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Abstract 

 This paper presents a theoretical study of torsional vibrations in isotropic elastic plates. 

First, the exact solutions for torsional vibrations in circular and annular plates are reviewed. Then, 

an approximate method is developed to analyze torsional vibrations of circular plates with 

thickness steps. The method is based on an approximate plate theory for torsional vibrations 

derived from the variational principle following Mindlin’s series expansion method. 

Approximate solutions for the zeroth- and first-order torsional modes in the circular plate with 

one thickness step are presented. It is found that, within a narrow frequency range, the first-order 

torsional modes can be trapped in the inner region when the thickness exceeds that of the outer 

region. The mode shapes clearly show that both the displacement and the stress amplitudes decay 

exponentially away from the thickness step. The existence and the number of the trapped first-

order torsional modes in a circular mesa on an infinite plate are determined as functions of the 

normalized geometric parameters, which may serve as a guide for designing distributed 

torsional-mode resonators for sensing applications. 
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I. INTRODUCTION 

 Torsional vibrations of circular plates and cylindrical rods have been studied for many 

years. Recent developments of torsional-mode sensors and actuators in micro- and nano-

electromechanical systems have renewed interests in this topic1-5. Previous studies of torsional 

vibrations have largely focused on cylindrical rods or shafts, for which a one-dimensional 

mathematical model based on the “strength-of-materials” approach6 has been widely used in 

practice. However, it has been shown that the one-dimensional model is only accurate at low 

frequencies and three-dimensional analysis is required at high frequencies7. In particular, shafts 

with stepped cross-sections are common in engineering structures. Several three-dimensional 

methods have been developed to analyze torsional vibrations of stepped shafts7-11. Johnson et 

al.11 showed that, within a certain frequency range, torsional modes can be trapped in the central 

section of stepped solid cylinders with a slightly larger diameter such that the vibration 

amplitude decays exponentially with the distance from the central section. Such trapped modes 

may find interesting applications in the design of resonators, transducers, and sensors. 

Vibrational energy trapping in plates has been a subject of considerable interest because 

of its importance in the design of quartz crystal oscillators. By electroplating of quartz crystal 

plates, thickness-shear vibrations can be trapped near the electrodes with amplitude decreasing 

exponentially away from the electrodes in the unplated region12-16. It has also been observed that, 

by decreasing the plate thickness from center to edge or contouring, the thickness-shear 

vibrations can be confined in the center portion of the plate, which improves the resonator 

performance by reducing edge leakage due to boundary mismatch and mode conversion17-19. 

Much less attention has been paid to torsional vibrations of plates. By using Love’s thin plate 

theory20, Onoe21 analyzed the contour vibrations of circular plates including torsional modes 
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(Onoe used the term “tangential modes”). The result was used by Meitzler22 in an ultrasonic 

technique for determining elastic constants of glass wafers. For thick plates, exact solutions are 

available for both solid circular plates and annular plates, which are essentially the same as the 

exact solutions to the classical Pochhammer equation for cylindrical rods and hollow 

cylinders23,24. For plates with non-uniform thickness, an exact analytical solution is generally not 

possible25. This paper develops an approximate method for analyzing torsional vibrations of 

circular plates with thickness varying in the radial direction as steps (e.g., Figure 1c). Such plates 

are of interest because torsional vibrations may be trapped near the steps, similar to that in 

stepped solid cylinders11 and the thickness-shear vibrations in contoured plates17-19. Recent 

experiments by Knowles et al.26 have observed trapped torsional modes in stepped and contoured 

aluminum plates, which may be used to design sensors with improved performance in the 

presence of liquids. 

The paper is organized as follows. Section 2 reviews the general three-dimensional 

theory and exact solutions for torsional vibrations of circular and annular plates with uniform 

thickness (Figure 1a&b). Section 3 develops an approximate plate theory from variational 

principle. In Section 4, an approximate method is developed for torsional vibrations of plates 

with thickness steps (Figure 1c), and approximate solutions are obtained for the zeroth- and first-

order modes. Trapped first-order modes are identified. A map is constructed predicting the 

existence and the number of the trapped torsional modes in a circular mesa on an infinite plate. 

Section 5 concludes with remarks on potential applications of the theoretical results. 
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II. GENERAL THEORY AND EXACT SOLUTIONS 

Figure 1 illustrates the geometries of the plates considered in this paper. Assuming 

axisymmetric motion and isotropic, linear elastic materials, the momentum equation for the 

torsional motion is 
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where r, θ, z are the cylindrical coordinates as defined in Figure 1, t is the time, u  is the 

torsional displacement, 

θ

ρ  is the mass density, and µ  is the shear modulus. 

