Consider a fixed-fixed beam.

\[E \] is the modulus of elasticity
\[I \] is the area moment of inertia
\[L \] is the length
\[\rho \] is the mass density (mass/length)

Assume a displacement function using a polynomial. Scale the independent variable so that \(L = 1 \).

\[W(\xi) = a + b\xi + c\xi^2 + d\xi^3 + e\xi^4 \] \hspace{1cm} (1)

\[\frac{d}{d\xi} W(\xi) = b + 2c\xi + 3d\xi^2 + 4e\xi^3 \] \hspace{1cm} (2)

The geometric boundary conditions are

\[W(0) = 0 \] \hspace{1cm} (3)
\[
\frac{d}{d\xi} W(0) = 0 \quad (4)
\]

\[
W(L) = 0 \quad (5)
\]

\[
\frac{d}{d\xi} W(0) = 0 \quad (6)
\]

Also, set the midpoint amplitude equal to 1.

\[
W(0.5) = 1 \quad (7)
\]

The boundary conditions in equations (3) and (4) readily prove that \(a=0\) and \(b=0\), respectively.

The boundary condition in equation (5) shows that

\[
c + d + e = 0 \quad (8)
\]

The boundary condition in equation (6) shows that

\[
2c + 3d + 4e = 0 \quad (9)
\]

Equation (6) shows that

\[
0.25c + 0.125d + 0.0625e = 0 \quad (10)
\]

Equations (8), (9), and (10) can be arranged in matrix form.

\[
\begin{bmatrix}
1 & 1 & 1 \\
2 & 3 & 4 \\
0.25 & 0.125 & 0.0625
\end{bmatrix}
\begin{bmatrix}
c \\
d \\
e
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\quad (11)
\]

The solution is

\[
\begin{bmatrix}
c \\
d \\
e
\end{bmatrix}
=
\begin{bmatrix}
16 \\
-32 \\
16
\end{bmatrix}
\quad (12)
\]
The displacement function is

\[W(\xi) = 16\xi^2 - 32\xi^3 + 16\xi^4 \] \hspace{1cm} (13)

\[\frac{d}{d\xi} W(\xi) = 32\xi - 96\xi^2 + 64\xi^3 \] \hspace{1cm} (14)

\[\frac{d^2}{d\xi^2} W(\xi) = 32 - 192\xi + 192\xi^2 \] \hspace{1cm} (15)

Now consider the independent variable and its derivatives.

\[\xi = x / L \] \hspace{1cm} (16)

\[d\xi = dx / L \] \hspace{1cm} (17)

\[dx = Ld\xi \] \hspace{1cm} (18)

\[\frac{d}{dx} y = \frac{d}{d\xi} \frac{dx}{d\xi} y = \frac{1}{L} \frac{d}{d\xi} y \] \hspace{1cm} (19)

\[\frac{d^2}{dx^2} y = \frac{d^2}{d\xi^2} \frac{d^2\xi}{dx^2} y = \frac{1}{L^2} \frac{d^2}{d\xi^2} y \] \hspace{1cm} (20)

The Rayleigh method is used to find the natural frequency. The total potential energy and the total kinetic energy must be determined.

The total potential energy \(P \) in the beam is

\[P = \frac{EI}{2} \int_0^L \left(\frac{d^2 y}{dx^2} \right)^2 dx \] \hspace{1cm} (21)
\[P = \frac{EI}{2L^3} \int_0^1 \left(\frac{d^2 W}{d\xi^2} \right)^2 \, d\xi \]
(22)

\[P = \frac{EI}{2L^3} \int_0^1 \left(32 - 192\xi + 192\xi^2 \right)^2 \, d\xi \]
(23)

The integral is evaluated using the Matlab script in Appendix B.

\[P = \frac{EI}{2L^3} (204.8) \]
(24)

\[P = 102.4 \frac{EI}{L^3} \]
(25)

The total kinetic energy \(T \) is

\[T = \frac{1}{2} \rho \omega_n^2 \int_0^1 \left[y \right]^2 \, dx \]
(26)

\[T = \frac{1}{2} \rho \omega_n^2 L \int_0^1 \left[W \right]^2 \, d\xi \]
(27)

\[T = \frac{1}{2} \rho \omega_n^2 L \int_0^1 \left[16\xi^2 - 32\xi^3 + 16\xi^4 \right]^2 \, d\xi \]
(28)

\[T = \frac{1}{2} \rho \omega_n^2 L (0.406) \]
(29)

\[T = 0.203 \rho \omega_n^2 L \]
(30)
Set the maximum kinetic energy equal to the maximum potential energy.

\[0.203 \rho \omega_n^2 L = 102.4 \frac{EI}{L^3} \] \hspace{1cm} (31)

\[\omega_n^2 = 504.0 \frac{EI}{L^4 \rho} \] \hspace{1cm} (32)

The Rayleigh method thus yields a natural frequency of

\[\omega_n = \frac{22.4 \sqrt{\frac{EI}{\rho}}}{L^2} \] \hspace{1cm} (33)

Note that theoretical value from Reference 1 is

\[\omega_n = \left[\frac{22.373}{L^2} \right] \sqrt{\frac{EI}{\rho}} \] \hspace{1cm} (34)

The analysis is repeating using a trigonometric displacement function as shown in Appendix A. Both displacement functions are shown in Figure 1, normalized to an amplitude of one.
Figure 1.

