FREQUENCY RESPONSE FUNCTION FOR BEAM BENDING WITH ENFORCED ACCELERATION VIA FINITE ELEMENT ANALYSIS

By Tom Irvine Email: tomirvine@aol.com

August 28, 2012

Variables

А	Enforced acceleration amplitude
М	Mass matrix
K	Stiffness matrix
F	Applied forces
F _d	Forces at driven nodes
F _f	Forces at free nodes
Ι	Identity matrix
П	Transformation matrix
u	Displacement vector
u _d	Displacements at driven nodes, time domain
u _f	Displacements at free nodes, time domain
Ûd	Displacements at driven nodes, frequency domain
Ûf	Displacements at free nodes, frequency domain

Derivation

The following method is adapted from Reference 1.

The equation of motion for a multi-degree-of-freedom system is

$$[\mathbf{M}][\mathbf{\ddot{u}}] + [\mathbf{K}][\mathbf{u}] = \mathbf{F} \tag{1}$$

The displacement vector is

$$\begin{bmatrix} u \end{bmatrix} = \begin{bmatrix} u_d \\ u_f \end{bmatrix}$$
(2)

Partition the matrices and vectors as follows

$$\begin{bmatrix} M_{dd} & M_{df} \\ M_{fd} & M_{ff} \end{bmatrix} \begin{bmatrix} \ddot{u}_d \\ \ddot{u}_f \end{bmatrix} + \begin{bmatrix} K_{dd} & K_{df} \\ K_{fd} & K_{ff} \end{bmatrix} \begin{bmatrix} u_d \\ u_f \end{bmatrix} = \begin{bmatrix} F_d \\ F_f \end{bmatrix}$$
(3)

Create a transformation matrix such that

$$\begin{bmatrix} u_{d} \\ u_{f} \end{bmatrix} = \Pi \begin{bmatrix} u_{d} \\ u_{W} \end{bmatrix}$$
(4)

$$\Pi = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{T}_1 & \mathbf{T}_2 \end{bmatrix} \tag{5}$$

$$\begin{bmatrix} M_{dd} & M_{df} \\ M_{fd} & M_{ff} \end{bmatrix} \Pi \begin{bmatrix} \ddot{u}_{d} \\ \ddot{u}_{w} \end{bmatrix} + \begin{bmatrix} K_{dd} & K_{df} \\ K_{fd} & K_{ff} \end{bmatrix} \Pi \begin{bmatrix} u_{d} \\ u_{w} \end{bmatrix} = \begin{bmatrix} F_{d} \\ F_{f} \end{bmatrix}$$
(6)

Premultiply by Π^{T} ,

$$\Pi^{T} \begin{bmatrix} M_{dd} & M_{df} \\ M_{fd} & M_{ff} \end{bmatrix} \Pi \begin{bmatrix} \ddot{u}_{d} \\ \ddot{u}_{w} \end{bmatrix} + \Pi^{T} \begin{bmatrix} K_{dd} & K_{df} \\ K_{fd} & K_{ff} \end{bmatrix} \Pi \begin{bmatrix} u_{d} \\ u_{w} \end{bmatrix} = \Pi^{T} \begin{bmatrix} F_{d} \\ F_{f} \end{bmatrix}$$
(7)

Transform the equation of motion to uncouple the stiffness matrix so that the resulting stiffness matrix is

$$\begin{bmatrix} \hat{\mathbf{K}}_{\mathrm{dd}} & \mathbf{0} \\ \mathbf{0} & \hat{\mathbf{K}}_{\mathrm{WW}} \end{bmatrix}$$
(8)

$$\Pi^{\mathrm{T}} \mathrm{K} \Pi = \begin{bmatrix} \mathrm{I} & \mathrm{T}_{1}^{\mathrm{T}} \\ 0 & \mathrm{T}_{2}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathrm{K}_{\mathrm{dd}} & \mathrm{K}_{\mathrm{df}} \\ \mathrm{K}_{\mathrm{fd}} & \mathrm{K}_{\mathrm{ff}} \end{bmatrix} \begin{bmatrix} \mathrm{I} & 0 \\ \mathrm{T}_{1} & \mathrm{T}_{2} \end{bmatrix}$$
(9)

