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Introduction 
 
The natural frequencies for pipes with constant cross-section are given in Table 1. 
 
Table 1.  Natural Frequencies of Pressure Oscillation 
 

Configuration Frequency (Hz) Source 

Open-Open 
L
c

2
n

fn =  Equation (35b) 

Closed-Open 
L
c

4
1n2

fn 





 −

=  Equation (54b) 

Closed-Closed 
L
c

2
n

fn =  Equation (71b) 

Driven by piston at one end. 
Open at other end.  Large flange 
at open end. 








π

+

=

3
a8

L

c
2
n

fn  
Reference 1 

Driven by piston at one end. 
Open at other end. Unflanged. [ ]a6.0L

c
2
n

fn
+

=  Reference 1 

 
 
where 
 

n = 1, 2, 3, …. 

c is the speed of sound 

L is the length 

a is the radius 
 
Note that the open-open and closed-closed pipes have the same formula. 
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Derivation 
 

Acoustic waves require a physical medium through which to propagate. Sound cannot 
travel in a vacuum. On the other hand, sound can travel through the air, water, Earth,  
metal, wood, and other physical objects. 
 

An acoustic wave is a longitudinal pressure wave which alternately pushes and pulls the  
substance through which it propagates. The amplitude disturbance is thus parallel to the  
direction of propagation. 
 

Consider the pipe in Figure 1, where the length is much greater than the diameter. The  
cross-section may have an arbitrary shape but must be constant. Assume that the pipe is  
filled with some gas or liquid. 
 
 
 
 
 
 
 
 
 

L  is the length 
 

c  is the speed of sound in the enclosed gas or liquid 
 
 

Figure 1. 
 
 
The acoustic pressure p(x, t) is governed by the equation 
 
 

2t

p2

2c

1
2x

p2

∂

∂
=

∂

∂
                                                              (1) 

 
This equation is taken from Reference 1. Note that equation (1) has the same form as the 
equation for the longitudinal vibration of a rod. 
 
Note that the speed of sound is given by 
 

 

o

B
c

ρ
=                                                                                   (2) 

 

where 
 

B is the adiabatic bulk modulus 
 

ρo is the equilibrium density 

L 



 3 

The adiabatic bulk modulus B is defined in terms of pressure P and volume V as 
 

V/V
P

B
∆−
∆

=                                                                           (3) 

 
The bulk modulus is essentially a measure of stress divided by strain. 
 

Further information about the speed of sound is given in Reference 2. 
 

Separate the variables in equation (1). Let 
 

 
p(x, t)  =   P(x)T(t)                                                                        (4) 

 
 
Substitute equation (4) into (1). 

 
 

[ ] [ ])t(T)x(P
2t

2

2c

1
)t(T)x(P

2x

2

∂

∂
=

∂

∂
                                                (5) 

 
Divide through by P(x)T(t). 

 
 

)t(T)x(P
2c

1
)t(T)x(P ′′=′′                                                                        (6) 

 
 

)t(T
)t(T

2c

1
)x(P
)x(P ′′

=
′′

                                                                                   (7) 

 
 

)t(T
)t(T

)x(P
)x(P2c

′′
=

′′
                                                                                   (8) 

 
 

Each side of equation (8) must equal a constant. Let ω be a constant. 
 

 
2

)t(T
)t(T

)x(P
)x(P2c ω−=

′′
=

′′
                                                                          (9) 

 



 4 

The time equation is 
 

2
)t(T
)t(T

ω−=
′′

                                                                              (10) 

 
 

0)t(T2)t(T =ω−′′                                                                        (11) 
 
 

0)t(T2)t(T =ω+′′                                                                     (12) 
 
Propose a solution 

 
)tcos(b)tsin(a)t(T ω+ω=                                                                 (13) 

 
)tsin(b)tcos(a)t(T ωω−ωω=′                                                          (14) 

 

)tcos(2b)tsin(2a)t(T ωω−ωω−=′′                                                (15) 
 
Verify the proposed solution.  Substitute in equation (12). 

 
                                                    

[ ] 0)tcos(b)tsin(a2)tcos(2b)tsin(2a =ω+ωω+ωω−ωω−                   (16) 
 

 0 = 0                                                                                     (17) 
 

Equation (13) is thus verified as a solution. 
 
