-3.228

o * iw rad/sec

Table 3
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25.

25.

25.

25.

.076

.051

.971

.816

.542

. 040

546

570

604

647

0.000

-0.508

-1.036

-1.607

-2.250

-3.005

-1.541

-2.076

-2.636

3.234

25,

25.

25.

25.

25.

25.

.076

.051

.971

.816

.542

.040

.932

.517

520

530

547

574

610

657
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THIRD MODE

FOURTH MODE

n=m=1 n=m=2 n=m=2

\' o w o w o w

0 - — 0.000 63.449 0.000 63.415
100 — - -0.060 63.229 -0.064 63.199
200 - - -0.098 62.567 -1.040 62.543
300 - — -0.089 61.447 -0.096 61.433
400 — — +0.001 59.851 -0.006 59.847
500 - - +0.218 57.751 +Q.212 57.752
600 — - +0.636 55.098 +0.631 55.109

0 - — 0.000 189.110 0.000 71.406
100 — - -0.086 189.040 -0.506 71.408
200 - - ~0.170 188.840 -0.015 71.413
300 - — -0.249 188.510 -1.527 71.423
400 — - -0.323 188.050 -2.043 71.442
500 - - -0.389 187.450 -2.564 71.470
600 — - ~0.444 186.720 -3.091 71.508

A =qo t iw rad/sec

Table 4
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