NATURAL FREQUENCIES OF COMPOSITE BEAMS

By Tom Irvine Email: tomirvine@aol.com

August 1, 2000

Beam Simply-Supported at Both Ends

The method in this report is based on Reference 1.

Consider a simply-supported beam with length L, as shown in Figure 1. The cross-section consists of two materials, as shown in Figure 2.

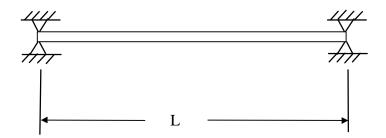


Figure 1.

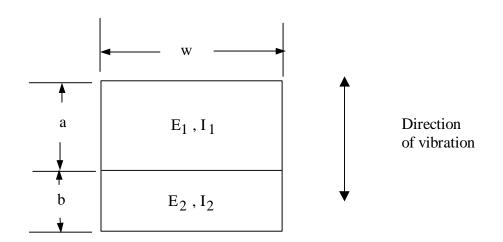


Figure 2.

The fundamental bending frequency for a beam simply-supported at both ends is

$$f_n = \frac{\pi}{2L^2} \sqrt{\frac{EI}{\rho}}$$
(1)

where

- E is the modulus of elasticity.
- I is the area moment of inertia.
- ρ is the mass density, mass per length.

Example

Consider a simply-supported laminated beam, with the cross-section shown in Figure 3.

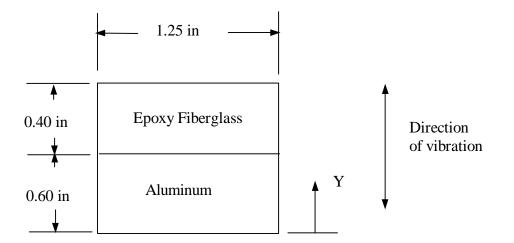


Figure 3.

The material properties are given in Table 1.

Table 1. Material Properties								
Material	$E \left[lbf / in^2 \right]$	m $\left[\text{lbm} / \text{in}^3 \right]$						
Epoxy Fiberglass	2.0 (10 ⁶)	0.065						
Aluminum	10.0 (10 ⁶)	0.100						

The center of mass of each material is referenced to the bottom side of the lower section. Let Y be the center of mass for each section.

 $Y_1 = 0.80$ inch, for epoxy section

 $Y_2 = 0.30$ inch, for aluminum section

Now calculate an overall centroid $\,\overline{Y}$, weighted in terms of the product of area and elastic modulus.

Table 2. AE Centroid									
Section	Area	E	AE	Y	AEY				
	$\left(\ln^2\right)$	$\left(lbf / in^2 \right)$	(lbf)	(in)	(lbf in)				
Epoxy	0.50	$2.0(10^6)$	$1.0(10^6)$	0.80	$8.0(10^5)$				
Fiberglass					× ,				
Aluminum	0.75	10.0 (10 ⁶)	7.5 (10 ⁶)	0.30	2.25 (10 ⁶)				
Total			8.5 (10 ⁶)		3.05 (10 ⁶)				

$$\overline{Y} = \frac{\sum AEY}{\sum AE}$$
(2)

$$\overline{Y} = \frac{3.05\,(10^6) \quad \text{lbf in}}{8.5\,(10^6) \quad \text{lbf}} \tag{3}$$

$$\overline{Y} = 0.359$$
 inch AE centroid (4)

Now let c equal the distance from the center of mass to the overall AE centroid. For the epoxy section,

$$\mathbf{c}_1 = \left| \overline{\mathbf{Y}} - \mathbf{y}_1 \right| \tag{5}$$

$$c_1 = | 0.359 - 0.800 | \tag{6}$$

$$c_1 = 0.441$$
 inch (7)

For the aluminum section,

$$\mathbf{c}_2 = \left| \overline{\mathbf{Y}} - \mathbf{y}_2 \right| \tag{8}$$

$$c_2 = | 0.359 - 0.300 | \tag{9}$$

$$c_2 = 0.059$$
 inch (10)

The area moment of inertia for a rectangular section is

$$I = \frac{1}{12} [base] [height^3]$$
(11)

