#### SOUND INTENSITY Revision C

By Tom Irvine Email: tomirvine@aol.com

June 24, 2004

### Introduction

Sound intensity is the acoustic power per unit area in the direction of propagation. More precisely, the sound intensity is the average rate of energy flow through a unit area normal to the direction of propagation.

The fundamental units of sound intensity are watts per square meter  $(W/m^2)$ .

### Freely Traveling Progressive Wave

The intensity magnitude I is equal to the time-average dot product of the sound pressure p and the particle velocity u.

$$\left| \mathbf{I} \right| = \overline{\mathbf{p}(t) \cdot \mathbf{u}(t)} \tag{1}$$

### Free-Field Sound Power and Intensity

A free field is a volume in which there are no reflections. Free-field propagation is characterized by a 6 dB drop in the sound pressure level and in the intensity level for each doubling of distance. This is essentially the "inverse-square law."

Consider a point source, or monopole, which radiates sound in spherical manner in a free field. The intensity magnitude I is related to the sound power W by

$$\left| \mathbf{I} \right| = \frac{\mathbf{W}}{4\pi r^2} \tag{2}$$

where r is the radius.

The magnitude symbol on the left side of equation (2) is necessary because intensity is actually a vector.

Note that the denominator in equation (2) is the surface area of a sphere.

The sound intensity in a free field is depicted in Figure 1.



Figure 1. Sound Intensity from a Point Source in a Free Field

# Free-Field Pressure and Intensity

The sound intensity is related to the root-mean-square pressure P  $_{rms}$  by

$$\left| \mathbf{I} \right| = \frac{(\mathbf{P}_{\rm rms})^2}{\rho c} \tag{3}$$

where

- $\rho$  is the mass density of medium
- c is the speed of sound in the medium

### Random Incident Field Pressure and Intensity

An example of a random incident field is a large reverberant room with a diffuse sound field. The intensity in this field is

$$\left| \mathbf{I} \right| = \frac{(\mathbf{P}_{\rm rms})^2}{4\,\rho c} \tag{4}$$

# Acoustic Impedance

The acoustic or characteristic impedance Z for plane waves is given by

$$Z = \rho c \tag{5}$$

The acoustic impedance value for air and water are given in Table 1.

| Table 1. Acoustic Impedance |             |                           |                                       |  |
|-----------------------------|-------------|---------------------------|---------------------------------------|--|
| Medium                      | Temperature | Speed of Sound<br>(m/sec) | Acoustic<br>Impedance<br>(Pa • sec/m) |  |
| Dry Air                     | 0 °C        | 331.6                     | 428                                   |  |
| Dry Air                     | 20 °C       | 343                       | 415                                   |  |
| Distilled Water             | 20 °C       | 1481                      | 1.48 (10 <sup>6</sup> )               |  |
| Sea Water                   | 13 °C       | 1500                      | 1.54 (10 <sup>6</sup> )               |  |

Note that the dry air in Table 1 is at a pressure of 1 atmosphere.

Also, the unit of acoustic impedance is often given as rayl, where  $1 \text{ rayl} = Pa \cdot \text{sec/m}$ . This unit is in honor of John William Strutt, Baron Rayleigh.

### Decibel Levels

The sound intensity level (SIL) is measured in terms of decibels as

$$SIL = 10 \log \left[ \frac{I}{I_{ref}} \right]$$
(6)

where

$$I_{ref} = \begin{cases} 1 (10^{-12}) \frac{W}{m^2} & \text{for air} \\ \\ 6.7 (10^{-19}) \frac{W}{m^2} & \text{for water} \end{cases}$$

The sound pressure level in terms of decibels is

$$SPL = 20 \log \left[ \frac{P_{rms}}{P_{ref}} \right]$$
(7)

where

$$P_{ref} = \begin{cases} 20 \ \mu Pa \ rms & for \ air \\ \\ 1 \ \mu Pa \ rms & for \ water \end{cases}$$

### Example

Consider the following example from Reference 1.

A lawnmower radiates 0.01 Watts of acoustic power. What are the approximate sound pressure and intensity levels 1.5 m away? This example is not a free-field. Nevertheless, assume that the radiation is free-field in the open air. Also, assume that the ground is perfectly reflective. The power is thus radiated through a hemisphere. The intensity equation for a hemisphere is

$$\left| \mathbf{I} \right| = \frac{\mathbf{W}}{2\pi r^2} \tag{8}$$



Figure 2. Lawnmower Example

The intensity magnitude at 1.5 meters is

$$\left| \mathbf{I} \right| = \frac{0.01 \,\mathrm{W}}{2 \,\pi (1.5 \,\mathrm{m})^2} \tag{9}$$

$$|I| = 0.000707 \frac{W}{m^2}$$
 (10)

$$SIL = 10 \log \left[ \frac{0.000707 \ \frac{W}{m^2}}{(10^{-12}) \ \frac{W}{m^2}} \right]$$
(11)

The sound intensity level in the air at 1.5 meters is

$$SIL = 88.5 \, dB$$
 (12)

The pressure can be found from equation (3). First, solve for pressure

$$P_{\rm rms} = \sqrt{I\rho c}$$
(13)

The pressure at 1.5 meters is thus

$$P_{\rm rms} = \sqrt{\left(0.000707 \ \frac{W}{m^2}\right) \left(415 \frac{{\rm Pa \, sec}}{m}\right)} \tag{14}$$

$$P_{\rm rms} = 0.542 \, \rm Pa \tag{15}$$

The sound pressure level in the air is

$$SPL = 20 \log \left[ \frac{0.542 \text{ Pa}}{20 \ (10^{-6}) \text{ Pa}} \right]$$
(16)

$$SPL = 88.7 \, dB$$
 (17)

Note that the sound intensity level and the sound pressure level have approximately the same numerical value.

## **References**

- 1. Anonymous, Sound Intensity, Bruel & Kjaer, Denmark, 1986.
- 2. C. Harris, Handbook of Noise Control, McGraw-Hill, New York, 1957.

# APPENDIX A

| Table A-1. Typical Power Source Outputs |                   |  |  |
|-----------------------------------------|-------------------|--|--|
| Source                                  | Acoustic Power    |  |  |
| Large Rocket Engine                     | 1 to 10 megawatts |  |  |
| Jet Airplane                            | 10 kilowatts      |  |  |
| Pneumatic Chipping Hammer               | 1 watt            |  |  |
| Automobile at 45 mph                    | 0.1 watt          |  |  |
| Piano                                   | 20 milliwatts     |  |  |
| Conversational Speech                   | 20 microwatts     |  |  |
| Small Electric Clock                    | 0.02 microwatt    |  |  |
| Soft Whisper                            | 0.001 microwatt   |  |  |