$$\Pi^{T} K \Pi = \begin{bmatrix} I & T_{1}^{T} \\ 0 & T_{2}^{T} \end{bmatrix} \begin{bmatrix} K_{dd} + K_{df} T_{1} & K_{df} T_{2} \\ K_{fd} + K_{ff} T_{1} & K_{ff} T_{2} \end{bmatrix}$$
(10)

$$\Pi^{T} K \Pi = \begin{bmatrix} K_{dd} + K_{df} T_{1} + T_{1}^{T} (K_{fd} + K_{ff} T) & K_{df} T_{2} + T_{1}^{T} K_{ff} T_{2} \\ T_{2}^{T} (K_{fd} + K_{ff} T_{1}) & T_{2}^{T} (K_{ff} T_{2}) \end{bmatrix}$$
(11)

$$\Pi^{T} K \Pi = \begin{bmatrix} K_{dd} + K_{df} T_{1} + T_{1}^{T} (K_{fd} + K_{ff} T_{1}) & (K_{df} + T_{1}^{T} K_{ff}) T_{2} \\ T_{2}^{T} (K_{fd} + K_{ff} T_{1}) & T_{2}^{T} (K_{ff} T_{2}) \end{bmatrix}$$
(12)

$$\Pi^{T} K \Pi = \begin{bmatrix} K_{dd} + T_{1}^{T} K_{fd} + (K_{df} + T_{1}^{T} K_{ff}) T_{1} & (K_{df} + T_{1}^{T} K_{ff}) T_{2} \\ T_{2}^{T} (K_{fd} + K_{ff} T_{1}) & T_{2}^{T} (K_{ff} T_{2}) \end{bmatrix}$$
(13)

Let

$$T_2 = I \tag{14}$$

$$\Pi^{T} K \Pi = \begin{bmatrix} K_{dd} + T_{1}^{T} K_{fd} + (K_{df} + T_{1}^{T} K_{ff}) T_{1} & (K_{df} + T_{1}^{T} K_{ff}) \\ (K_{fd} + K_{ff} T_{1}) & K_{ff} \end{bmatrix} = \begin{bmatrix} \hat{K}_{dd} & 0 \\ 0 & \hat{K}_{ww} \end{bmatrix}$$
(15)

$$\mathbf{K}_{\mathrm{df}} + \mathbf{T}_{\mathrm{l}}^{\mathrm{T}} \mathbf{K}_{\mathrm{ff}} = 0 \tag{16}$$

$$T_1^T = -K_{df} K_{ff}^{-1}$$
 (17)

$$T_{l} = -K_{ff}^{-1}K_{fd}$$
(18)

$$\Pi = \begin{bmatrix} I_{dd} & 0\\ T_1 & I_{ff} \end{bmatrix}$$
(19)

$$\hat{K}_{dd} = K_{dd} + T_1^T K_{fd} + \left(K_{df} + T_1^T K_{ff} \right) T_1$$
(20)

$$\hat{K}_{WW} = K_{ff}$$
(21)

$$\Pi^{T} M \Pi = \begin{bmatrix} I_{dd} & T_{1}^{T} \\ 0 & I_{ff} \end{bmatrix} \begin{bmatrix} M_{dd} & M_{df} \\ M_{fd} & M_{ff} \end{bmatrix} \begin{bmatrix} I_{dd} & 0 \\ T_{1} & I_{ff} \end{bmatrix}$$
(22)

