PRELOADED SPRING-MASS SYSTEM SUBJECTED TO BASE EXICITATION

By Tom Irvine Email: tomirvine@aol.com

November 30, 2011

Derivation

Consider a single-degree-of-freedom system as shown in Figure 1. This is a piecewise-linear system.

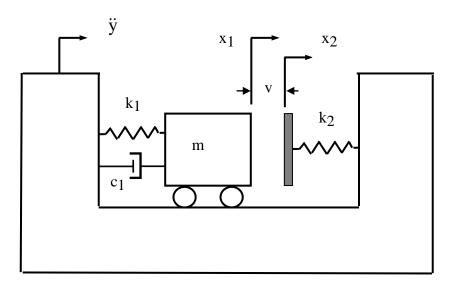


Figure 1.

The variables are

m	=	mass
c ₁	=	damping coefficient
k ₁ , k ₂	=	stiffness
ÿ	=	base acceleration

The mass and bumper are initially in contact with a preload P.

The displacements x_1 and x_2 are with respect to the initial preloaded rest condition The relative displacements are

$$z_1 = x_1 - y \tag{1}$$

$$\mathbf{z}_2 = \mathbf{x}_2 - \mathbf{y} \tag{2}$$

Initially,

$$z_1(0) = z_2(0) \tag{3}$$

The undeflected bumper spring k_2 has a relative displacement

$$\mathbf{u} = -\mathbf{P} / \mathbf{k}_2 \tag{4}$$

Spring-Mass System, Gap Condition

The equation of motion for the spring-mass system subjected to base excitation is

$$m\ddot{x}_{1} + c_{1}\dot{x}_{1} + k_{1}x_{1} = c_{1}\dot{y} + k_{1}y , \quad \text{for } z_{1} < u \tag{5}$$

$$m(\ddot{z}_{1} + \ddot{y}) + c_{1}(\dot{z}_{1} + \dot{y}) + k_{1}(z_{1} + y) = c_{1}\ddot{y} + k_{1}y$$
(6)

$$m\ddot{z}_{1} + c_{1}\dot{z}_{1} + k_{1}z_{1} = -m\ddot{y}$$
(7)

$$\ddot{z}_1 + \left(\frac{c_1}{m}\right) \dot{z}_1 + \left(\frac{k_1}{m}\right) z_1 = -\ddot{y}$$
(8)

Spring-Mass-Bumper System, Contact Condition

The following formula is for the case then the mass and bumper are in contact.

$$\ddot{z}_1 + \left(\frac{c_1}{m}\right) \dot{z}_1 + \left(\frac{k_1 + k_2}{m}\right) z_1 = -\ddot{y} \quad , \quad \text{for} \quad z_1 \ge u \tag{9}$$

In this case,

$$z_2(t) = z_1(t)$$
 (10)

Solution Method

The ordinary differential equations can then be solved in the time domain for an arbitrary base excitation using the Runge-Kutta fourth order method, or some other numerical method.

<u>Reference</u>

1. T. Irvine, Free Vibration of a Single-degree-of-freedom System, Revision B, Vibrationdata, 2005.

APPENDIX A

<u>Example</u>

The system in Figure 1 has the following parameters.

m	=	0.167 kg
c ₁	=	1.18 N s/m
k_1	=	840 N/m
k ₂	=	50000 N/m
Р	=	5 N

Note that the spring-mass system has 5% damping in the gap condition.

The system is subjected to a 40 G, 11 msec terminal sawtooth pulse.

The results are calculated using the formulas in the main text using Matlab script: spring_mass_preloaded_base.m.

The displacement and velocity are shown in Figures A-1 and A-2, respectively.

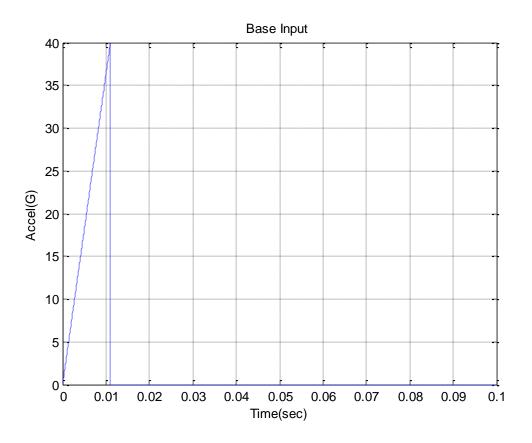


Figure A-1.

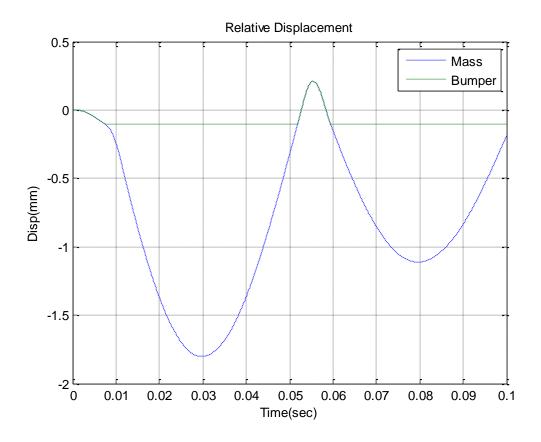


Figure A-2.

The initial deflection of spring 2 = -0.1 mm.

The mass and bumper are in contact when the curves coincide.

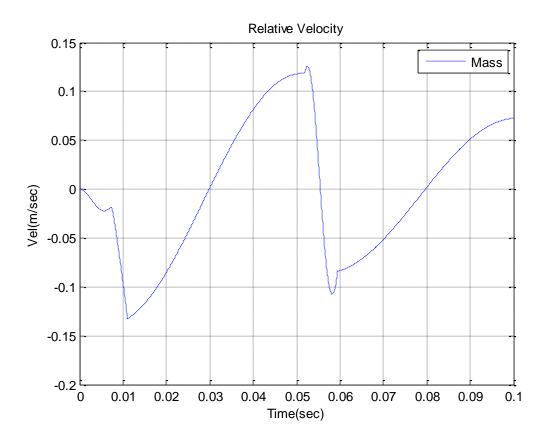


Figure A-3.

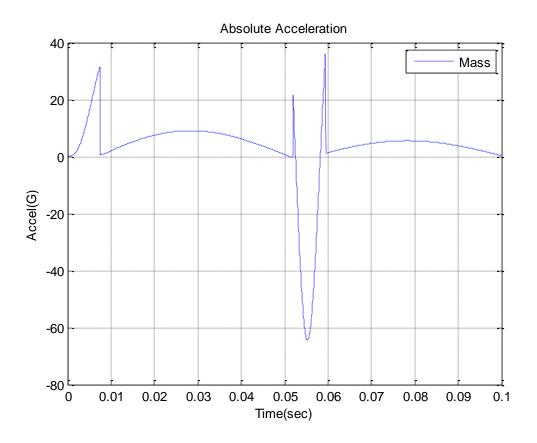


Figure A-4.

The re-contact shock pulse occurs between 0.05 and 0.06 seconds.