The stress associated with the torsional motion has two nonzero shear components, which 

relate to the torsional displacement by 
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 For plates with uniform thickness, Eq. (1) can be solved by separation of variables. 

Assume a harmonic solution, namely 

tiezQrPtzru ω
θ )()(),,( = ,     (4)  

where ω  is the angular frequency of vibration. Substitution of Eq. (4) into Eq. (1) leads to 
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 For 0, ≠kβ , the general solutions to Eqs. (5) and (6) are, 

)()()( 11 rBYrAJrP ββ += ,     (8) 

)cos()sin()( kzDkzCzQ += ,     (9) 

where J1 and Y1 are the first-order Bessel functions of the first and second kinds, respectively, 

and the coefficients A, B, C, D must be determined from boundary conditions. An alternative 

form of the solution (8) is 

)()()( )2(
1

)1(
1 rBHrAHrP ββ += ,    (10) 

where  and  are the first-order Hankel functions of the first and second kinds. Due to 

their asymptotic behavior, the Hankel functions sometimes offer convenience for physical 

interpretations of the solution. 

)1(
1H )2(

1H

When 0=β , the solution (8) is replaced by a special solution 

r
BArrP +=)( .      (11) 

Similarly, when , the solution (9) is replaced by 0=k

DCzzQ +=)( .      (12) 

 A complete solution for free vibrations can be obtained by a superposition of all possible 

solutions in the form of Eq. (4) with the value of β  or  determined from the boundary 

condition. For forced vibrations, a particular solution satisfying the forcing boundary conditions 

must be included in the superposition. This paper focuses on free vibrations only. 

k

 

A. Free vibrations of a circular plate 

 First consider a circular plate of radius a and thickness h with traction-free boundaries at 

all surfaces and edges (Figure 1a). The boundary condition requires that 
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0=−
r
P

dr
dP  at r = a.     (13) 

0=
dz
dQ  at z = 0 and h.     (14) 

In addition, it is implied that the displacement at the center of the plate (r = 0) is finite. 

Consequently, any singular terms with respect to r must be discarded from the solution. 

Therefore, 
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where asmm /=β  and is the mth nonzero root to ms 0)(2 =sJ , and  
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where 
h

nkn
π

=  for n = 0, 1, 2, …. 

 Combining Eqs. (15) and (16), one obtains the complete solution for torsional vibrations 

of the circular plate, namely 
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Solution (17) consists of all the possible torsional modes that satisfy the boundary conditions for 

the circular plate, where Eqs. (18) and (19) give the corresponding resonant frequency of each 

mode. 

 Figure 2 shows the spectrum for torsional vibrations of circular plates, where the 

frequency is normalized by the first cut-off frequency, 
ρ
µπω

h
=1 , and plotted against the ratio 

between the thickness and the radius of the plate. The spectrum includes two limiting cases. To 

the right end of the spectrum, h/a >> 1, and the first several modes with the lowest frequencies 

correspond to the case with 0=β . In this case, the displacement is proportional to the r-

coordinate as given by the first term in the bracket of Eq. (17), and the resonance frequencies 

( nω ) are independent of the radius of the plate. These modes are identical to those predicted by 

the one-dimensional model for long cylindrical rods. To the left end of the spectrum, h/a << 1, 

and the first several modes with the lowest frequencies now correspond to the case with k = 0 (n 

= 0), for which the displacement is independent of z and the resonance frequency independent of 

the thickness h. These modes are identical to those predicted by Onoe21 for thin circular plates. 

Between the two limits, the frequencies from different groups are interwoven. The spectrum 

clearly shows when the one-dimensional model or the thin-plate approximations can be used and 

when the exact three-dimensional analysis is required. Zhou et al.27 recently conducted a three-

dimensional vibration analysis using the Chebyshev-Ritz method and predicted the first 10 

resonance frequencies for a circular plate with thickness ratio h/a = 0.4, as shown by the circles 

in Figure 2. The excellent agreement confirms the accuracy of the Chebyshev-Ritz method.  
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B. Free vibrations of annular plates 

 Next consider an annular plate with outer radius a, inner radius b, and thickness h (Figure 

1b). Both inner and outer edges are traction free. In addition to the boundary conditions (13) and 

(14), the traction-free condition at the inner edge requires that 

0=−
r
P

dr
dP  at r = b.     (20) 

Consequently, Eq. (15) becomes 
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where asmm /=β  and here  is the mth root to the following equation, ms

0)()()()( 2222 =− sYsJsYsJ ηη ,    (22) 

with ab /=η . Equation (21) recovers Eq. (15) when the inner radius b = 0. 

