A CIRCULAR PLATE SUBJECTED TO UNIFORM PRESSURE

By Tom Irvine
Email: tomirvine@aol.com

July 28, 2003

Figure 1.

Governing Equation

The governing equation for the lateral displacement w is

\[\nabla^2 \nabla^2 w = \frac{p}{D} \]

(1)

where

p is the pressure
\[D = \frac{Eh^3}{12(1-v^2)} \]

\[
\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right) \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right) w = \frac{p}{D} \tag{2}
\]

The displacement for a constant pressure \(p \) is

\[w = \frac{pr^4}{64D} + A_1 + A_2 \ln r + B_1 r^2 + B_2 r^2 \ln r \tag{3} \]

where \(A_1, A_2, B_1, B_2 \) are constants that depend on the boundary conditions.

Bending Moments per Unit Length

The radial moment per unit length is

\[M_r = -D \left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2} \right) \tag{4} \]

The tangential moment per unit length is

\[M_t = -D \left(\frac{1}{r} \frac{\partial w}{\partial r} + \frac{\partial^2 w}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2} \right) \tag{5} \]
Clamped Circular Plate, Symmetrical Bending

The displacement equation is

\[w = \frac{pa^4}{64D}\left[1 - \left(\frac{r}{a}\right)^2\right]^2 \] \hspace{1cm} (6)

The radial moment per unit length is

\[M_r = \frac{p}{16}\left[a^2(1 + \nu) - r^2(3 + \nu)\right] \] \hspace{1cm} (7)

The tangential moment per unit length is

\[M_t = \frac{p}{16}\left[a^2(1 + \nu) - r^2(1 + 3\nu)\right] \] \hspace{1cm} (8)

The maximum radial stress at a given radius \(r \) is

\[\sigma_r = -\frac{6}{h^2} M_r \] \hspace{1cm} (10)

\[\sigma_r = -\frac{3p}{8h^2}\left[a^2(1 + \nu) - r^2(3 + \nu)\right] \] \hspace{1cm} (11)

The maximum tangential stress at a given radius \(r \) is

\[\sigma_t = -\frac{6}{h^2} M_t \] \hspace{1cm} (12)

\[\sigma_t = -\frac{3p}{8h^2}\left[a^2(1 + \nu) - r^2(1 + 3\nu)\right] \] \hspace{1cm} (13)
Simply Supported Circular Plate, Symmetrical Bending

The displacement equation is

\[
w = \frac{pa}{64D} \left[1 - \left(\frac{r}{a} \right)^2 \right] \left[\frac{5 + v}{1 + v} - \left(\frac{r}{a} \right)^2 \right]
\]
(14)

The radial moment per unit length is

\[
M_r = \frac{pa^2}{16} (3 + v) \left[1 - \left(\frac{r}{a} \right)^2 \right]
\]
(15)

The tangential moment per unit length is

\[
M_t = \frac{pa^2}{16} \left[3 + v - (1 + 3v) \left(\frac{r}{a} \right)^2 \right]
\]
(16)

The maximum radial stress at a given radius \(r \) is

\[
\sigma_r = -\frac{6}{h^2} M_r
\]
(17)

\[
\sigma_r = -\frac{3pa^2}{8h^2} (3 + v) \left[1 - \left(\frac{r}{a} \right)^2 \right]
\]
(18)

The maximum tangential stress at a given radius \(r \) is

\[
\sigma_t = -\frac{6}{h^2} M_t
\]
(19)

\[
\sigma_t = -\frac{3pa^2}{8h^2} \left[3 + v - (1 + 3v) \left(\frac{r}{a} \right)^2 \right]
\]
(20)
References