For the epoxy section,

$$I_1 = \frac{1}{12} \begin{bmatrix} 1.25 \end{bmatrix} \begin{bmatrix} 0.40^3 \end{bmatrix} \text{ in}^4 \tag{12}$$

$$I_1 = 0.0067 \text{ in}^4$$
 (13)

For the aluminum section,

$$I_2 = \frac{1}{12} \begin{bmatrix} 1.25 \end{bmatrix} \begin{bmatrix} 0.60^3 \end{bmatrix} \text{ in}^4 \tag{14}$$

$$I_2 = 0.0225 \text{ in}^4$$
 (15)

The composite stiffness EI requires two terms, as calculated in Table 2 and in the following equations.

Table 3. Composite Stiffness								
Section	c (in)	c^2 (in^2)	AE (lbf)	$\frac{AEc^2}{\left(lbf \text{ in }^2\right)}$	$\frac{E}{\left(lbf / in^{2} \right)}$	I _o (in ⁴)	$E_0 I_0$ (lbf in ²)	
Epoxy	0.441	0.194	1.0 (10 ⁶)	1.94 (10 ⁵)	2 (10 ⁶)	0.0067	1.34 (10 ⁴)	
Alum.	0.059	0.0035	7.5 (10 ⁶)	2.61 (10 ⁴)	10 (10 ⁶)	0.0225	2.25 (10 ⁵)	
Total				2.20 (10 ⁵)			2.384 (10 ⁵)	

The composite beam stiffness factor EI is

$$EI = \sum AEc^2 + \sum E_0 I_0$$
 (16)

$$EI = 2.20 (10^{5}) + 2.384 (10^{5}) \quad (lbf in^{2})$$
(17)

$$EI = 4.58 (10^5) (lbf in^2)$$
 (18)

Perform a unit conversion.

$$EI = 4.58 (10^{5}) \left[lbf in^{2} \left[\frac{slugs ft}{lbf sec^{2}} \right] \left[\frac{32.2 lbm}{1slug} \right] \left[\frac{12 in}{ft} \right]$$
(19)

EI = 1.77 (10⁸)
$$\left[\frac{1 \text{bm in}^3}{\text{sec}^2}\right]$$
 (20)

The mass per length for the epoxy fiberglass section is

$$\rho_1 = \left[0.065 \, \frac{\text{lbm}}{\text{in}^3} \right] [1.25 \text{ in}] [0.40 \text{ in}] \tag{21}$$

$$\rho_1 = \left[0.033 \ \frac{\text{lbm}}{\text{in}} \right] \tag{22}$$

The mass per length for the aluminum section is

$$\rho_2 = \left[0.100 \, \frac{\text{lbm}}{\text{in}^3} \right] [1.25 \text{ in}] [0.60 \text{ in}]$$
(23)

$$\rho_2 = \left[0.075 \ \frac{\text{lbm}}{\text{in}} \right] \tag{24}$$

The composite mass per length is

$$\rho = \rho_1 + \rho_2 \tag{25}$$

$$\rho = \left[0.033 \ \frac{\text{lbm}}{\text{in}} \right] + \left[0.075 \ \frac{\text{lbm}}{\text{in}} \right]$$
(26)

$$\rho = \left[0.108 \ \frac{\text{lbm}}{\text{in}} \right] \tag{27}$$

Furthermore, let the length be L = 20 inch.

$$f_n = \frac{\pi}{2L^2} \sqrt{\frac{EI}{\rho}}$$
(28)

$$f_{n} = \frac{\pi}{2 [20 \text{ in}]^{2}} \sqrt{\frac{1.77 (10^{8}) \left[\frac{1 \text{ lbm in}^{3}}{\text{sec}^{2}}\right]}{0.108 \left[\frac{1 \text{ lbm}}{\text{ in}}\right]}}$$
(29)

$$f_n = 159.0 \text{ Hz}$$
 (30)

<u>Reference</u>

1. Dave Steinberg, Vibration Analysis for Electronic Equipment, Second Edition, Wiley, New York, 1988.