By similarity, the transformed mass matrix is

$$\begin{bmatrix} \hat{m}_{dd} & \hat{m}_{dw} \\ \hat{m}_{wd} & \hat{m}_{ww} \end{bmatrix} = \begin{bmatrix} M_{dd} + T_1^T M_{fd} + (M_{df} + T_1^T M_{ff}) T_1 & (M_{df} + T_1^T M_{ff}) \\ (M_{fd} + M_{ff} T_1) & M_{ff} \end{bmatrix}$$
(23)

$$\begin{bmatrix} \hat{F}_{d} \\ \hat{F}_{w} \end{bmatrix} = \begin{bmatrix} I_{dd} & T_{1} \\ 0 & I_{ff} \end{bmatrix} \begin{bmatrix} F_{d} \\ F_{f} \end{bmatrix}$$
(24)

$$\begin{bmatrix} \hat{F}_{d} \\ \hat{F}_{W} \end{bmatrix} = \begin{bmatrix} I_{dd}F_{d} + T_{1}F_{f} \\ I_{ff}F_{f} \end{bmatrix}$$
(25)

$$\begin{bmatrix} \hat{F}_{d} \\ \hat{F}_{w} \end{bmatrix} = \begin{bmatrix} F_{d} + T_{1}F_{f} \\ F_{f} \end{bmatrix}$$
(26)

$$\begin{bmatrix} \hat{m}_{dd} & \hat{m}_{dw} \\ \hat{m}_{wd} & \hat{m}_{ww} \end{bmatrix} \begin{bmatrix} \ddot{u}_d \\ \ddot{u}_w \end{bmatrix} + \begin{bmatrix} \hat{K}_{dd} & 0 \\ 0 & \hat{K}_{ww} \end{bmatrix} \begin{bmatrix} u_d \\ u_w \end{bmatrix} = \begin{bmatrix} \hat{F}_d \\ \hat{F}_w \end{bmatrix}$$
(27)

$$\hat{m}_{wd}\ddot{u}_d + \hat{m}_{ww}\ddot{u}_w + \hat{K}_{ww}u_w = \hat{F}_w$$
(28)

The equation of motion is thus

$$\hat{\mathbf{m}}_{\mathbf{W}\mathbf{W}}\ddot{\mathbf{u}}_{\mathbf{W}} + \hat{\mathbf{K}}_{\mathbf{W}\mathbf{W}}\mathbf{u}_{\mathbf{W}} = \hat{\mathbf{F}}_{\mathbf{W}} - \hat{\mathbf{m}}_{\mathbf{W}\mathbf{d}}\ddot{\mathbf{u}}_{\mathbf{d}}$$
(29)

Assume that the external forces are zero.

$$\hat{\mathbf{m}}_{\mathbf{W}\mathbf{W}}\ddot{\mathbf{u}}_{\mathbf{W}} + \hat{\mathbf{K}}_{\mathbf{W}\mathbf{W}}\mathbf{u}_{\mathbf{W}} = -\hat{\mathbf{m}}_{\mathbf{W}\mathbf{d}}\ddot{\mathbf{u}}_{\mathbf{d}}$$
(30)

Consider the homogeneous form of equation (30).

$$\hat{\mathbf{m}}_{\mathbf{W}\mathbf{W}}\ddot{\mathbf{u}}_{\mathbf{W}} + \hat{\mathbf{K}}_{\mathbf{W}\mathbf{W}}\mathbf{u}_{\mathbf{W}} = \overline{\mathbf{0}}$$
(31)

Seek a solution of the form

$$\overline{\mathbf{u}}_{\mathbf{W}} = \overline{\mathbf{q}} \exp(\mathbf{j}\omega \mathbf{t}) \tag{32}$$

The q vector is the generalized coordinate vector.