There is not a unique ω , however, in equation (9).  This is demonstrated later in the 
derivation.  Thus, a subscript n must be added as follows. 
 
 

)tncos(nb)tnsin(na)t(nT ω+ω=                                                          (18) 
 

The spatial equation is 
 

2
)x(P
)x(P2c ω−=

′′
                                                                                     (19) 

 

)x(P2)x(P2c ω−=′′                                                                                (20) 
 

0)x(P2)x(P2c =ω+′′                                                                             (21) 
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0)x(P
2c

2
)x(P =

ω
+′′                                                                         (22) 

 
Equation (22) is similar to equation (12).  Thus, a solution can be found be inspection. 

 







 ω

+





 ω

=
c
x

cose
c
x

sind)x(P                                                               (23) 

 















 ω

−





 ω







 ω

=′
c
x

sine
c
x

cosd
c

)x(P                                                   (24) 

 
Now consider three boundary condition cases. 

 
Case I.  Both Ends Open 
 
The left boundary condition is 
 

p(0,t) = 0   (zero acoustic pressure)                                                         (25) 
 
 

P(0)T(t) = 0                                                                                              (26) 
 
 

P(0) = 0                                                                                                    (27) 
 

The right boundary condition is 
 

p(L,t) = 0  (zero acoustic pressure)                                                        (28) 
 
 

P(L)T(t) = 0                                                                                           (29) 
 
 

P(L) = 0                                                                                                 (30) 
 

Substitute equation (27) into (23). 
 

e = 0                                                                                                      (31) 
 







 ω

=
c
x

sind)x(P                                                                                     (32) 
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Substitute equation (30) into (32). 
 
 

0
c
L

sind =





 ω

                                                                                     (33) 

 
The constant d must be non-zero for a non-trivial solution. Thus, 
 

... 3 2, 1,n,n
c

Ln =π=
ω

                                                                     (34) 

 
The ω  term is given a subscript n because there are multiple roots.  The angular natural 
frequency with dimensions [radians/time] is thus 
 

... 3 2, 1,n,
L
c

nn =π=ω                                                                   (35a) 

 
 

... 3 2, 1,n,
L
c

2
n

nf ==                                                                     (35b) 

 
The acoustic pressure function in the open-open pipe is  
 







 ω

=
c

xnsinnd)x(nP                                                                         (36) 

 







 π

=
L

xn
sinnd)x(nP                                                                         (37) 

 
 
Substitute the natural frequency term into the time equation. 
 
 







 π

+





 π

=
L

tcn
cosnb

L
tcn

sinna)t(nT                                                     (38) 

 
 
The acoustic pressure function is thus 
 

∑
∞

=














 π

+





 π















 π

=
1n

L
tcn

cosnb
L

tcn
sinna

L
xn

sinnd)t,x(p                        (39) 
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The coefficients can be simplified as follows 

 
nandnA =                                                                          (40) 

 
nbndnB =                                                                           (41) 

 
 
By substitution, the acoustic pressure equation is 
  
 

∑
∞

=














 π

+





 π















 π

=
1n

L
tcn

cosnB
L

tcn
sinnA

L
xn

sin)t,x(p                (42) 

 
 
Case II. Open-Closed 
 
The left boundary conditions is 

 
 

p(0, t) = 0    (zero acoustic pressure)                                                      (43) 
 

P(0)T(t) = 0                                                                                            (44) 
 

P(0) = 0                                                                                                   (45) 
 

 
The right boundary condition is 

 

0Lx)t,x(p
x

==∂
∂

                  (zero pressure slope)                          (46) 

 
 

0)t(T)L(P =′                                                                                        (47) 
 

0)L(P =′                                                                                            (48) 
  
Substitute equation (45) into (23). 

 
 e = 0                                                                                               (49) 
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Thus, the acoustic pressure equation becomes 
 







 ω

=
c
x

sind)x(P                                                                                 (50) 

 
 















 ω







 ω

=′
c
x

cosd
c

)x(P                                                                               (51) 

 
 
Substitute equation (48) into (50). 
 
 

0
c
L

cosd =





 ω

                                                                                             (52) 

 
 
The constant d must be non-zero for a non-trivial solution.  Thus, 

 

... 3 2, 1,
2

1n2
c

Ln =π





 −

=
ω

                                                                  (53) 

 
The ω term is given a subscript n because there are multiple roots. 

