NATURAL FREQUENCIES OF A SHEAR BEAM

By Tom Irvine
Email: tomirvine@aol.com

March 2, 2009

Consider a beam which undergoes shear displacement only.

) |
u(x,t) = Transverse displacement

G = Shear modulus

A = Cross-section area

k = Shear factor

P = Mass/volume

Assume a uniform cross-section and mass density.

The transverse shear displacement u(x, t) is governed by the equation
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Equation (1) is taken from Reference 1.
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Separate the variables. Let
u(x,t) = UX)T(t)

By substitution,
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Perform the partial differentiation.
{k—G}U”(x)T(t) =UX)T"(t)
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Divide through by U(X)T(t).
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Each side of equation (8) must equal a constant. Let o be a constant.
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The time equation is
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T7(t) = —w2T(t) (11)

T"(t) + 2 T(t) = 0 (12)
Propose a solution
T(t) = asin(ot) + bcos(mt) (13)
T'(t) = aw cos(wt) — b sin(wmt) (14)
T"(t) = —aw? sin(ot) — bo? cos(ot) (15)

Verify the proposed solution. Substitute into equation (12).
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—am?sin(ot) - bo? cos(ot) + 2

sin(ot) +®2 cos(wt)| = 0 (16)
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Equation (17) is thus verified as a solution.

There is not a unique o, however, in equation (16). This is demonstrated later in the
derivation. Thus a subscript n must be added as follows.

Th (1) :ansin(mnt)+ bncos(cont) (18)

The spatial equation is

{k_G} U'(x) _ .2 (19)
p | U(X)
Let
c= |KG (20)
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U"(x) = -2 U(x) (21a)
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U"(x) +‘”—2 U(x) =0 (21b)
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The displacement solution is

X

U(x) = dsin (%X] ; ecos(T) (22)

The slope equation is
U'(x) = {Q}PCOS(Q—XJ - esin(m—xﬂ (23)
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The solutions for various boundary condition cases are given in the appendices.
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APPENDIX A

Case |. Fixed-Free

The left boundary conditions is

u(0,t)=0 (zero displacement) (A-1)
u@O)T(t)=0 (A-2)
U(0)=0 (A-3)

The right boundary condition is

0

U . —0 (zero stress) (A-4)
U'(L)T(t) =0 (A-5)
U'(L)=0 (A-6)

Substitute equation (A-3) into (22).
e=0 (A-7)

Thus, the displacement equation becomes

U(x) = dsin (%X) (A-8)

U'(x) = [ﬂ[d cos(%xﬂ (A-9)

Substitute equation (A-6) into equation (A-9).

dcos(%] =0 (A-10)



The constant d must be non-zero for a non-trivial solution. Thus,
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on =(2”2_1jn% n=123,.

The o term is given a subscript n because there are multiple roots.
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The displacement function for the fixed-free beam is
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APPENDIX B

Case Il. Fixed-Fixed

The left boundary condition is

u(0,t)=0 (zero displacement) (B-1)
U(0)T(t)=0 (B-2)
u@0)=0 (B-3)

The right boundary condition is

u(L,t)=0 (zero displacement) (B-4)
U(L)T(t) =0 (B-5)
U(L) =0 (B-6)

Substitute equation (B-3) into (22).
e=0 (B-7)

Thus, the displacement equation becomes
U = d sin(%xj (B-8)
Substitute equation (B-6) into (B-8).
dsin [%Lj =0 (B-9)

The constant d must be non-zero for a non-trivial solution. Thus,
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The o term is given a subscript n because there are multiple roots.
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on=nt—, n=123.. (B-11)
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The displacement function the fixed-fixed beam is

U (x) =dy, sin (m?”x) (B-12)
Up (%) =dp sin (”LLX) (B-13)