Note that

$$\overline{\dot{u}} = j\omega \,\overline{q} \exp(j\omega t) \tag{33}$$

$$\overline{\ddot{\mathbf{u}}} = -\omega^2 \,\overline{\mathbf{q}} \exp(\mathbf{j}\omega \mathbf{t}) \tag{34}$$

By substitution,

$$-\omega^2 \hat{m}_{WW} \ \bar{q} \exp(j\omega t) + \hat{K}_{WW} \ \bar{q} \exp(j\omega t) = \bar{0}$$
(35)

$$\left\{ -\omega^2 \hat{m}_{ww} \ \bar{q} + \hat{K}_{ww} \ \bar{q} \right\} \exp(j\omega t) = \bar{0}$$
(36)

$$\left\{ -\omega_n^2 \hat{m}_{ww} \ \bar{q} + \hat{K}_{ww} \ \bar{q} \right\} \exp(j\omega_n t) = \bar{0}$$
(37)

$$\left\{ -\omega^2 \hat{m}_{WW} + \hat{K}_{WW} \right\} \overline{q} = \overline{0}$$
(38)

$$\left\{\hat{\mathbf{K}}_{\mathbf{W}\mathbf{W}} - \omega^2 \hat{\mathbf{m}}_{\mathbf{W}\mathbf{W}}\right\} \overline{\mathbf{q}} = \overline{\mathbf{0}}$$
(39)

Equation (39) is an example of a generalized eigenvalue problem. The eigenvalues can be found by setting the determinant equal to zero.

$$\det\left\{\hat{K}_{WW} - \omega^2 \hat{m}_{WW}\right\} = 0 \tag{40}$$

The eigenvectors are found via the following equations.

$$\left\{ \hat{\mathbf{K}}_{\mathbf{W}\mathbf{W}} - \omega_{\mathbf{i}}^{2} \, \hat{\mathbf{m}}_{\mathbf{W}\mathbf{W}} \right\} \overline{\mathbf{q}}_{\mathbf{i}} = \overline{\mathbf{0}}$$

$$\tag{41}$$

An eigenvector matrix Q can be formed. The eigenvectors are inserted in column format.

$$\mathbf{Q} = \begin{bmatrix} \overline{\mathbf{q}}_1 & | & \overline{\mathbf{q}}_2 & | \dots & | & \overline{\mathbf{q}}_n \end{bmatrix}$$
(42)

where n is the number of degrees-of-freedom

The eigenvectors represent orthogonal mode shapes. Assume that the eigenvectors are mass-normalized such that

$$Q^{T}MQ = I$$
(43)

and

$$Q^{T}KQ = \Omega \tag{44}$$

where

superscript T represents transpose

- I is the identity matrix
- Ω is a diagonal matrix of eigenvalues

Now define a modal coordinate $\eta(t)$ such that

$$\overline{\mathbf{u}} = \mathbf{Q} \ \overline{\mathbf{\eta}} \tag{45}$$

Let q_{ij} represent the elements of Q.

The displacement, velocity and acceleration terms are

$$u_i = \sum_{j=1}^n q_{ij} \eta_j \tag{46}$$

$$\dot{u}_{i} = \sum_{j=1}^{n} q_{ij} \dot{\eta}_{j}$$
 (47)

$$\ddot{u}_{i} = \sum_{j=1}^{n} q_{ij} \ddot{\eta}_{j}$$
 (48)

By substitution

$$\hat{m}_{WW} Q \overline{\ddot{\eta}} + \hat{K}_{WW} Q \overline{\eta} = -\hat{m}_{Wd} \ddot{u}_d$$
(49)

Premultiply by the transpose of the normalized eigenvector matrix.

$$Q^{T}\hat{m}_{ww} Q \overline{\ddot{\eta}} + Q^{T}\hat{K}_{ww} Q \overline{\eta} = -\hat{Q}^{T}\hat{m}_{wd}\ddot{u}_{d}$$
(50)

The orthogonality relationships yield

$$I \ \overline{\ddot{\eta}} + \Omega \ \overline{\eta} = -\hat{Q}^{T} \hat{m}_{wd} \ddot{u}_{d}$$
(51)

Note that the two equations are decoupled in terms of the modal coordinate.