With Eq. (16) unchanged, the complete solution for torsional vibrations of the annular 

plate is 
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where the frequencies nω and mnω  take the same form as in Eqs. (18) and (19). 

 The frequency spectrum for the annular plates is similar to Figure 2, but the radial wave 

number mβ  varies with η , the ratio between the inner radius and the outer radius. Figure 3 

shows the first five radial wave numbers obtained from Eq. (22) as functions of the ratio. The left 

end of the figure corresponds to the case of solid circular plates ( 0=η ). Toward the right end, 
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the wave numbers rise rapidly, which correspond to thin-wall tubes. Similar result was obtained 

by Clark23 for hollow cylinders. 

 

 Following similar procedures, exact solutions for torsional vibrations of circular and 

annular plates with other boundary conditions can be obtained. For plates with non-uniform 

thickness, however, exact solutions are generally not available25. Consider a circular plate with a 

thickness step (Figure 1c), which has thickness h1 at the inner region (0 < r < b) and thickness h2 

( ) at the outer region (b < r < a). The general solution for torsional vibrations of such 

plates should consist of two parts: For the inner region, the displacement takes the form of Eq. 

(17); for the outer region, the displacement takes the form of Eq. (23). The two parts are coupled 

through the joint boundary at r = b, where the continuity conditions for the displacement and the 

shear traction have to be applied. However, exact solutions satisfying the continuity conditions 

cannot be obtained analytically. The remainder of this paper develops an approximate plate 

theory, from which approximate solutions to torsional vibrations of circular plates with thickness 

steps are obtained. 

12 hh ≠

 

III. APPROXIMATE PLATE THEORY 

 A general procedure for deducing approximate equations for elastic plates from the three-

dimensional theory of elasticity was first introduced by Mindlin28 based on the series expansion 

methods of Poisson29 and Cauchy30 and the variational method of Kirchhoff31. The procedure has 

been used to derive approximate plate theories for both elastic and piezoelectric crystal plates 

with uniform32-34 and nonuniform thickness35, 18, 19. Here we follow the same procedure to derive 

approximate equations for torsional vibrations of isotropic elastic plates. The approximate 
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equations will then be used to deduce an approximate solution to torsional vibrations of circular 

plates with thickness steps in the next section. 

Considering torsional motion of a linear elastic continuum of volume V bounded by a 

surface S, the variational principle leads to 
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( ) 0=−−∫ ∫S zzrr dSunntdt θθθθ δσσ ,      (25) 

where tθ is the traction at boundary S, and n is the outward normal at the boundary. For a circular 

plate (Figure 1a), the boundary S consists of two surfaces at z = 0 and h and the edge face at r = 

a. For an annular plate (Figure 1b), another edge at r = b adds to the boundary. 

 Expand the displacement into a cosine series, 
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The orthogonality of the cosine series leads to 
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where 1=mnδ  if  and nm = 0=mnδ  otherwise. 

 Substituting Eq. (26) into Eq. (24) and integrating over the thickness of the plate, we 

obtain that 

0
2

11

2

)()(0)(

0

)()()(
,

=
+

−+


 ++∫ ∫ ∑

∞

=

dAuuF
h

h
n

r
dt

nnnn

A
n

n
z

n
r

n
rr

θθθ

θθθ

δρδ

σπσσ

&&

,    (28) 

where A is a plane parallel to the surface of the plate, and 
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 In a similar manner, substituting Eq. (26) into Eq. (25), we obtain that 

[ ] 0
0

)()()( =−∫ ∫ ∑
∞

=
C

n

nn
rr

n dsuntdt θθθ δσ ,    (32) 

where C is the contour of the plate edge(s), and 
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In deriving Eq. (32), the integral over the two surfaces of the plate has been set zero as the 

surface traction is specified through the definition of  in Eq. (31). )(nFθ

 For Eqs. (28) and (32) to be true for arbitrary variations, we have, in A,  
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and the boundary condition on C,  
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where u  is any specified displacement at the edge. As a result, the three-dimensional problem 

described by Eqs. (24) and (25) has been transformed to a system of two-dimensional equations. 
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 By inserting Eq. (26) into Eqs. (2) and (3) and then into Eqs. (29) and (30), we obtain that 
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Substitution of Eqs. (36) and (37) into Eq. (34) leads to 
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which is the nth-order displacement equation of torsional motion. 

