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Consider a rigid plate or rigid plane frame mounted via a spring at each corner, as shown in 

Figure 1.   

 

 A frame is shown for convenience, but the model can also be applied to a plate.  The motion is 

constrained to translation in the X-axis only. 

 

The mass and stiffness matrices for the generalized eigenvalue problem are shown in Appendix 

A, as formulated in Reference 1.  The natural frequencies are found by solving the corresponding 

generalized eigenvalue problem. 

 

Now consider that the plate is base-driven by independent acceleration time histories, one at each 

corner, as shown in Figure 1. 

 

Determine the acceleration response at each corner of the plate and at the CG.  Use a modal 

transient solution. 

 

Assume that there is modal damping.  But assume that there are no dashpots connecting the plate 

to the base. 

 

 

The potential energy is 
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Note that each ix   displacement is an absolute displacement referenced to a common rest plane. 
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Equation (2) generates the global stiffness matrix already shown in Appendix A.  It also 

generates the following matrix bKG  which will be inserted to the right-hand-side of the pending 

non-homogeneous equation.  This matrix effectively represents the work done by the base 

excitation on the springs, when multiplied by the base displacement vector shown in equation 

(4). 
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The next step would normally be to develop relative displacement terms to simplify the base 

input matrices so that the base accelerations can be input directly.  This simplification does not 

appear to be suitable for the case of multiple inputs, however. 

 

The non-homogeneous equation is 
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(5) 

 

 

The next step is decouple equation (5) using the eigenvectors which are obtained from the 

undamped, homogeneous equation. 

 

A mass-normalized eigenvector matrix Q̂ can be obtained such that the following orthogonality 

relations are obtained. 
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IQ̂MGTQ̂ =                                                                                  (6) 
 

and 
 

Ω=Q̂KGTQ̂                                                                                 (7) 

 

where 
 

  superscript T represents transpose 

 I   is the identity matrix 

  Ω   is a diagonal matrix of eigenvalues 

 

Note that 
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Rigorous proof of the orthogonality relationships is beyond the scope of this tutorial.   Further 

discussion is given in References 5 and 6. 
 

Nevertheless, the orthogonality relationships are demonstrated by an example in this tutorial. 
 

Now define a modal coordinate )t(η  such that 

 

η= Q̂x                                                                                              (10) 
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By substitution. 
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Premultiply by the transpose of the normalized eigenvector matrix. 
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The orthogonality relationships yield 
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The modal damping matrix Ĉ  is substituted for Q̂CGTQ̂ .    
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A typical equation for modal coordinate i is  
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Recall  
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The solution method for arbitrary inputs is given in Reference 3. 
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                                                             APPENDIX A 
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The global mass matrix MG is 
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The global stiffness matrix KG is 
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APPENDIX B 

 

Example 

 

 

Normal Modes Analysis 

 

Consider a square plate (L x L) with the CG in the middle.  All springs have the same stiffness k. 

 

Assume a constant mass which is independent of the geometry.  The length L is arbitrary 

because it will cancel out in the two inertia matrices. 

 

Let  

 

 M =   1 lbm   =   0.00259 lbf sec^2/in                                                                           (B-1) 

 

 K =   250 lbf/in                                                                                                              (B-2) 

 

 

Note that   Jx = Jy = J   for this example.   
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J =  0.0833 lbm in^2  =  0.000216 lbf sec^2 in                                                             (B-4) 

 

 

The global mass matrix is 
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The global stiffness matrix is  
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The calculation is completed via a Matlab code.  The final, global mass and stiffness matrices are 

 

 
MG = 

 

  1.0e-003 * 

 

    0.2700    0.1619    0.0538    0.1619 

    0.1619    0.2700    0.1619    0.0538 

    0.0538    0.1619    0.2700    0.1619 

    0.1619    0.0538    0.1619    0.2700 

(B-9) 
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KG = 

 

   250     0     0     0 

     0   250     0     0 

     0     0   250     0 

     0     0     0   250 

 (B-10) 

 

Note that the mass unit is lbf sec^2/in.  The stiffness unit is lbf/in. 
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The eigenvalues are 

 

 
lambda = 

 

  1.0e+006 * 

 

    0.3860    1.1562    1.1562       Inf 

(B-11) 
  

  Natural Frequencies =  

 

      98.88 Hz 

      171.1 Hz 

      171.1 Hz 

        Inf Hz 

(B-12) 

 

The first three mode shapes in column format are 

 

 
  -19.6469  -48.0864   -0.2209 

  -19.6469   -0.0000   48.0859 

  -19.6469   48.0864    0.2209 

  -19.6469    0.0000  -48.0859 

(B-13) 

 

 

The fourth mode is  

 
  1.0e+009 * 

 

    4.2950 

   -4.2950 

    4.2950 

   -4.2950 

(B-14) 

 

 

The fourth mode shape is fictitious.  It implies that the rigid plate undergoes elastic deformation.  

The fourth natural frequency and its corresponding mode shape should be disregarded. 
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Hand Calculation Check 

 

Translation 
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k
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The total stiffness is   4 x 250  lbf/in 
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fn = 98.9 Hz                                                                                                      (B-17) 

 

 

The frequency agrees with the first natural frequency of the Matlab output. 

 
Rotation 

 

Assume that the length is 1 inch for simplicity.  This natural frequency is effectively independent 

of this value, however, since the length cancels out from the numerator and denominator. 
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kr =   4 x 250 lbf/in x (0.5 inch)^2 = 250  lbf in                                              (B-19) 
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 J = ( )( )2inch1lbm1
12

1
  =    0.0833   lbm in

2
                                       (B-21) 

 

 

J = 0.000216 lbf sec^2 in                                                                         (B-22) 
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This value agrees with second and third natural frequencies from the Matlab output.                     

 

 

 

Modal Transient Analysis 

 

Assume that Q = 10 for all modes. 

 

Now apply base inputs.  The following input example could represent a vehicle traveling over a 

bump in the road.  Note that the fundamental frequency is much higher than that of an 

automobile, however.   

 

The CG response is found via a Matlab script, plate_4_base.m.  This script applies the method 

from Reference 3. 
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Figure B-1. 
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                                                      APPENDIX C 

 

 

Mass Moment of Inertia 

 

 

 
 

 

http://www.roymech.co.uk/Useful_Tables/Form/Dynamics_inertia.html 
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