Now assume modal damping by adding an uncoupled damping matrix.

$$I \ \overline{\ddot{\eta}} + D\overline{\dot{\eta}} + \Omega \ \overline{\eta} = -Q^T \hat{m}_{wd} \ddot{u}_d$$
(52)

$$D_{ij} = \begin{cases} 2\xi_i \omega_i^2, & \text{for } i = j \\ 0, & \text{for } i \neq j \end{cases}$$
(53)

Now assume a harmonic base input. Assume that it is uniform if it is applied at multiple locations.

$$\ddot{\mathbf{y}} = \mathbf{A} \exp\left(\mathbf{j}\omega \mathbf{t}\right) \tag{54}$$

Assume a common harmonic modal displacement.

$$\eta_{i} = \psi_{i} \exp(j\omega t) \tag{55}$$

$$\dot{\eta}_{i} = j\omega_{i}\psi_{i} \exp(j\omega t)$$
(56)

$$\ddot{\eta}_{i} = -\omega_{i}^{2} \psi_{i} \exp(j\omega t)$$
(57)

Let C be a vectors of ones. The number of rows in C is equal to the number of drive points.

By substitution,

$$\left\{-\omega^{2} + j 2\xi_{i}\omega_{i}\omega + \omega_{i}^{2}\right\}\psi_{i}\exp\left(j\omega t\right) = -\left\{\left[Q^{T}\hat{m}_{wd}\right]_{rowi}C\right\}A\exp\left(j\omega t\right)$$
(58)

$$\left\{ \left[\omega_{i}^{2} - \omega^{2} \right] + j 2\xi_{i} \omega_{i} \omega \right\} \psi_{i} \exp\left(j\omega t \right) = - \left\{ \left[Q^{T} \hat{m}_{wd} \right]_{rowi} C \right\} A \exp\left(j\omega t \right)$$
(59)

The modal displacement is

$$\eta_{i} = \psi_{i} \exp(j\omega t) = \frac{-\left\{ \left[Q^{T} \hat{m}_{wd} \right]_{rowi} C \right\}}{\left\{ \left[\omega_{i}^{2} - \omega^{2} \right] + j 2\xi_{i} \omega_{i} \omega \right\}} A \exp(j\omega t)$$
(60)

The modal velocity is

$$\dot{\eta}_{i} = \frac{-j\omega \left\{ \left[Q^{T} \hat{m}_{wd} \right]_{rowi} C \right\}}{\left\{ \left[\omega_{i}^{2} - \omega^{2} \right] + j 2\xi_{i} \omega_{i} \omega \right\}} A \exp(j\omega t)$$
(61)

The modal acceleration is

$$\ddot{\eta}_{i} = \frac{\omega^{2} \left\{ \left[Q^{T} \hat{m}_{wd} \right]_{rowi} C \right\}}{\left\{ \left[\omega_{i}^{2} - \omega^{2} \right] + j 2\xi_{i} \omega_{i} \omega \right\}} A \exp(j\omega t)$$
(62)

Recall

$$\ddot{u}_{i} = \sum_{p=1}^{n} q_{ip} \ddot{\eta}_{p}$$
 (63)

$$\ddot{u}_{i} = \sum_{p=1}^{n} \left\{ q_{ip} \frac{\omega^{2} \left\{ \left[Q^{T} \hat{m}_{wd} \right]_{rowi} C \right\}}{\left\{ \left[\omega_{p}^{2} - \omega^{2} \right] + j 2\xi_{p} \omega_{p} \omega \right\}} A \exp\left(j\omega t\right) \right\}$$
(64)

$$\ddot{u}_{i} = A \exp(j\omega t) \sum_{p=1}^{n} \left\{ q_{ip} \frac{\omega^{2} \left\{ \left[Q^{T} \hat{m}_{wd} \right]_{rowi} C \right\}}{\left\{ \left[\omega_{p}^{2} - \omega^{2} \right] + j 2\xi_{p} \omega_{p} \omega} \right\}} \right\}$$
(65)