 Each specific term in the infinite series expansion of the displacement in Eq. (26) can be 

obtained by solving Eq. (38) with associated boundary conditions at the edge(s) given by Eq. 

(35). For circular plates and annular plates with traction-free surfaces ( ), the infinite 

series expansion is identical to the exact solutions in Eqs. (17) and (23). For circular plates with 

thickness steps (Figure 1c), specific displacement terms for the inner and outer regions can be 

obtained from Eq. (38) separately and the continuity condition at the step can be approximated 

by Eq. (35). The procedure is presented in the next section. 

0)( =nFθ

 

IV. APPROXIMATE SOLUTION FOR STEPPED PLATES 

 Figure 1c sketches the geometry of the plate under consideration. We assume an nth-

order torsional motion in the inner region (r < b) but keep the series expansion of the 

displacement in the outer region (b < r < a) in order to satisfy the continuity conditions at the 

junction. Thus, the displacement of the stepped plate is 











<<<<








<<<








=

∑
∞

=

.0 and,cos),(

;0 and,cos),(
),,(

2
0 2

)(
2

1
1

)(
1

hzarb
h
zmtru

hzbr
h
zntru

tzru

m

m

n

π

π

θ

θ

θ   (39) 

Solving Eq. (38) for the inner and outer regions separately, we obtain that 
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where 
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The corresponding in-plane shear stresses are 
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 At the junction (r = b), both the displacement and the traction are required to be 

continuous. In case of h1 > h2, part of the edge of the inner region is traction free with 

unspecified displacement. Thus, the continuity of the displacement is only required for 

, which, by Eq. (27), leads to 20 hz <<
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On the other hand, the traction at the edge of the inner region is fully specified by the traction-

free part and the continuous part, which requires that 
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Equations (46) and (47) represent the approximate continuity conditions at the thickness 

step. Substitution of Eqs. (40), (41), (44), and (45) into Eqs. (46) and (47) leads to 
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 In addition, a traction-free condition at the outer edge (r = a) requires that 
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Equations (48), (49), and (51) form a linear system of infinite degrees (m = 0, 1, 2, …). In 

practice, only a finite subset of the equations may be used to obtain approximate solutions. Let m 

take values from 0 to M. The linear system takes the form 

0=⋅Θ v ,      (52) 

where Θ  is a square matrix of size 12 +M  and v is a vector consisting all the coefficients, , 

, and . For nontrivial solutions, the determinant of the matrix vanishes, namely, 
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which gives the frequency equation for free vibrations of the stepped plate. The standard 

procedures of linear analysis can then be used to calculate the resonance frequencies and the 

corresponding mode shapes. 

Similarly, for h1 < h2, the continuity conditions (46) and (47) become 
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And Eqs. (48) and (49) become 
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where 

∫ 














−
=Λ 1

0
121

0 coscos2 h
n

mn dz
h
zn

h
zm

h
ππδ .    (58) 

 In the above approximation procedure, we have neglected coupling between torsion and 

flexure as well as possible stress singularity at the corner of the step10. The effect of these local 

events is considered negligible for the analysis of the global behavior of torsional vibrations. 

 

A. Zeroth-order modes (n = 0) 

 First consider zeroth-order torsional vibrations in the inner region of a stepped plate, for 

which n = 0 and the displacement is independent of the thickness coordinate. Such modes are 

also called radial modes in thin circular plates. The displacement in the outer region in general 

consists of an infinite series expansion as in Eq. (39) in order to satisfy the continuity conditions 

at the step. Our calculations show that, for the zeroth-order modes, the first term (m = 0) in the 

expansion dominates and the effect of additional terms is negligible. Figure 4 shows the first 

three resonance frequencies of the zeroth-order modes varying with the radius of the inner 

region. The frequencies are normalized by the cut-off frequency, 
ρ
µπω

1
1 h

= . The thickness 

ratio is fixed as 1.1
2

1 =
h
h  and the outer radius is 10

2

=
h
a . At both ends of the plot with the radius 

ratio b/a being 0 or 1, the stepped plate reduces to uniform circular plates with thickness h2 and 
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h1, respectively. The zeroth-order resonance frequencies of a uniform circular plate are given by 

Eq. (19) with n = 0 and labeled in Figure 4 as open squares. It is interesting to note that, while 

the zeroth-order resonance frequencies of a uniform circular plate are independent of its 

thickness and thus identical at both ends of Figure 4, the frequencies oscillate slightly in 

between, with the number of oscillations depending on the mode number and the amplitude of 

oscillation depending on the thickness of the step. Such oscillation may be caused by the 

interactions between the torsional waves and the discontinuous boundary at the step. 