 

... 3 2, 1,n,
L
c

2
1n2

n =π





 −

=ω                                                            (54a) 

 
 

... 3 2, 1,n,
L
c

4
1n2

nf =





 −

=                                                             (54b) 

 
 
The acoustic pressure function for the open-closed pipe is 

 







 ω

=
c

xnsinnd)x(nP                                                                              (55) 

 
( )







 π−

=
L2

x1n2
sinnd)x(nP                                                                     (56) 
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Substitute the natural frequency term into the time equation. 
 

 
( ) ( )







 π−

+





 π−

=
L2

ct1n2
cosnb

L2
ct1n2

sinna)t(nT                                        (57) 

 
 
The acoustic pressure function is thus 

 

( ) ( ) ( )∑
∞

=














 π−

+





 π−















 π−

=
1n

L2
ct1n2

cosnb
L2

ct1n2
sinna

L2
x1n2

sinnd)t,x(p  

 
 

(58) 
 
Simplify the coefficients. 

  

( ) ( ) ( )∑
∞

=














 π−

+





 π−















 π−

=
1n

L2
ct1n2

cosnB
L2

ct1n2
sinnA

L2
x1n2

sin)t,x(p         

 
(59) 

 
Case III. Both Ends Closed 
 
The left boundary conditions is 

 
 

00x)t,x(p
x

==∂
∂

                  (zero pressure slope)                           (60) 

 
 0)t(T)0(P =′                                                                                          (61) 

 
0)0(P =′                                                                                                 (62) 

 

0Lx)t,x(p
x

==∂
∂

                (zero pressure slope)                            (63) 

 
0)t(T)L(P =′                                                                                          (64) 

 
0)L(P =′                                                                                                 (65) 
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Apply equation (62) to (23). 
 

d = 0                                                                                                   (66) 
 

Then 







 ω

=
c
x

cose)x(P                                                                                      (67) 

 
The slope equation is 
 







 ω







 ω

−=′
c
x

sine
c

)x(P                                                                         (68) 

 
 

Substitute equation (65) into (68). 
 

0
c
L

sine =





 ω

                                                                               (69) 

 
The constant e must be non-zero for a non-trivial solution.  Thus, 

 

... 3 2, 1,n,n
c

Ln =π=
ω

                                                               (70) 

 
The ω term is given a subscript n because there are multiple roots. 

 

... 3 2, 1,n,
L
c

nn =π=ω                                                                (71a) 

 

... 3 2, 1,n,
L
c

2
n

nf ==                                                                   (71b) 

 
 







 ω

=
c

xncosne)x(nP                                                                           (72) 

 

  





 π

=
L

xn
cosne)x(nP                                                                            (73) 

 







 π

+





 π

=
L

tcn
cosnb

L
tcn

sinna)t(nT                                                    (74) 
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∑
∞

=














 π

+





 π















 π

=
1n

L
tcn

cosnb
L

tcn
sinna

L
xn

cosne)t,x(p                    (75) 

 
 
 
Simplify the coefficients. 

 

∑
∞

=














 π

+





 π















 π

=
1n

L
tcn

cosnB
L

tcn
sinnA

L
xn

cos)t,x(p                     (76) 

 
 
 
 
 
 

Example 
 
A solid rocket motor can be modeled as a closed-closed pipe, because the nozzle throat 
diameter is very small.  A simple diagram is shown in Figure 2. 

 
 

 
 

Figure 2. 
 
 

The speed of sound in the gas inside the motor cavity is typically 3500 feet/sec (1067 
meters/sec), due to the high pressure and high temperature. This value is about three 
times the speed of sound in air at ambient sea level conditions. 
 
A certain rocket motor has an internal cavity length of 27 feet (8.2 meters). Calculate the 
fundamental acoustical frequency. 
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The formula for a closed-closed pipe is 
 

... 3 2, 1,n,
L
c

nn =π=ω                                                  (77) 

 
nf2n π=ω                                                                       (78) 

 

... 3 2, 1,n,
L
c

2
n

nf ==                                                    (79) 

 
The fundamental frequency is 

 







=

L
c

2
1

1f                                                                                  (80) 

 









=

ft27
sec/ft3500

2
1

1f                                                                  (81) 

 
Hz8.641f =                                                                                (82) 
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