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Consider a rigid plate or rigid plane frame mounted via a spring at each corner, as shown in
Figure 1.

A frame is shown for convenience, but the model can also be applied to a plate. The motion is
constrained to translation in the X-axis only.

The mass and stiffness matrices for the generalized eigenvalue problem are shown in Appendix
A, as formulated in Reference 1. The natural frequencies are found by solving the corresponding

generalized eigenvalue problem.

Now consider that the plate is base-driven by independent acceleration time histories, one at each
corner, as shown in Figure 1.

Determine the acceleration response at each corner of the plate and at the CG. Use a modal
transient solution.

Assume that there is modal damping. But assume that there are no dashpots connecting the plate
to the base.

The potential energy is
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Figure 1.

Note that each xj displacement is an absolute displacement referenced to a common rest plane.



Equation (2) generates the global stiffness matrix already shown in Appendix A. It also
generates the following matrix KGp, which will be inserted to the right-hand-side of the pending

non-homogeneous equation. This matrix effectively represents the work done by the base
excitation on the springs, when multiplied by the base displacement vector shown in equation
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The next step would normally be to develop relative displacement terms to simplify the base
input matrices so that the base accelerations can be input directly. This simplification does not
appear to be suitable for the case of multiple inputs, however.

The non-homogeneous equation is
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The next step is decouple equation (5) using the eigenvectors which are obtained from the
undamped, homogeneous equation.

A mass-normalized eigenvector matrix Q can be obtained such that the following orthogonality
relations are obtained.
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where
superscript T represents transpose
I is the identity matrix

Q is a diagonal matrix of eigenvalues

Note that
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Rigorous proof of the orthogonality relationships is beyond the scope of this tutorial. Further
discussion is given in References 5 and 6.

Nevertheless, the orthogonality relationships are demonstrated by an example in this tutorial.
Now define a modal coordinate M (t) such that

x=Q 7 (10)



By substitution.
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Premultiply by the transpose of the normalized eigenvector matrix.
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The modal damping matrix C is substituted for QT CG Q.
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A typical equation for modal coordinate i is
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The solution method for arbitrary inputs is given in Reference 3.
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APPENDIX A

Let
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The global mass matrix MG is
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The global stiffness matrix KG is
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APPENDIX B

Example

Normal Modes Analysis

Consider a square plate (L x L) with the CG in the middle. All springs have the same stiffness k.

Assume a constant mass which is independent of the geometry. The length L is arbitrary
because it will cancel out in the two inertia matrices.

Let
M= 11bm = 0.00259 Ibf sec”2/in (B-1)

K= 250 Ibf/in (B-2)

Note that Jx =Jy=1J for this example.

I~ %M(sz (B-3)

J = 0.0833 Ibm in"2 = 0.000216 1bf sec”2 in (B-4)

The global mass matrix is
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1 111 2 0 =2
1 I 111 1 o 2 0 =2
MG= —M +——=17
16 |1 1 1 1| 42 (-2 0 2 0
1 111 0O -2 0 2
(B-6)
1 111 2 0 -2 0
1 I 11 1] 1 o 2 0 =2
MG= —M +—M
16 |1 111 48 |-2 0 2 0
1111 0O -2 0 2
(B-7)
The global stiffness matrix is
1 00O
0100
KG =K
0 010
0 0 01
(B-8)

The calculation is completed via a Matlab code. The final, global mass and stiffness matrices are

MG =
1.0e-003 *
0.2700 0.1619 0.0538 0.1619
0.1619 0.2700 0.1619 0.0538
0.0538 0.1619 0.2700 0.1619
0.1619 0.0538 0.1619 0.2700

(B-9)
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250 0 0 0
0 250 0 0
0 0 250 0
0 0 0 250

(B-10)

Note that the mass unit is 1bf sec”2/in. The stiffness unit is 1bf/in.
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The eigenvalues are

lambda =

1.0e+006 *

0.3860 1.1562 1.1562

Natural Frequencies =

98.88 Hz
171.1 Hz
171.1 Hz

Inf Hz

The first three mode shapes in column format are

-19.6469 -48.0864 -0.2209
-19.6469 -0.0000 48.0859
-19.6469 48.0864 0.2209
-19.6469 0.0000 -48.0859

The fourth mode is

1.0e+009 *

4.2950
-4.2950
4.2950
-4.2950

Inf

(B-11)

(B-12)

(B-13)

(B-14)

The fourth mode shape is fictitious. It implies that the rigid plate undergoes elastic deformation.
The fourth natural frequency and its corresponding mode shape should be disregarded.
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Hand Calculation Check

Translation

=L K (B-15)

The total stiffness is 4 x 250 1bf/in

fn = 1 1000 Ibf /in . (B-16)
2n 0.00259 1bf sec”2/in
fn=98.9 Hz (B-17)

The frequency agrees with the first natural frequency of the Matlab output.

Rotation

Assume that the length is 1 inch for simplicity. This natural frequency is effectively independent
of this value, however, since the length cancels out from the numerator and denominator.

fn = LS (B-18)
2n N J
ky = 4 x 250 Ibf/in x (0.5 inch)*2 = 250 Ibfin (B-19)
1 2
J=—M|L (B-20)
12
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J:é(llbm )(1inch > = 0.0833 Ibm in” (B-21)

J = 0.000216 Ibf sec’2 in (B-22)

! \/ 250 Ibf in = 1713 Hz (B-23)

n=—
21 \ 0.000216 Ibf sec”2in
This value agrees with second and third natural frequencies from the Matlab output.

Modal Transient Analysis

Assume that Q = 10 for all modes.
Now apply base inputs. The following input example could represent a vehicle traveling over a
bump in the road. Note that the fundamental frequency is much higher than that of an

automobile, however.

The CG response is found via a Matlab script, plate_4_base.m. This script applies the method
from Reference 3.
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DISPLACEMENT BASE INPUT
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Figure B-1.
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APPENDIX C

Mass Moment of Inertia

12

RECTANGULAR PRISM

http://www.roymech.co.uk/Useful_Tables/Form/Dynamics_inertia.html

J= éM(sz for a thin plate (C-1)
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