To check the continuity conditions at the step, Figure 5 plots the mode shape 

corresponding to point A (b/a = 0.2) labeled in Figure 4. It is noted that the displacement is 

continuous across the step but the stress by itself is not continuous. The error is due to the 

approximation of the traction continuity condition specified by Eq. (47), which leads to 

continuity of the total traction for the zeroth-order modes, i.e., 2
)0(
21

)0(
1 hh rr θθ σσ =  at r = b. Such 

approximation is reasonable for the zeroth-order modes when the thickness difference is small. 

 

B. First-order modes (n=1) 

Next consider the first-order modes with n = 1. In this case, the second term (m = 1) 

dominates in the expansion (39) for the displacement of the outer region. Figure 6 shows the 

resonance frequencies varying with the radius ratio b/a for a fixed thickness ratio 1.1
2

1 =
h
h  and 

outer radius 10
2

=
h
a . The left end of the plot corresponds to a uniform circular plate of thickness 

h2, which has a cut-off frequency, 
ρ
µπω

2
2 hc = , while the right end corresponds to a uniform 
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plate of thickness h1 with a lower cut-off frequency, 
ρ
µπω

1
1 hc =  (h1 > h2). The exact solutions 

for the uniform circular plates are calculated from Eq. (19) with n = 1 and labeled as squares at 

both ends. In between, the resonance frequencies change continuously. No first-order modes can 

be found below the cut-off frequency 1cω . Of particular interest are the vibrational modes with 

frequencies between the two cut-off frequencies. For these modes, the radial wave number in the 

outer region, )1(
2β , is imaginary, and the Bessel functions describing the distributions of the 

displacement and the stress asymptotically reduce to those decaying exponentially from the step. 

Consequently, the vibration is trapped within the inner region. Figure 7 plots the mode shape 

associated with the point A (b/a = 0.2) in Figure 6. From (46) and (47), the approximate 

continuity conditions at the step (r = b) for the first-order modes are: u  and )1(
111

)1(
2 θθ uΛ=

2
)1(
2hrθ111

)1(
1hrθ σσ Λ= . Both the displacement and the stress decay exponentially from the step, which 

confirms the existence of trapped torsional modes in the stepped plate. 

 Similar analyses can be conducted for higher-order modes (e.g., n = 2, 3, …), and trapped 

torsional modes are expected to exist near each cut-off frequency. 

 

C. Trapped torsional modes in infinite plates 

 The existence of trapped torsional modes in stepped plates offers possibilities to design 

an array of localized energy traps (or resonant cavities) on a large plate, each serving as a 

torsional-mode resonator. These resonators are very sensitive to surface loading and may be used 

for a variety of sensing applications. Each thickness step can be a circular mesa, for example, 

formed by machining, etching, or bonding of a decal onto the surface of the plate. The design 

parameters include the thickness and the radius of the mesa as well as the spacing between 

 18



adjacent mesas. The frequencies of the trapped modes depend on the mesa dimensions, and the 

spacing must be large enough to avoid coupling between adjacent resonators. Each mesa thus 

can be considered sitting on an infinite plate ( ∞→a ) isolated from the others. In this case, it is 

more convenient to use Hankel functions to describe the displacement outside the mesa, and by 

their asymptotic behavior only the first Hankel function remains so that the displacement at the 

infinite outer boundary vanishes. Therefore, any possible modes must be trapped near the mesa. 

Figure 8 shows the resonance frequencies for the first-order modes varying with the mesa radius 

for a fixed thickness ratio ( 1.1
2

1 =
h
h ). It is found that, depending on the mesa dimensions, there 

may exists zero, one, or multiple trapped modes. Figure 9 depicts a map for the number of 

trapped first-order torsional modes in a circular mesa with the radius b/h2 and the thickness ratio 

h1/h2 as the coordinates. The map is independent of the material properties as long as the plate is 

homogeneous, isotropic, and elastic. The map may be read in two ways. For a circular mesa with 

a given thickness, there exists a critical radius, below which no trapped mode exists; multiple 

trapped modes may exist when the radius is large. It is often desirable to have a single trapped 

mode, which requires a mesa radius within the window bounded by the lowest two lines in 

Figure 9. Alternatively, if the mesa radius is fixed, there exists a critical thickness, below which 

no trapped modes can be found, and a single trapped mode exists when the thickness is within 

the window. Such a map may serve as a guide for designing energy-trapped torsional-mode 

resonators. 

