PLATE POINT MOBILITY

By Tom Irvine
Email: tomirvine@aol.com

May 18, 2011

Variables

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>Excitation frequency</td>
</tr>
<tr>
<td>f_{mn}</td>
<td>Natural frequency for mode m,n</td>
</tr>
<tr>
<td>$H_{v,ij}(f)$</td>
<td>The steady state velocity at coordinate i due to a harmonic force excitation only at coordinate j. This is also known as the mobility function.</td>
</tr>
<tr>
<td>ξ_{mn}</td>
<td>Damping ratio for mode m,n</td>
</tr>
<tr>
<td>ϕ_{imn}</td>
<td>Mass-normalized eigenvector for physical coordinate i and mode number m,n</td>
</tr>
<tr>
<td>ω</td>
<td>Excitation frequency (rad/sec)</td>
</tr>
<tr>
<td>ω_{mn}</td>
<td>Natural frequency (rad/sec) for mode m,n</td>
</tr>
</tbody>
</table>

Introduction

Consider a flat plate excited by a harmonic point force.

The steady-state velocity at coordinate i due to a harmonic force excitation only at coordinate j is

$$H_{v,ij}(f) = j\omega \sum_{m} \sum_{n=1}^{N} \frac{\phi_{imn} \phi_{jmn}}{\omega_{mn}^2} \frac{1}{\left(1 - \rho_{mn}^2\right) + j\left(2\xi_{mn}\rho_{mn}\right)}$$

(1)
where
\[
\rho_{mn} = \frac{f}{f_{mn}} \\
j = \sqrt{-1}
\]

Note that \(j \) is used both as an index and as an imaginary number in equation (1).

Equation (1) is derived from Reference 1.

Now consider a plate simply-supported on all sides. The steady-state velocity at coordinate \(i \) due to a harmonic force excitation only at coordinate \(j \) is

\[
H_{v,ij}(f) = j \omega \left(\frac{4}{\rho_{ab} h} \right) \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{1}{\omega_{mn}^2} \left\{ \sin \left(\frac{m \pi x}{a} \right) \sin \left(\frac{n \pi y}{b} \right) \left[\sin \left(\frac{m \pi x_o}{a} \right) \sin \left(\frac{n \pi y_o}{b} \right) \right] \right\} \\
\left(1 - \rho_{mn}^2 \right) + j \left(2 \xi_{mn} \rho_{mn} \right)
\]

(2)

where

\((x,y)\) is the coordinate for the input index \(i \)

\((x_o,y_o)\) is the coordinate for the input index \(j \)

Equation (2) is derived from References 1, 2 and 3.
Example

![Graph of Point Mobility](image)

Figure 1.

The point mobility function is shown for an aluminum plate with dimensions (48” x 36” x 0.125”).

The input and response are each located at the quarter point along both the length and the width.

The loss factor is 0.02 for all modes.

The theoretical mobility for a 0.125” thick aluminum plate with infinite length and width is 0.55 (in/sec)/lbf, based on Reference 4.

The finite, simply-supported plate in this example has a compliance which roughly converges to this value at frequencies beyond those shown in Figure 1. Note that exact convergence is not expected.
References

