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Abstract

Three analytical methods namely, Dunkerley’ s method, the Rayleigh Method and the
Transfer Matrix method, are discussed for evaluating lateral natural frequencies of a
shaft rotor system. One hypothetical caseis considered and the natural frequency is
evaluated by these methods. A program is developed by the Transfer Matrix
Method. It may be useful for evaluating the natural frequency of afiberizer for the
sugar industry or a crusher for the cement industry.

Introduction

A critical speed of arotating shaft is the speed at which the shaft starts to vibrate violently in the
transverse direction. It isvery dangerous to continue to run the shaft at its critical speed because
the amplitude of vibration will build to such alevel that the system may break into pieces. The
phenomenon of bending vibrations and critical speeds of rotating shafts is perhaps the most
common problem that is discussed by the vibration engineer, asit is a vexing day to day problem
in design and maintenance of the machinery. Some of the rotors weigh as much as 100 tons asis
the case of large steam turbines, and obvioudy they deserved the utmost attention in this regard.



Therotors always have some amount of residual unbalance however well they are balanced, and
will experience resonance when they rotate at speeds equal to the bending natural frequency.
These speeds are called critical speeds, and as far as possible they should be avoided. Even
while taking the rotor through a critical speed to an operation speed, special precautions should
be taken.

While calculation of the bending natural frequency of asmple shaft in rigid bearingsis
somewhat an easy matter, the problem in practice becomes complex because of:
Gyroscopic effects of disks

Dissimilar moment of area of shaft

Stiffness and damping properties of il film bearings
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Coupling between two rotors

To avoid failures of shafting, the general practicein the design of rotorsisto determine the
bending critical speeds, check the out-of-balance response and adopt a suitable balancing
procedure. We know that a single mass flexible rotor with residual unbalance has critical shaft
speeds which are the same as the natural frequencies of the rotor in lateral bending. In practice,
therotor carries several components, such as gears, disks, flywheds, etc. Such arotor has
several critical speeds corresponding to the bending natural frequencies. For most of the rotors,
it is the fundamental mode which failsin the running speed zone. There are several methods of
calculation of the critical speed, which are as follows:

1. Dunkerley method
2. Rayleigh method
3. Transfer Matrix method

Thefirst two methods are suitable for estimating the fundamental frequency by hand cal culation.
The transfer matrix technique inevitably necessitates the use of computers.

Dunkerley Method

Thisisavery convenient method, proposed by Dunkerley to determine the fundamental critical
speed of a shaft carrying a number of components. This method is quite smple and consists of
reducing the actual system into a number of simple subsystems, calculating the critical speeds of
each by adirect formula, and combing these critical speeds according to equation 1 to obtain the
actual critical speed wof the system.
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where wp, Wo, ws, ... arethe natural frequencies of the different rotor subsystems.
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Figure 1. A n mass system

Rayleigh Method

Thisisanother smple method, proposed by Rayleigh, based on the fact that the maximum
kinetic energy must be equal to the maximum potential energy for a conservative system under a
free vibration condition. For a shaft carrying several components, we can use static deflection or
any other suitable function to represent the fundamental mode of the shaft. The fundamental
frequency can be obtained from Reference [2].

w2 = 2N @
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where M1, Mo, M3, ... are masses of different rotors and y1, y2, y3, ... are deflections of the
shaft at the locations of these components. The variable g is the gravitational constant. Since the
frequency isaminimum, it is always an upper bound.



Transfer Matrix Method

In amanner smilar to the Holzer method, Myklestad and Prohl [3] devel oped a highly successful
method of computation for the bending critical speeds of the shaft. Consider an n mass system,
each mass representing either agear, adisk, or aflywhheel, etc. All of the masses are taken as
lumped with their gyroscopic inertia neglected. The it shaft of length |; and mass my are shown

separately in Figure 1; and [S] represents the state vector containing the deflection y, dope g,
bending moment M, and shear force V. The sign convention of the variablesis shown in Figure
2. Thetransfer matrices for each element are set up as follows:

station i a station i
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Positive direction

M Moment y Deflection

g Slope V Shear force

Figure 2. Sign convention for variables

Fidd Matrix

Figure 3 gives the equilibrium relation for the ith field, from which we have in terms of shear
force and bending moment,

Vit =Viip 3)
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To derivethe transfer relation for definition y and dope g, for the element in Figure 3, we use the
relation for a cantilever beam from Reference [4].
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Using the above equations, we can obtain the following relations for a deflection y, ope g to the
left of station i, in terms of corresponding quantities to the right of station i-1.
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Using equations 3 and 4 in equations 7 and 8, and simplifying, we obtain
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We combine equations 3, 4, and 7, and 8 in the following transfer matrix.
LS 12 8u =
eva- ¢t ' 2E emg evu
?ql:' é | |21'J ?ql:'
¢U=20 1 — —qu &V (11)
e@M u é El 2El; €Mu
a a z a
&vai 0 0 1 1 U g,
g o0 0 0 1 g;



i
. A
Vic1
k-
A ViL
’
R
( 9.1
R
Yi-1
v
R
MiZ1
y
0 X
Elastic deformation of shaft (field) section
Vi
qi '>

/ /
/]
/] — Mj
/]
7
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Symbolically, the above equation can be written as
[l =[FlilsIT, (12)

where [F]j isafied matrix of theith fied.

