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Drag forces on a moving object
A bluff body is dragged through a liquid with a speed U(t)=U

dU (s,t) dU (s) ldp 1drt,
g OV e s T as Y
U(s) dlcfiis) + %% =0 ,p,+3pU; = p+5pU’ = constant
Surface area of object is projected on a A,: the projection area,
plane perpendicular to flow direction, A, U,: undisturbed air speeds
Liquid or air
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Drag forces on a moving object
A bluff body is dragged through a liquid with a speed U(t)=U

Force exerted on Force exerted on The form coefficient or

the plane: the body: aerodynamic pressure
coefficient
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Surface area of object is projected on a

plane perpendicular to flow direction, A, U,: undisturbed air speed

Cp: a form coefficient

Liquid or air
n
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Pressure coefficients

The pressure/suction per unit area (m?)
_ 1 2
q - 2 10. UO . Cp

For direct pressure/suction G =C, “the Drag
Coefficient”

The pressure coefficients can be measured
directly with pressure cells. They will show
marked dynamical behaviour (rapid oscillations)

The 10 minute average value will give the static
pressure coefficient



Measurement of aerodynamic coefficients
© Jonas Por Snaebjornsson
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Wind tunnel measurements of the
Landsvirkjun office building

©Jonas Por Snaebjornsson




Aerodynamical/Pressure
coefficients

Aerodynamical/pressure coefficients are used to interpret wind
pressure/suction on bodies or surfaces. Mostly they are based
on in-situ or wind tunnel measurements.
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Wind blows
Into the
gable

Fig. 6

3-D of Airflow when wind
direction is Into gable end wall.

Figure 3

Gable End Walls \

Top View

—_ \Figure 3a

Windward Wall
Wind

Leeward Wall

s

-
il

Top View. Wind blows into gable end wall (parallel
to ridge). Air also flows around the building walls,
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Fositive |
I

Suction

Figure 3b

Suction

Top view. Reaction (deflection) of walls to the dynamic
forces. Dotted line denotes undeflected surface. Solid line
denotes deflected surface reacting to the forces from
the wind flow around the object. Positive pressure exerts
a force toward the surface. Suction exerts a force pulling

away from a surface.



Wind blows into a main wall

The wind loads depend on openings in the structure and
can create very different results

a.) opening on windward wall



Aerodynamical/Pressure coefficients
for a typical shed building

The wind has to blow over the building creating eddies due to
turbulence at the edges and roof top. This causes non-
uniform distribution of the pressure/suction forces

©
Suction Fressure Qrp// Sucti
i ositive uction
(negative) P ) (negative)

Suction
(negative)

o o
Pressure | Suction Pressure | Suction
(positive) —| (negative) (positive) — —| (negative)
0,58 0,31 0,65 0.32

VA AV AV A G35 SN G G G G G G G5 G G & & & 4 SV AV A AV 4N 4 G G G G G G G G G &N & & & 4



The Morrison equation

For wave forces on harbour structures as proposed by

Do

Morrison 1932

When structural response is affected
by dynamical behaviour the
acceleration can not be disregarded.
The force exerted on the object can
then be written as

A .

0(1) = [3 pCLU DU D]+ pCyy —FU D14,
0

D, and A, are the diameter and area of
a circle, which circumscribes the
projection area of the object, A
Cp: the “drag” coefficient
C,,: the “added mass” coefficient



Dynamical response of a simple structure
The drag force depends on the relative velocity and acceleration

mi(0)+ V(1) + V(1) = [ pC, (U0 - F0)* + pC,y - U0~ FO)IA,
Insert U(t)= U+u(x y,z;t), discard all second ordeor terms

(LP(1), u®)Y(t), Y?(t)) and rearrange to get:
Y(t)[m+ m, |+ Y(t)[c + col+kY(t) =0, + Oy,

— I Y()

7777777
/7 Q)
w“vV///// ——

[/ S SN

U(z;t)=U(z)+u(x,y,z:1)
Z=h C,k




Dynamical response of a simple structure

The response is composed of a static part (deflection caused by the
mean wind speed) and a dynamical part caused by the wind gusts

Y(O)Im+m,+Y(Oc+c, ]+ kY () =0, +0,,

Added mass:
Y(t)=Y t AO
—— Y(1)=Ygurty(t) mA — IOCM —A
o e
my,///// Aerodynamical damping (sometimes negative!):
A SIS r
C, =,0CDU ,c=Ac,. ,c, =2k
z=h c.k