 Comparison between the theoretical results with experiments is in progress. Preliminary 

results show that the predicted resonance frequencies and the mode shapes agree closely with 

experiments. For example, a circular mesa of radius 18.8 mm and height 0.456 mm was 

machined on an aluminum plate of thickness 2.642 mm, and three trapped modes were observed 
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near the first cut-off frequency as predicted by Figure 9. The measured frequencies of the trapped 

modes agree with the predictions with an error less than 2%. Due to the space limit, the details of 

the experiments will be presented elsewhere26. 

 

V. Concluding Remarks 

This paper presents a theoretical study of torsional vibrations in isotropic elastic plates. In 

particular, an approximate method is developed to analyze torsional vibrations in circular plates 

with thickness steps. Approximate solutions are presented for the zeroth- and first-order torsional 

modes. Of practical interest is the trapped first-order mode, which is theoretically predicted and 

confirmed by the mode shapes. The number of trapped first-order torsional modes in a circular 

mesa on an infinite plate are determined as functions of the normalized geometric parameters, 

which may serve as a guide for designing distributed torsional-mode resonators for sensing 

applications. 
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Figure Captions: 

Figure 1: Schematics of the plates: (a) a uniform circular plate; (b) an annular plate; (c) a circular 

plate with a thickness step. 

Figure 2: Spectrum for torsional vibrations of uniform circular plates. The circles are numerical 

results from Zhou et al27. 

Figure 3: Radial wave number for torsional vibrations of annular plates versus the ratio between 

inner and outer radius. 

Figure 4: Frequency spectrum of the zeroth-order torsional vibrations of circular plates with a 

thickness step ( 10/,1.1/ 221 == hahh ). The open squares are the exact solutions for uniform 

circular plates, independent of the plate thickness. 

Figure 5: Mode shapes for the zeroth-order torsional mode corresponding to point A (b/a = 0.2) 

in Figure 4, in a circular plate with a thickness step ( 10/,1.1/ 221 == hahh ). The dashed line 

indicates the location of the thickness step.  

Figure 6: Frequency spectrum of the first-order torsional vibrations of circular plates with a 

thickness step ( 10/,1.1/ 221 == hahh ). The open squares are the exact solutions for uniform 

circular plates. 

Figure 7: Mode shapes of the first-order mode corresponding to point A of Figure 6, showing the 

characteristic of a trapped torsional mode in a circular plate with a thickness step 

( ). The dashed line indicates the location of the step. 10/,1.1/ 221 == hahh

Figure 8: The resonant frequencies of trapped first-order torsional modes in a circular mesa on an 

infinite plate ( ). 1.1/ 21 =hh

Figure 9: A map for the number of trapped first-order torsional modes in a circular mesa on an 

infinite plate, in the plane spanning the normalized radius and the thickness of the mesa. 
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Figure 1: Schematics of the plates: (a) a uniform circular plate; (b) an annular plate; (c) a circular 

plate with a thickness step. 
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Figure 2: Spectrum for torsional vibrations of uniform circular plates. The circles are numerical 

results from Zhou et al27. 
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Figure 3: Radial wave number for torsional vibrations of annular plates versus the ratio between 

inner and outer radius. 
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Figure 4: Frequency spectrum of the zeroth-order trosional vibrations of circular plates with a 

thickness step ( ). The open squares are the exact solutions for uniform 

circular plates, independent of the plate thickness. 
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Figure 5: Mode shapes for the zeroth-order torsional mode corresponding to point A (b/a = 0.2) 

in Figure 4, in a circular plate with a thickness step ( 10/,1.1/ 221 == hahh ). The dashed line 

indicates the location of the thickness step.  
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Figure 6: Frequency spectrum of the first-order torsional vibrations of circular p
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Figure 7: Mode shapes of the first-order mode corresponding to point A of Figure 6, showing the 

characteristic of a trapped torsional mode in a circular plate with a thickness step 

( h ). The dashed line indicates the location of the step. 10/,1.1/ 221 == hah
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Figure 8: The resonant frequencies of trapped first-order torsional modes in a circular mesa on an 

infinite plate ( h ). 1.1/ 21 =h
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Figure 9: A map for the number of trapped first-order torsional modes in a circular mesa on an 

infinite plate, in the plane spanning the normalized radius and the thickness of the mesa. 
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