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Consider a beam which undergoes shear displacement only. 
 
 
 
 
 
 
 
 
 
 

u(x, t) = Transverse displacement 

G = Shear modulus 

A = Cross-section area 

k = Shear factor 

  = Mass/volume 

 
 
Assume a uniform cross-section and mass density. 
 
The transverse shear displacement u(x, t) is governed by the equation  
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Equation (1) is taken from Reference 1. 
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Separate the variables.  Let 
 

u x t U x T(t( , ) ( ) )                                                                           (4) 
 
By substitution, 
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Perform the partial differentiation. 
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Divide through by U(x)T(t). 
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Each side of equation (8) must equal a constant.  Let  be a constant. 
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The time equation is 
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  T t T(t( ) )2                                                                           (11) 
 

  T t T(t( ) )2 0                                                                        (12) 
 

Propose a solution 
 

   T(t a t b t) sin cos                                                                    (13) 
 

     T t a t b t( ) cos sin                                                             (14) 
 

      T t a t b t( ) sin cos   2 2                                                 (15) 
 
Verify the proposed solution.  Substitute into equation (12). 

 

            a t b t t t       2 2 2 2 0sin cos sin cos                       (16) 

                              
                 0 = 0                                                              (17) 

                              
Equation (17) is thus verified as a solution. 
 
There is not a unique  , however, in equation (16).  This is demonstrated later in the 
derivation.  Thus a subscript n must be added as follows. 

 

   T t a t b tn n n n n( ) sin cos                                                       (18) 

 
The spatial equation is 
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The displacement solution is 
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The slope equation is 
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The solutions for various boundary condition cases are given in the appendices. 
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APPENDIX A 
 

 
 
Case I.  Fixed-Free 
 

The left boundary conditions is 
 
 

u t( , )0 0         (zero displacement)                                                             (A-1)         
 

U T t( ) ( )0 0                                                                                                (A-2) 
 

U( )0 = 0                                                                                                      (A-3) 
 

The right boundary condition is 
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 U L T(t( ) ) 0                                                                                             (A-5) 
 

 U L( ) 0                                                                                                   (A-6) 
 
 

Substitute equation (A-3) into (22). 
  

e = 0                                                                                                    (A-7) 
 
Thus, the displacement equation becomes 
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Substitute equation (A-6) into equation (A-9). 
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The constant d must be non-zero for a non-trivial solution.  Thus, 
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The   term is given a subscript n because there are multiple roots. 
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The displacement function for the fixed-free beam is 
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APPENDIX B 

 
 

Case II.  Fixed-Fixed 
 

The left boundary condition is 
 

u t( , )0 0         (zero displacement)                                                             (B-1)         
 

U T t( ) ( )0 0                                                                                                (B-2) 
 

U( )0 = 0                                                                                                      (B-3) 
 

The right boundary condition is 
 

u L t( , )  0         (zero displacement)                                                             (B-4)         
 

U L T(t( ) )  0                                                                                                (B-5) 
 

U L( )  0                                                                                                      (B-6)                               
 

Substitute equation (B-3) into (22). 
  

e = 0                                                                                                    (B-7) 
 
Thus, the displacement equation becomes 
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Substitute equation (B-6) into (B-8).                                                                                                                    
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The constant d must be non-zero for a non-trivial solution.  Thus, 
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The   term is given a subscript n because there are multiple roots. 
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The displacement function the fixed-fixed beam is  
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