7772 Qsa
Qstat — %IOCDU Ap ? Ystat — kt :

Q.. =[pC,Uu(t)+ pC,, %u(r)]Ap
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The form coefficients

It is convenient to introduce the reduced frequency of the wind
gusts (turbulent part u(x,y,z;t)), i.e. E&=fD/U; where T=1/fis the
period of the wind gusts (0,5-30 sec.), D is a reference diameter
and U, the reference wind speed

The drag and mass coefficients are sensitive to the
characteristics of turbulence (A.G. Davenport)
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Other form coefficients

The drag coefficient C, is mostly related to the turbulent
X-component u(x,y,z;t). The other components give rise to
different kind of excitations or actions

= The lift coefficient C, is heavily dependent on the
Reynold’s number Re=U(z;t)D/v
» z direction (vertical); makes airoplanes fly

» y direction (horizontal) produces a Strouhal effect (cross
wind vibration) in towers and chimneys

T K(z,t)

/\ (b) SUPERCRITICAL RANGE
__/\ 10°<Re<3.5-10°
o 9

Loss of marked periodicity—

D random wake pattern,

O Laminor separations, turbu-
M lent reattachments occur.



Stochastic processes and random
vibrations

The random nature of the wind gusts, that is,
the turbulent part of the wind speed, makes it
difficult to interpret unless reverting to the
theory of stochastic processes. The wind
gusts can be treated as a stochastic Gaussian
process X(t) with a power spectral density

Sy(w) and an autocorrelation function
Rx(7)=E[X(t)X(t+7)]



The stochastic character of the
wind gusts
oy"=E[u(t)u(t)], py=E[u(t)]=0
The autocorrelation function of the wind gusts is

R, (7) = E[u(t)u(t + T)]
The power spectral density of the wind gusts is

S, () = — [ Ry (De™dr & R,(7) = [ S, (e de
27

— Qo0 — 00

The variance of the wind gusts is therefore given by

o, = E[zf(t)] = R,(0) = TSU(a))da)



The longitudinal spectrum of
horizontal wind gusts

The turbulence intensity is defined as | ,=0,/Ug=V,, (the
_coefficient of variation). At height z m, |,(z)=0,/v.(2).
IU=¢61<zkr at 10 metre reference height, 1,(z)=k/(c,(z)-c,) at z m
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Turbulence Intensity |

Measurements at Keilisnes (zg=10 m), Iceland
|,=k,=0.15 (terrain category between | and II)
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The cross spectrum 1

Consider two stochastic processes X(t) and Y(t)
A spectrum for the cross-correlation function

R, (1)=E[X()Y(t+7)] can be defined:
1 ( —iwT
Sy (@) =—— [o R, (D)e “dw

Syy(W)=C 0y (W)-IQuyy (W), where Coyy(w) is the co-
spectrum and the imaginary part Qu,.(w) is the
quadrature spectrum. The coherence function is

defined as
S (@]

COhxy(w) = )
Sy (@S, (@)

—1<Coh,, () <1




The cross spectrum 2
The phase angle ®

The phase angle is proportional to the reduced
frequency ¢

D,y (W)= Arc tan(QuXY(w)) ~cLm . S
Coo (@) )  Ux

where c is of the order 0.8-1.3. Thus the real
and imaginary parts of the cross spectrum can
be written as

Coy, (@) = /Cohy, (@), (W)S, (@) -cos D, (@)
Quty, (@) = \|Cohy, (0)S, (W)S, (@) -sin D, (@)




The Coherence: Coh_ (w)

The coherence describes the correlation between two pressure
points on the building facade in the frequency domain
(- 1<Coh,, (w)<1)

Loss of coherence

| . . .
| | between immediate wind
PRy | velocities at two points
/g ~ on the facade (m,n) is

ng " i @Yzt  exponentially related to
}Xm‘z’” i Tx@y | the reduced frequency ¢

:U(Z)E X(z,t) | N

} 5 a 2/ D@00 Con, (&)= expl-2¢41. ¢ = “’U—"
| “n: R

- NN ¢ = a (horizontal separation) , ¢ = b (vertical)

e
- 2ab w-r,

Coh,, (@) =exp| — :
[ U \/a2 sin®8,+b’cos’ 0,

a = 3b in the northern hemisphere (a =3.8,b =1.3)



A tapered chimney subjected to
wind loads

X(z,t) is the lateral deflection in the along wind direction




Loading functions and response
of the chimney

i[El(z) oX (f’t)] +m(z) aXat(f’” = P (2,0) = C*" ()X (2,0) = M “(2) X (2,1)

dz° 0z
P'(z,t)= P(z)+ P(z,1)