Reference

Trigonometric Displacement Function

A displacement function which satisfies the four geometric boundary conditions is

\[y(\xi) = 1 - \cos(2\pi\xi) \] \hfill (A-1)

\[\frac{d}{d\xi} y(\xi) = 2\pi \sin(2\pi\xi) \] \hfill (A-2)

\[\frac{d^2}{d\xi^2} y(\xi) = \left(4\pi^2\right) \cos(2\pi\xi) \] \hfill (A-3)

Note the amplitude scale factor for equation (1) is arbitrary.

The total potential energy is

\[P = \frac{EI}{2L^3} \int_0^1 \left(\left(4\pi^2\right) \cos(2\pi\xi)\right)^2 d\xi \] \hfill (A-4)

\[P = \left(16\pi^4\right) \frac{EI}{2L^3} \int_0^1 \left(\cos(2\pi\xi)\right)^2 d\xi \] \hfill (A-5)

\[P = \left(16\pi^4\right) \frac{EI}{2L^3} \int_0^1 \left[\frac{1}{2} + \frac{1}{2} \cos(4\pi\xi)\right] d\xi \] \hfill (A-6)

\[P = \left(16\pi^4\right) \frac{EI}{2L^3} \left[\frac{1}{2} \xi + \frac{1}{8\pi} \sin(4\pi)\right]_0^1 \] \hfill (A-7)
\[P = \left(16\pi^4\right) \frac{EI}{2L^3} \left[\frac{1}{2} \right] \quad \text{(A-8)} \]

\[P = \frac{4\pi^4 EI}{L^3} \quad \text{(A-9)} \]

The total kinetic energy is

\[T = \frac{1}{2} \rho \omega_n^2 L \int_0^1 \left[1 - \cos(2\pi \xi) \right]^2 d\xi \quad \text{(A-10)} \]

\[T = \frac{1}{2} \rho \omega_n^2 L \int_0^1 \left[1 - 2\cos(2\pi \xi) + \cos^2(2\pi \xi) \right] d\xi \quad \text{(A-11)} \]

\[T = \frac{1}{2} \rho \omega_n^2 L \int_0^1 \left[1 - 2\cos(2\pi \xi) + \frac{1}{2} + \frac{1}{2} \cos(4\pi \xi) \right] d\xi \quad \text{(A-12)} \]

\[T = \frac{1}{2} \rho \omega_n^2 L \int_0^1 \left[\frac{3}{2} - 2\cos(2\pi \xi) + \frac{1}{2} \cos(4\pi \xi) \right] d\xi \quad \text{(A-13)} \]

\[T = \frac{1}{2} \rho \omega_n^2 L \left[\frac{3\xi}{2} - \frac{1}{\pi} \sin(2\pi \xi) + \frac{1}{8\pi} \sin(4\pi \xi) \right]_0^1 \quad \text{(A-14)} \]

\[T = \frac{3}{4} \rho \omega_n^2 L \quad \text{(A-15)} \]

Equate the maximum kinetic energy with the maximum potential energy.

\[\frac{3}{4} \rho \omega_n^2 L = \frac{4\pi^4 EI}{L^3} \quad \text{(A-16)} \]
\[\omega_n^2 = \frac{16\pi^4}{3} \frac{EI}{L^4\rho} \]
(A-17)

The Rayleigh method thus yields a natural frequency of

\[\omega_n = \frac{22.8}{L^2} \sqrt[2]{\frac{EI}{\rho}} \]
(A-18)

Again, the theoretical value from Reference 1 is

\[\omega_n = \left[\frac{22.373}{L^2} \right] \sqrt[2]{\frac{EI}{\rho}} \]
(A-19)

APPENDIX B

Matlab Script for Polynomial Analysis

```matlab
clear x;
clear P;
clear T;

% P = @(x)((32-192*x+192*x.^2).^2);
P = @(x)((32-192*x+192*x.^2).*2);
QP = quad(P,0,1)

% T=@(x)((16*x.^2-32*x.^3+16*x.^4).^2);
T=@(x)((16*x.^2-32*x.^3+16*x.^4).*2);
QT = quad(T,0,1)

b=QP/QT;
out5 = sprintf( ' QP/QT= %8.2f 
' ,b);
disp(out5)

% a=sqrt(QP/QT);
% disp('');
out5 = sprintf( ' \omega_n = %6.1f [sqrt(EI/\rho)]/L^2 \n',a);
disp(out5)
```

9