Point Matrix

Figure 4 shows the equilibrium relations for the mass at station i. We can directly write the
following transfer matrix

éyu® €1 00 00 ey
e, u e u e_u
edy —¢ 9 1005 gay (13)
My e 0100 &My
a é_ o G G
&vo; anw® 0 0 1f; &V
i.e.
R _ L
(sl =[Pli[]; (14)

In the above equation, [P]; isthe point matrix for the ith mass having vibration in a normal mode
with frequency w.
Overadl Transfer Matrix and Frequency Equation

Starting from station O of the shaft in Figure 1, we can write the foll owing equations using
equations 12 and 14.

[sly =[Fl[dlg (15)
(S5 =[Plal st = [Pla[Fla[S]§ (16)
[s]5 = [Fl2[SIf =[Fl2 [Pl[A1[SI (17)
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A generalized equation can be written as
[S]rl;+1 = [F]n+1[P]n[F]n[P]n- 1 [F]l[S]ch (18)

Defining the product of al field matrices and point matricesin the above equations as the overall
transfer matrix [U], we obtain

[8] sq =[] (Sl (19)

Since[F] and [P] areall 4 x 4 matrices, [U] isadso4 x 4in size. We can write equation 19 in the
expanded form
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For a ssmply supported shaft, the bending moment M and the deflection y have boundary
conditions

y=0; M=0; at station 0 and (n+1)
Sinceq and V are non-zero at station 0 and n+1, we obtain a determinant from equation 21
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D= =0

We adopt a root searching technique to determine the natural frequency w. Find the value of
w2, to satisfy equation 22. Three examples are shown.

Example: By Rayleigh Method

A uniform shaft with two disks and supported bearingsis shown in Figure 5. The calculated
static shaft deflection isindicated in Figure 5b. Evaluate the natural frequency of the system.

Solution: We have the Rayleigh principlein which

szgé_MiYi
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_ 9,81[50(70.0) +30(0.43)] x 10”3
| 50(70.0)? +30(0.43)?| x 20 ©

W2 =15639.79

Therefore w=125.06 rad/sec or 19.90 Hz

(20)

(21)

(22)



Example: By Dunkerley Method
The same problem in Figure 5 is considered. The natural frequencies of the 50 kg disk and the

30 kg disk are 126.27 rad/sec and 244.52 rad/sec, respectively. The natural frequency values are
calculated using devel oped software.

Solution: We have the following principle for the Dunkerley Method,

1 1

W2 w2
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W2 126272 244522

W2 =12587.44 rad? /sec?

Therefore w=112.19 rad/sec or 17.86 Hz

Example: By Transfer Matrix Method
The same problem in Figure 5 is considered for this method.
Solution: We have the following principle for the Transfer Matrix Method, using the following

algorithm, we have developed a computer program using scientific language.

Transfer Matrix Algorithm

Takethetrial value of the natural frequency w.

Assign the eement in the matrix with different variable.

Form the mass and field matrix.

Arrange the matrix in the order of multiplication and multiply it.

Apply boundary conditions to the overall transfer matrix.

o o~ w D P

Find the determinant value. If it iszero or nearly zero then its w will be the natural
frequency. Otherwise repeat the same procedure for a different value of w.

Thefollowing natural frequency was calculated via a computer program:

w =115.25 rad/sec or 18.34 Hz
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Note: All dimensions are in mm unless otherwise specified.

Figure5. Example 1. Two disk and shaft system
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Note: All dimensions are in mm unless otherwise specified.

Figure 6. Example 2. Step shaft and disk system
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mq =100 kg
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mo =400 kg

m3 = 200 kg
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Note: All dimensions are in mm unless otherwise specified.
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Figure7. Example3. Threedisk and shaft system

Summary

A comparison of the resultsisgiven in Table 1.

Table 1.

Comparison of Natural Frequencies using Transfer Matrix Method with other Methods

Approach Transfer Matrix Method Dunkerley Method Rayleigh Method
fn (H2) fn (H2) fn (H2)

Example 1 18.34 17.86 19.90

Example 2 24.28 - 24.66

Example 3 16.52 16.17 -
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Conclusion

There are a number of methods to find the lateral natural frequencies of undamped systems.
Simple methods suitable for hand calculations and the transfer matrix method were presented in
this paper. Dunkerley’s method and the Rayleigh method serve to illustrate the hand method for
estimating the fundamental frequency.

Dunkerley’' s equation assumes that the fundamental frequency is much lower than the harmonics.
By neglecting the harmonics, the estimated fundamental frequency is always lower than the
actual value.

The Rayleigh method assumes a mode shape for the vibration at the natural frequency. The
method is generally used to find the fundamental frequency because it is more difficult to
estimate the mode shapes of the harmonics. If the assumed mode shapeis not exact, it is
equivalent to having additional constraintsin the system. Hence the estimated frequency tends
to be higher than the true value.

In the Holzer method, atrial frequency is assumed and the solution is achieved if the boundary
conditions are satisfied. Transfer matrix techniques may be regarded as an extension of the
Holzer method. A state vector isan array of number, each of which isthe value of avariable at a
given station in the system. Hence it describes the state of a system. A transfer matrix relates
the state vector of one station to the next. Thus arecurrence formulais obtained. Hence more
complex problems (like a Fiberizer in the sugar industry or a crusher in cement industry which
have a number of disksin between the supports) can be handled by the transfer matrix method.

A computer isrequired for this method, however. The program can be extended to the overhang
of a shaft and the mode shape.
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