P(z) = %p%(z,ow(z)ﬁz(z)

P(z,t) = pC,(z,E)D(2)U (2)U (z,1) + ,O%CM (z,E)D*(2)U (z,1)
C*"(z) = pCp(z,E)D(2)U (2)

M (z) =p%cM(z,§>Dz(z>

X(z,t) = Z ¢.(2)0,(t) , @(z)isthei—thnormal mode shape
i=1

Q,(1) = MLL L(u)h(t —u)du , M ; = Miiim(z)cf’f(Z)dZ  Li(t) = MLQ P(z,0)¢; (2)dz



Mean response and gust response

The gust response has to be treated as random processes
L'[X(z,0)]= P(2)+ P(z,1)
X(2)=L [P(D)] . L[X(z.0]=(z1)

E[X (z.0X (2.t + D) =Ry (1) = Y Y 6,(2)0.(2)E[Q, ()0, (1 + 7))

i=1 j=1

i=1

$(@.2)= 23 4,(2)9,(2)S 4, (@)
1

e Il

1

S0,0,(@) =

M. M. Hi(a))SLiLj(a))Hj(w) , H (o) =

2 2 .
i M (0" —w )+ 2iLo,

The cross spectrum for the generalized force L,

S. (@)= [ [6.(2,)0,(z,)8, ,, (0)dz,dz,



Stochastic gust response

Having obtained the cross spectrum for the generalized forces L.,
the cross spectrum for the direct wind loads P, can be obtained
The power law (z/zz)" is used instead of the logarithm wind speed
profile k.-In(z/z,)

Zm Zn

LR <R

SPmPn(a),zm,Zn)=,025?{ ) C,(z,,5)C,(2,,E)

+%é@qu@mm%@n
wD(z, )

+D(z,)D(z,)S W , § ==
(2,)D(z,)S, , (@) ol



The aerodynamical admittance F(g)

Introducing the coherence function Coh_.(w) and the phase angle
d_.(w), the real part of the cross spectrum for the generalized
forces L, can be directly related to the simple wind velocity
spectrum S (w). Thus an aerodynamical admittance converts
wind speeds into wind loads. Spatial separation r...=(z.,-z,).

S, ., (@,2,,2,)

_4VU(AS(w)

1 , A:jD@mz
(5 PAU L) Uk 0

()] = LTHZ’"Z"} [C (2, £,0C (2,0,

A’ Zr
+%rCMum¢fx?<aﬂénDcszu)

+ exp{—bg?”}cos{cgz :|¢(Z )9 (z,)dz,dz,




Aerodynamical Admittance

Homogeneous isotropic turbulence, a=b=1.27, ¢c=0.0

| F(¢) /_wuth the term C3(¢)+¢2 5~ m -ci
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Aerodynamical Admittance

Homogeneous isotropic turbulence, a=b=1.27, ¢c=0.8

F(2) with the term C2(§)+¢2 TLC2(¢)
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Aerodynamical Admittance

Homogeneous isotropic turbulence, a=3.8, b=1.27, ¢c=0.8

| F(¢) with the term C2(¢)+¢2 ﬁCz(E)
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Overload design factors

Consider the response process X(t) (deflection)
Xmax=X+(Xpeak_X)
Introducing the relative extreme peaks

EX=(Xpeak' X)/GX

Having accounted for the static mean response X,
the probability distribution of extreme peaks =, is
fairly narrow and a sensible design value can be
taken as the average extreme peak value E[=,].
Thus

X__ =X+0y E[E,] or X__ =X(1+(0,/X)- E[E,])=GF-X



Numerical analysis of two chimney stacks
Open country environment

. Symbol Stack 1 Stack 2
Height (m) H 200 80
Base diameter (m) Do 14.0 12.0
Tip diameter (m) Dy 5.0 9.3
Natural frequency (rps) w4 2.3 6.28
Critical damping ratio M 0.02 0.02
Drag coefficient Co 1.0 1.0
Added mass coefficient Cwu 0 0
Mean wind velocity (nvs) Uro 30 30
Decay constant b 1.27 1.27
Phase constant c 0.8 0.8
Wind profile exponent o 0.16 0.16
Roughness parameter K 0.005 0.005

Maximum Response values
Alongwind response o/= 0.162 0.162
Gust factor GF 1.56 1.6
Across wind response: gusts o/= 0.094 0.092
wake o/= 0.029 0.914
Gust factor GF 1.35 3.44
Resulting dynamic response factor GF 1.60 3.70




End

2" P
art