The Fourier transform equation is

$$\hat{U}_{i}(f) = \int_{-\infty}^{\infty} \ddot{u}_{i}(t) \exp\left[-j\omega t\right] dt$$
(66)

$$\ddot{u}_{i} = A \exp(j\omega t) \sum_{p=1}^{n} \left\{ q_{ip} \frac{\omega^{2} \left\{ \left[Q^{T} \hat{m}_{wd} \right]_{rowi} C \right\}}{\left\{ \left[\omega_{p}^{2} - \omega^{2} \right] + j 2\xi_{p} \omega_{p} \omega} \right\}} \right\}$$
(67)

$$\hat{U}_{i}(f)/A = \sum_{p=1}^{n} \left\{ q_{ip} \frac{\omega^{2} \left\{ \left[Q^{T} \hat{m}_{wd} \right]_{rowi} C \right\}}{\left\{ \left[\omega_{p}^{2} - \omega^{2} \right] + j 2\xi_{p} \omega_{p} \omega \right\}} \right\}$$
(68)

Recall

$$\begin{bmatrix} u_{d} \\ u_{f} \end{bmatrix} = \Pi \begin{bmatrix} u_{d} \\ u_{w} \end{bmatrix}$$
(69)

The equivalent format for the frequency domain is

$$\begin{bmatrix} \hat{\mathbf{U}}_{\mathbf{d}} \\ \hat{\mathbf{U}}_{\mathbf{f}} \end{bmatrix} = \Pi \begin{bmatrix} \hat{\mathbf{U}}_{\mathbf{d}} \\ \hat{\mathbf{U}}_{\mathbf{W}} \end{bmatrix}$$
(70)

The final step is to rearrange the degrees-of-freedom in the proper order.

References

- 1. T. Irvine, Modal Transient Analysis of a Multi-degree-of-freedom System with Enforced Motion, Revision E, Vibrationdata, 2012.
- 2. T. Irvine, Transverse Vibration of a Beam via the Finite Element Method, Revision F, Vibrationdata, 2010.

APPENDIX A

<u>Example</u>

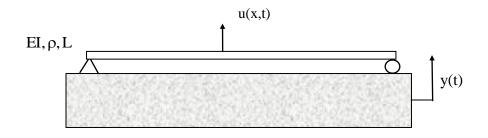


Figure A-1.

Consider a beam subjected to uniform base excitation at each end.

The beam has the following properties:

Cross-Section	Circular
Boundary Conditions	Simply-Supported at Each End
Material	Aluminum

Diameter	D	=	0.5 inch
Cross-Section Area	Α	=	0.1963 in^2
Length	L	=	24 inch
Area Moment of Inertia	Ι	=	0.003068 in^4
Elastic Modulus	E	=	1.0e+07 lbf/in^2
Stiffness	EI	=	30680 lbf in^2
Mass per Volume	ρ_{v}	=	0.1 lbm / in^3 (0.000259 lbf sec^2/in^4)
Mass per Length	ρ	=	0.01963 lbm/in (5.08e-05 lbf sec^2/in^2)
Mass	ρL	=	0.471 lbm (1.22E-03 lbf sec^2/in)
Viscous Damping Ratio	ξ	=	0.05

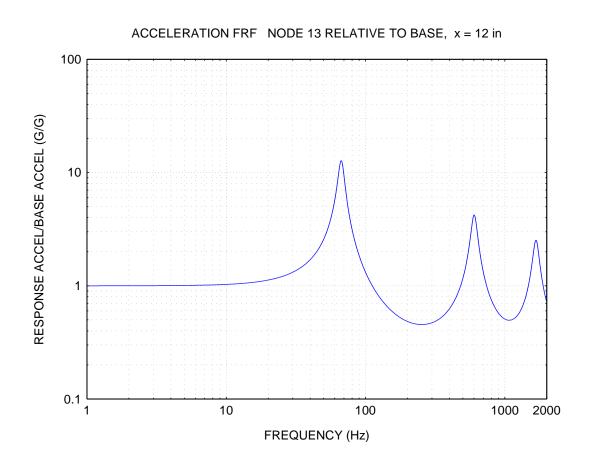


Figure A-2.

Model the beam with 24 elements using the method in Reference 2. Calculate the frequency response function at the center.